2013年4月6刘艳的初中数学组卷 (1)

合集下载

2013年5月27刘艳的初中数学数据的收集与处理组卷[1]

2013年5月27刘艳的初中数学数据的收集与处理组卷[1]

一.选择题(共15小题)1.(2012•襄阳)为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()2.(2012•丽水)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()3.(2012•崇左)崇左市江州区太平镇壶城社区调查居民双休日的学习状况,采取了下列调查方式;a:从崇左高中、太平镇中、太平小学三所学校中选取200名教师;b:从不同住宅楼(即江湾花园与万鹏住宅楼)中随机选取200名居民;c:选取所管辖区内学校的200名在校学生.并将最合理的调查方式得到的数据制成扇形统计图和部分数据的频数分布直方图.以下结论:①上述调查方式最合理的是b;②在这次调查的200名教师中,在家学习的有60人;③估计该社区2000名居民中双休日学习时间不少于4小时的人数是1180人;④小明的叔叔住在该社区,那么双休日他去叔叔家时,正好叔叔不学习的概率是0.1.其中正确的结论是()4.(2011•宜昌)夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是()5.(2011•温州)为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()6.(2011•南充)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()7.(2010•株洲)某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()8.(2009•温州)九年级(1)班共50名同学,如图是该班体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于29分的成绩评为优秀,则该班此次成绩优秀的同学人数占全班人数的百分比是()9.(2012•攀枝花)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取15010.若有:①分析数据;②收集数据;③作出决策;④整理数据;⑤提出问题,则下列关于决策过程的13.(2012•佛山)吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最14.(2012•郴州)为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、15.(2011•常州)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方二.解答题(共6小题)16.(2012•安徽)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?17.(2012•吉林)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.18.(2012•威海)某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.19.(2007•哈尔滨)据2007年5月26日《生活报》报道,我省有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?20.(2010•内江)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为_________度;(2)本次一共调查了_________名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.21.为了了解某市在减轻学生作业负担的工作上的落实情况,该市教育局对某校某班每个同学晚上完成作业的时间进行了一次调查统计,并根据收集的数据绘制了如图所示的两幅不完整的统计图,请你根据图中提供的信息,完成下面的问题(1)该班共有多少学生?(2)将图中的条形统计图补充完整(3)求作业完成时间在0.5﹣1小时的部分对应扇形圆心角是多少度?(4)如果该校七年级共有1000名学生,请估计七年级学生完成作业时间超过1.5小时的大约有多少人?2013年5月刘艳的初中数学组卷参考答案与试题解析一.选择题(共15小题)1.(2012•襄阳)为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()×2.(2012•丽水)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()×3.(2012•崇左)崇左市江州区太平镇壶城社区调查居民双休日的学习状况,采取了下列调查方式;a:从崇左高中、太平镇中、太平小学三所学校中选取200名教师;b:从不同住宅楼(即江湾花园与万鹏住宅楼)中随机选取200名居民;c:选取所管辖区内学校的200名在校学生.并将最合理的调查方式得到的数据制成扇形统计图和部分数据的频数分布直方图.以下结论:①上述调查方式最合理的是b;②在这次调查的200名教师中,在家学习的有60人;③估计该社区2000名居民中双休日学习时间不少于4小时的人数是1180人;④小明的叔叔住在该社区,那么双休日他去叔叔家时,正好叔叔不学习的概率是0.1.其中正确的结论是()4.(2011•宜昌)夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是()5.(2011•温州)为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()=∴=0.2,可求出解.6.(2011•南充)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()7.(2010•株洲)某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()8.(2009•温州)九年级(1)班共50名同学,如图是该班体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于29分的成绩评为优秀,则该班此次成绩优秀的同学人数占全班人数的百分比是()计算频率.×=9.(2012•攀枝花)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取15010.若有:①分析数据;②收集数据;③作出决策;④整理数据;⑤提出问题,则下列关于决策过程的13.(2012•佛山)吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最14.(2012•郴州)为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、15.(2011•常州)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方二.解答题(共6小题)16.(2012•安徽)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?×17.(2012•吉林)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.,则=18.(2012•威海)某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.××=252019.(2007•哈尔滨)据2007年5月26日《生活报》报道,我省有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?×20.(2010•内江)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为54度;(2)本次一共调查了200名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.21.为了了解某市在减轻学生作业负担的工作上的落实情况,该市教育局对某校某班每个同学晚上完成作业的时间进行了一次调查统计,并根据收集的数据绘制了如图所示的两幅不完整的统计图,请你根据图中提供的信息,完成下面的问题(1)该班共有多少学生?(2)将图中的条形统计图补充完整(3)求作业完成时间在0.5﹣1小时的部分对应扇形圆心角是多少度?(4)如果该校七年级共有1000名学生,请估计七年级学生完成作业时间超过1.5小时的大约有多少人?。

江苏师范大学附属实验学校七年级下数学期末模拟试卷(一)

江苏师范大学附属实验学校七年级下数学期末模拟试卷(一)

ABCD 江苏师大附校2013-2014学年度第二学期期末模拟考试一七年级数学试题一、选择题(本大题有8小题,共24分,请将正确选项前的字母代号填写在括号内) 1.下列在数轴上表示的不等式组⎩⎨⎧-≤31x x 的解集,正确的是( )2.下列命题中,为真命题的是( ) A .同位角相等B .对顶角相等C .若22a b =,则=a bD .若a >b ,则a b>3. 下列计算正确的是 ( )A .3232a a a =+ B .326a a a =÷ C .()632a a = D .2223a a a =-4. 若b a <,则下列各式中一定成立的是( ) A .a 21>b 21B .a -6<b -6C .bc ac <D .11-<-b a 5. 如图,△DEF 经过怎样的平移得到△ABC ( )A .把△DEF 向左平移4个单位,再向下平移2个单位B .把△DEF 向右平移4个单位,再向下平移2个单位C .把△DEF 向右平移4个单位,再向上平移2个单位D .把△DEF 向左平移4个单位,再向上平移2个单位 6. 等腰三角形的两边长分别为5和11,则它的周长为( )A.21B.21或27C.27D.25 7.若多边形的边数增加1,则其内角和的度数( )A .增加180º B. 其内角和为360ºC. 内角和不变D. 其外角和减少8.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ;②∠ACB=2∠ADB ; ③∠ADC=90°-∠ABD ;④BD 平分∠ADC ;⑤∠BDC=12∠BAC .其中正确的结论有( )A .2个B .3个C .4个D .5个二、填空题(本大题有8小题,共24分)9. 某种生物细胞的直径约为0.0000000006米,用科学记数法表示为 米. 10. 如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D=65°, 则∠AEC= .11.一个多边形的每个内角均为108°,则这个多边形的边数是 .ABCFE D12. 已知⎩⎨⎧==32y x 是方程4x﹢k y=2的解,则k= . 13. 已知10m=2,10n=3则103m +2n=____________.14. 某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学靠了85分,她希望自己学期总成绩不低于90分,她在期末考试中数学至少应得多少分? 设她在期末应考x 分,可列不等式为 .15. 命题“如果一个角的两边分别与另一个角的两边互相平行,那么这两个角相等”的逆命题是:17.计算:(1)(-1)2014-∣-2∣+(3.14)0-(21)-2 (2)3222)()(a a a ÷⋅- (3)()()5225+-x x18.因式分解:(1)6442-x (2)3223242xy y x y x +-19.解方程组(或不等式组)(1)⎪⎩⎪⎨⎧=-=+131337y x y x (2)()5232135122x x x x ⎧->-⎪⎨-≤-⎪⎩20. 甲、乙、丙、丁四人到文具店购买同一种笔记本和钢笔,购买的数量及总价分别如下表所示,其中有一人的总价算错了。

2013年6月刘艳的初中数学组卷

2013年6月刘艳的初中数学组卷

2013年6月刘艳的初中数学组卷2013年6月刘艳的初中数学组卷一.填空题(共2小题)1.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是_________.2.四川5•12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,则这次为灾民安置的有_________个房间.这批灾民有_________人.二.解答题(共6小题)3.(2010•自贡)玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.4.(2010•东营)如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为acm,宽为bcm,厚为ccm,如果按如图所示的包书方式,将封面和封底各折进去3cm,用含a,b,c的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm,宽为16cm,厚为6cm的字典,你能用一张长为43cm,宽为26cm的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.5.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.6.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况.他从中随机调查了40,并绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题:(1)补全频数分布表.(2)补全频数分布直方图.(3)绘制相应的频数分布折线图.(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?7.某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购,帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人居住.学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.(1)求该校采购了多少顶3人小帐篷,多少顶10人住的大帐篷;(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?8.某次数学竞赛共20道题.每题答对得10分,答错或不答扣5分.至多答错或不答几道题,得分才能不低于82分?2013年6月刘艳的初中数学组卷参考答案与试题解析一.填空题(共2小题)1.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是8.,据此列方程得:﹣﹣2.四川5•12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,则这次为灾民安置的有5或6个房间.这批灾民有23或26人.二.解答题(共6小题)3.(2010•自贡)玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.,,经检验,它们是原方程的根;万元,可列出方程组×10=万元,乙公司共需×4.(2010•东营)如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为acm,宽为bcm,厚为ccm,如果按如图所示的包书方式,将封面和封底各折进去3cm,用含a,b,c的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm,宽为16cm,厚为6cm的字典,你能用一张长为43cm,宽为26cm的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.5.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.)节,则可得:6.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况.他从中随机调查了40,并绘制了如下的频数分布表和频数分布直方图.(1)补全频数分布表.(2)补全频数分布直方图.(3)绘制相应的频数分布折线图.(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?7.某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购,帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人居住.学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.(1)求该校采购了多少顶3人小帐篷,多少顶10人住的大帐篷;(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?,8.某次数学竞赛共20道题.每题答对得10分,答错或不答扣5分.至多答错或不答几道题,得分才能不低于82分?≤。

2013年七年级(下)期末考试数学模拟测试题(含答案)

2013年七年级(下)期末考试数学模拟测试题(含答案)

2013年七年级(下)期末考试数学模拟测试题一、选择题1.下列调查中必须用抽样调查方式来收集数据的有()①检查一大批灯泡使用寿命的长短.②调查某大城市居民家庭的收入情况.③了解全班同学的身高情况.④检查某种药品的药数.A. 1个B. 2个 c. 3个 D. 4个2.点P(m+3,m+1)在x轴上,则点P的坐标为()A.(2,0)B.(0,-2)C.(4,0)D.(0,-4)3.下列说法中正确的是()A.有且只有一条直线垂直于已知直线B.互相垂直的两条线段一定相交C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

D.直线c外一点A与直线c上各点连接而成的所有线段中,最短的线段长是3cm,则点A到直线c的距离是3cm.4.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°5.若一个角的两边分别平行于另一个角的两边,那么这两个角为()A.相等B.互补C.相等或互补D.以上结论都不对6.如图所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余B.互补C.相等D.以上都不对7.如图:,那么-)a bA、-2bB、2bC、―2aD、2a8.若a<0关于x的不等式ax+1>0的解集是()A.x B.x C.x>D.x<9.已知方程组53255451x y x y ax y x by +=-=⎧⎧⎨⎨+=+=⎩⎩与 有相同的解,则a ,b 的值为( ) A . 14614...2622a a a a B C D b b b b ==-=-=⎧⎧⎧⎧⎨⎨⎨⎨==-==⎩⎩⎩⎩10.七年级学生在学校会议室看戏,每排座位坐13人,则有1人无处坐;每排座位坐14人,则空12个座位,那么这间会议室座位排数共有( ) A .14 B .13 C .12 D .17 二、填空题11.如图,直线AB 、CD 相交于点O ,且∠EOD =∠DOB ,OF 平分∠AOE ,若∠AOC =28°,则∠EOF=_________.12.在平面直角坐标系中,把点P (-1,-2)向上平移4个单位长度所得点的坐标是 .13.已知4x y +=,10x y -=,则2xy =________.14.如图,请你填写一个适当的条件: ,使AD ∥BC . 15.若线段AB 平行于x 轴,AB 长为5,若A 的坐标为(4,5),则B 的坐标为_________. 16= 。

2013年5月30刘艳的初中数学一题多图组卷[1]

2013年5月30刘艳的初中数学一题多图组卷[1]

2013年5月刘艳的初中数学组卷一.解答题(共4小题)1.课题学习问题背景甲、乙、丙三名同学探索课本上一道题:如图1,E是边长为a的正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形任务要求:(1)请你在图1中画出旋转后的图形甲、乙、丙三名同学又继续探索:在正方形ABCD中,∠EAF=45°,点F为BC上一点,点E为DC上一点,∠EAF的两边AE、AF分别与直线BD 交于点M、N.连接EF甲发现:线段BF,EF,DE之间存在着关系式EF=BF+DE;乙发现:△CEF的周长是一个恒定不变的值;丙发现:线段BN,MN,DM之间存在着关系式BN2+DM2=MN2(2)现请也参与三位同学的研究工作中来,你认为三名同学中哪个的发现是正确的,并说明你的理由.2.阅读下面材料:小伟遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:在图2中,∠GAF的度数是_________.参考小伟得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE=_________.(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(﹣3,2),连接AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y=_________.3.请尝试解决以下问题:(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_________.∴_________=EF,故DE+BF=EF.(2)运用(1)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.(3)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD2+CE2=DE2始终成立,请说明理由.4.(2011•永州)探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_________.∴_________=EF,故DE+BF=EF.(2)方法迁移:如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D 满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).2013年5月刘艳的初中数学组卷参考答案与试题解析一.解答题(共4小题)1.课题学习问题背景甲、乙、丙三名同学探索课本上一道题:如图1,E是边长为a的正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形任务要求:(1)请你在图1中画出旋转后的图形甲、乙、丙三名同学又继续探索:在正方形ABCD中,∠EAF=45°,点F为BC上一点,点E为DC上一点,∠EAF的两边AE、AF分别与直线BD 交于点M、N.连接EF甲发现:线段BF,EF,DE之间存在着关系式EF=BF+DE;乙发现:△CEF的周长是一个恒定不变的值;丙发现:线段BN,MN,DM之间存在着关系式BN2+DM2=MN2(2)现请也参与三位同学的研究工作中来,你认为三名同学中哪个的发现是正确的,并说明你的理由.2.阅读下面材料:小伟遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:在图2中,∠GAF的度数是45°.参考小伟得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE=.(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(﹣3,2),连接AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y=x+1.,BE=;3.请尝试解决以下问题:(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°.又AG=AE,AF=AF∴△GAF≌△EAF.∴GF=EF,故DE+BF=EF.(2)运用(1)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.(3)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD2+CE2=DE2始终成立,请说明理由.x=BE=4.(2011•永州)探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠FAE.又AG=AE,AF=AF∴△GAF≌△EAF.∴GF=EF,故DE+BF=EF.(2)方法迁移:如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D 满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).EAF=。

永州市 2013年初中毕业学业考试试卷 数学

永州市 2013年初中毕业学业考试试卷 数学

永州市2013年初中毕业学业考试试卷数学(试题卷)一、选择题(每小题3分,共24分).1.12013-的倒数为( )A.12013B.12013- C. 2013 D. 2013-2.运用湘教版初中数学教材上使用的某种电子计算器求键顺序正确的是( )826ndf+=B. 826ndf+=C. 86+=D. 86+=3.()4.如图,下列条件中能判定直线12//l l的是( )A.12∠=∠ B. 15∠=∠C.13180∠+∠= D. 35∠=∠5.实数,,a b c在数轴上对应的点如图所示,则下列式子中正确的是( ) A.a c b c->- B. a c b c+<+C.ac bc> D.a cb b<6.已知()230x y-++=,则x y+的值为A. 0B. 1-C. 1D. 57.下列说法正确的是( )A. 一组数据2,5,3,1,4,3的中位数是3B. 五边形的外角和是540度C. “菱形的对角线互相垂直”的逆命题是真命题D. 三角形的外心是这个三角形三条角平分线的交点123451l()4第题图2l3l4lA B CDa b c x()5第题图8.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-. 若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i )。

并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()()()22123242,1,1,11i i i i i i i i i i ==-==-=-==-=, 从而对于任意正整数n ,我们可以得到()4144nn n i i i i i i +=⋅=⋅=, 同理可得421n i +=- , 43n i i +=- , 41n i = .那么23420122013i i i i i i ++++⋅⋅⋅++的值为( )A. 0B. 1C.1-D. i二、填空题(每小题3分,共24分)9.钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑屿,面积约为0.0008平方公里.请用科学计数法表示飞濑屿的面积约为 平方公里. 10.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是 11.已知一次函数y kx b =+的图象经过A (1,1-),B(1,3-)两点,则k 0 (填“>”或“<”) 12.定义a b c d 为二阶行列式.规定它的运算法则为a bad bc c d=-.那么当1x =时,二阶行列式1101x x +-的值为 .13.如图,已知△ABC 内接于⊙O ,BC 是⊙O 的直径,MN 与⊙O 相切,切点为A ,若∠MAB=30 ,则∠B= 度.14.如图,两个反比例函数4y x =和2y x=在第一象限内的图象分别是1C 和2C ,设点P 在1C 上,PA x ⊥轴于点A ,交2C 于点B ,则△POB 的面积为(13)第题图P1C O 2C ()14第题图15.已知0a b a b +=,则abab的值为 16.电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)三、解答题(本大题共9个小题,共72分)17.(本小题6()12013112-⎛⎫+- ⎪⎝⎭18. (本小题6分)解不等式组23120x x +>⎧⎨-⎩?,并把解集在数轴上表示出来.19. (本小题6分)先化简,再求值:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭其中2x =.20. (本小题8分)某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A. 读普通高中; B. 读职业高中 C. 直接进入社会就业; D.其它)进行数据统计,并绘制了两幅不完整的统计图(a )、(b ). 请问:(1)该县共调查了 名初中毕业生(2)将两幅统计图中不完整的部分补充完整; (3)若该县2013年初三毕业生共有4500人,请估计该县今年的初三毕业生中读普通高中的学生人数.5%3()图甲()a A B C D GE F 2341322422221111111133()图乙000021. (本小题8分)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB=10,BC=15,MN=3(1)求证:BN=DN(2)求△ABC 的周长.22.(本小题8分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?23.(本小题10分)如图,AB 是⊙O 的切线,B 为切点,圆心在AC 上,∠A=30 ,D 为 BC的中点. (1)求证:AB=BC(2)求证:四边形BOCD 是菱形..AC(24.(本小题10分)如图,已知二次函数()224(0)y x m m m =-->的图象与x 轴交于A 、B 两点.(1)写出A 、B 两点的坐标(坐标用m 表示)(2)若二次函数图象的顶点P 在以AB 为直径的圆上,求二次函数的解析式 (3)设以AB 为直径的⊙M 与y 轴交于C 、D 两点,求CD 的长.25.(本小题10分)如图,已知AB ⊥BD ,CD ⊥BD(1)若AB=9,CD=4,BD=10,请问在BD 上是否存在P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;(2)若AB=9,CD=4,BD=12,请问在BD 上存在多少个P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长; (3)若AB=9,CD=4,BD=15,请问在BD 上存在多少个P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长; (4)若AB=m ,CD=n ,BD=l ,请问,,m n l 满足什么关系时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个P 点?两个P 点?三个P 点?A B C D O P M ()24第题图A BCDP()25第题图。

UTF-8''2014年10月27日刘艳的初中数学全品相似与重庆中考难题组卷

UTF-8''2014年10月27日刘艳的初中数学全品相似与重庆中考难题组卷

2014年10月27日刘艳的初中数学组卷2014年10月27日刘艳的初中数学组卷一.填空题(共10小题)1.(2014•潍坊)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是_________米.2.(2010•鞍山)如图小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1 m杆的影子长为2 m,则电线杆的高度约为_________ m.(结果保留两位有效数字,≈1.41,≈1.73)3.(2007•烟台)如图,电影胶片上每一个图片的规格为3.5cm×3.5cm,放映屏幕的规格为2m×2m,若放映机的光源S距胶片20cm,那么光源S距屏幕_________米时,放映的图象刚好布满整个屏幕.4.(2008•荆门)如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(﹣1,﹣1),则两个正方形的位似中心的坐标是_________,_________.5.(2014•遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=_________里.6.(2014•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为_________.7.(2013•淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有_________条.8.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.9.(2014•重庆)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为_________.10.(2014•重庆)如图,在边长为6的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG=_________.二.解答题(共20小题)11.(2013•苏州)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.12.(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB 交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.13.(2013•巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.14.(2013•娄底)如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ 到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.15.(2014•陕西)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?16.如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F.求证:BD•CF=CD•DF.17.(2011•陕西)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测出沙坑坑沿的圆周长34.54米;②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求圆锥形坑的深度(圆锥的高).(π取3.14,结果精确到0.1米)18.(2010•青海)梯形ABCD的四个顶点分别为A(0,6),B(2,2),C(4,2)D(6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,相似比为的位似图形A1B1C1D1;(2)画出位似图形A1B1C1D1向下平移五个单位长度后的图形A2B2C2D2.19.(2013•绍兴)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.20.(2014•陕西)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.21.(2012•徐州)如图,为测量学校围墙外直立电线杆AB的高度,小亮在操场上点C处直立高3m的竹竿CD,然后退到点E处,此时恰好看到竹竿顶端D与电线杆顶端B重合;小亮又在点C1处直立高3m的竹竿C1D1,然后退到点E1处,此时恰好看到竹竿顶端D1与电线杆顶端B重合.小亮的眼睛离地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m.(1)△FDM∽△_________,△F1D1N∽△_________;(2)求电线杆AB的高度.22.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.23.(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC 外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.24.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC 交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.25.(2014•重庆)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.26.如图,在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1)若正方形ABCD边长为3,DF=4,求CG的长;(2)求证:EF+EG=CE.27.(2014•重庆)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.28.(2014•重庆)如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.29.(2014•重庆)如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F 同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒.(1)求线段AC的长;(2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)当等边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N 两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由.30.(2014•重庆)某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?2014年10月27日刘艳的初中数学组卷参考答案与试题解析一.填空题(共10小题)1.(2014•潍坊)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是54米.∴,=,∴,,∴,∴,2.(2010•鞍山)如图小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1 m杆的影子长为2 m,则电线杆的高度约为8.7m.(结果保留两位有效数字,≈1.41,≈1.73)÷5+2+≈3.(2007•烟台)如图,电影胶片上每一个图片的规格为3.5cm×3.5cm,放映屏幕的规格为2m×2m,若放映机的光源S距胶片20cm,那么光源S距屏幕米时,放映的图象刚好布满整个屏幕.,.cm=m答:银幕应在离镜头4.(2008•荆门)如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(﹣1,﹣1),则两个正方形的位似中心的坐标是(1,0),(﹣5,﹣2).∴,解得,解得x+…,解得x,故5.(2014•遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH= 1.05里.∴∴6.(2014•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.|k|∴.y=,即﹣|k|7.(2013•淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有3条.8.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.S=,∴=,∴=为对应边,且,∴==为对应边,且=,∴=,∴=故答案为:或或9.(2014•重庆)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.BE==2,=BF,,CF==OF=10.(2014•重庆)如图,在边长为6的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG=5.BN=HN=4﹣=2CH=2GH=CH=2.∴FG=5二.解答题(共20小题)11.(2013•苏州)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.,进而得出,=,进而得出=,即===,求出即可.∴,∴,=,∴,∵,即,y=x×∵=,∴,=,是解题关键.12.(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB 交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.BC EF=DE=CB=13.(2013•巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.∴==14.(2013•娄底)如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ 到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.∴∴∴∴∴∴﹣x﹣()时,矩形的面积最大时,矩形的长为,宽为×=2∴([(]t+∴﹣t.15.(2014•陕西)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?∴,∴,16.如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F.求证:BD•CF=CD•DF.DE=CE=AE=17.(2011•陕西)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测出沙坑坑沿的圆周长34.54米;②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求圆锥形坑的深度(圆锥的高).(π取3.14,结果精确到0.1米)∴,OS=OA=≈OS=18.(2010•青海)梯形ABCD的四个顶点分别为A(0,6),B(2,2),C(4,2)D(6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,相似比为的位似图形A1B1C1D1;(2)画出位似图形A1B1C1D1向下平移五个单位长度后的图形A2B2C2D2.,就是把原图形缩小到原来的,连接19.(2013•绍兴)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.,推出=,=,=,=,得出=MN=GN=GH=HE=h×h×∴=,=,=,==∴=hMN=GN=GH=HE=h×h时,=;×==边上的高之比是或20.(2014•陕西)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.∴∴AC=21.(2012•徐州)如图,为测量学校围墙外直立电线杆AB的高度,小亮在操场上点C处直立高3m的竹竿CD,然后退到点E处,此时恰好看到竹竿顶端D与电线杆顶端B重合;小亮又在点C1处直立高3m的竹竿C1D1,然后退到点E1处,此时恰好看到竹竿顶端D1与电线杆顶端B重合.小亮的眼睛离地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m.(1)△FDM∽△FBG,△F1D1N∽△F1BG;(2)求电线杆AB的高度.∴∴∴,∵∴22.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.a%a%23.(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC 外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.+ECM=DAE=AD=CD=BC24.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC 交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.DQ S=•EM=.DQ=DC=,FG=225.(2014•重庆)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.,BD==.=AE=AE==4﹣,即== BD=;BQ=BQ==;∠﹣∠∠== BQ=;BQ=5=﹣、、﹣.26.如图,在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1)若正方形ABCD边长为3,DF=4,求CG的长;(2)求证:EF+EG=CE.CG==ME=CEEF+EG=CE)根据27.(2014•重庆)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.,28.(2014•重庆)如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.,解得PM PM PM PM (﹣(﹣+时,(),=PB=.=BN+PN+PB=3+3+,由勾股定理得:,)CD=ND=,)作对称轴的垂线,垂足为,﹣=E=.,,,则=,即.,﹣,y=﹣,,﹣)y=x+3,,,),29.(2014•重庆)如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F 同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒.(1)求线段AC的长;(2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)当等边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N 两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由.时,如答图当CD=AB=4DH==,EP=GP=EG=GAC==.ACH====时,如答图=当=4×,=4×=x∴x=(﹣=4×,=4×EP==xCE=x∴x=(•t﹣==CP=CF=7 x=××;CP=CFPN=7CM=x=.7.30.(2014•重庆)某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?。

淮北市八校教研协会2013-2014学年度上学期九年级第一次月考数学试卷

淮北市八校教研协会2013-2014学年度上学期九年级第一次月考数学试卷

淮北市八校教研协会2013—2014学年度九年级第一次月考数学试卷考生注意:1. 本卷考试时间120分钟, 满分150分 2. 请在密封线内填写清楚班级、姓名、考号一、选择题(本题共10小题,每小题4分,满分40分)1、-2013的绝对值是………………………………………………………………( )A 、--2013B 、2013C 、D 、2、不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为………………………………( )3、抛物线2)1(32-+=x y 的顶点坐标是………………………………( ) A 、 )2,1(- B 、 )2,1(- C 、)2,1(-- D 、 )2,1(4、将抛物线23x y =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为………………………………………………………………………………( )A 、B 、.C 、D 、2013120131-23(2)3y x =++23(2)3y x =-+23(2)3y x =+-23(2)3y x =--1 02A1 02B1 02C1 02D7、二次函数)0(2≠++=a c bx ax y 的图象所示,若)0(2≠=++k k c bx ax 有两个不相等的实数根,则k 的取值范围是……………………………………………………( ) A 、 k < 3 B 、 k > 3 C 、 k < - 3 D 、 k > -3 8、已知二次函数的图象(-0.7 ≤ x ≤2)如图所示.关于该函数在所给自变量x 的取值范围内,下列说法正确的是……………………………………………………………( ) A 、有最小值1,有最大值2 B 、有最小值-1,有最大值1 C 、有最小值-1,有最大值2 D 、有最小值-1,无最大值9、如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH=3厘米,EF=4厘米,则边BC 的长是……………………………………………………( )A 、4厘米B 、5厘米C 、6厘米 D 、8厘米10、已知点),1(1y -、),2(2y 、),3(3y 在反比例函数21k y x--=上,则下列结论正确的( ) A 、123y y y >> B 、231y y y >> C 、132y y y >> D 、312y y y >>二、填空题(本题共4小题,每小题5分,满分20分)11、使二次根式x 21-有意义的x 的取值范围是 .12、请写出一个开口向上,对称轴为直线2-=x ,且与y 轴的交点为(0,3)的抛物线的关系式 . 13、用配方法把二次函数52212-+=x x y 化成k h x a y +-=2)(的形式为 .14、如图为二次函数y=ax 2+bx+c (a ≠0)的图象,则下列说法: ①abc >0 ②2a+b=0 ③a+b+c >0 ④当﹣1<x <3时,y >0 ,其中正确结论的序号是 .三、(本题共2小题,每小题8分,满分16分)第7题图 第9题图 第14题图15、解分式方程xx x -=+--2312316、抛物线c bx x y +-=2经过点A (3,0)、B (0,-3),(1)求这个抛物线的函数关系式;(2)若抛物线的顶点为P ,抛物线与x 轴的另一个交点为C 试求⊿PAC 的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年4月6的初中数学组卷2013年4月刘艳的初中数学组卷一.选择题(共28小题)1.(2012•黑龙江)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC 边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正确的个数有()2.如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有()3.如图,直角梯形ABCD中,∠A=90°,AD∥BC,AB=AD,DE⊥BC于E,点F为AB上一点,且AF=EC,点M 为FC的中点,连接FD、BD、ME,设FC与DE相交于点N,下列结论:①∠FDB=∠FCB;②△DFN∽△DBC;③FB=ME;④ME垂直平分BD,其中正确结论的个数是()4.如图,梯形ABCD中,AD∥BC,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,则下列关系式中成立的有()①;②;③;④CE2=CD×BC;⑤BE2=AE×BC.5.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥CD,BD=CD,CE平分∠BCD,交AB于点E,交BD 于点H,EN∥DC交BD于点N,连接DE.下列结论:①BH=BE;②EH=DH;③tan∠EDB=;④;其中正确的有()6.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,AE=AD.连接DE、AC交于F,连接BF.则有下列4个结论:①△ACD≌△ACE;②△CDE为等边三角形;③EF:BE=():2;④S△ECD:S△ECF=EC:EF.其中正确的结论是()7.如图,矩形ABCD中,AB=3,AD=4,△ACE为等腰直角三角形,∠AEC=90°,连接BE交AD、AC分别于F、N,CM平分∠ACB交BN于M,下列结论:①AB=AF;②AE=ME;③BE⊥DE;④,其中正确的结论的个数有()8.如图,四边形ABCD中,AB=AD,∠DAB=90°,AC与BD交于点H,AE⊥BC于点E,AE交BD于点G,点F 是BD的中点,连接EF,若HG=10,GB=6,tan∠ACB=1,则下列结论:①∠DAC=∠CBD;②DH+GB=HG;③4AH=5HC;④EC﹣EB=EF;其中正确结论是()9.如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH 交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边;⑤CF=BD.正确的有()个.形GHCE10.如图:直角梯形ABCD中,AD∥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交AD于H,OF交AB于G,交CD于K,以下结论:①OE=OF;②OH=FG;③DF﹣DE=BD;④四边形OHDK的面积是△BCD面积的一半,其中结论正确的是()11.如图,直角梯形ABCD中,AD∥BC,∠A=∠B=90°,E是AB的中点,连接DE、CE,AD+BC=CD,以下结论:(1)∠CED=90°;(2)DE平分∠ADC;(3)以AB为直径的圆与CD相切;(4)以CD为直径的圆与AB相切;(5)△CDE的面积等于梯形ABCD面积的一半.其中正确结论的个数为()12.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()13.(2006•武汉)(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE 交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF 与△CFB.其中相似的为()14.如图,正方形ABCD中,连接BD.点E在边BC上,且CE=2BE.连接AE交BD于F;连接DE,取BD的中点O;取DE的中点G,连接OG.下列结论:①BF=OF;②OG⊥CD;③AB=5OG;④sin∠AFD=;⑤其中正确结论的个数是()15.如图,在正方形ABCD中,对角线AC、BD交于点O,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,AC交BG于点H,连接OG,下列结论:①OG∥AD;②△CHE为等腰三角形;③BH=GH;④tan∠F=2;⑤S△BCE:S△BDE=其中正确的结论有()16.如图,正方形ABCD中,点E是BC边的中点,连接DE,过点C作CF⊥DE交BD于点G,交AB于点H,连接BF,以下结论:①AH=BH;②∠BFH=45°;③;④DG=2BG.其中正确的结论是()17.如图,正方形ABCD的对角线相交于点O,AE平分∠BAC分别交DC、BC于点H、E,延长AB至点F,使BF=BE,连接CF,延长AE交CF于点G,连接OG.下列结论:①△ABE≌△CBF;②OG∥AB;③AH=HG;④以AG为直径的圆与CF相切.其中正确的个数有()18.已知如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点BD是对角线,AG∥DB,交CB的延长线于G,连接GF,若AD⊥BD.下列结论:①DE∥BF;②四边形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正确的是()19.如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO于E点,CF⊥BE于F点,交BO于G点,连接EG、OF.下列四个结论:①CE=CB;②四边形ABGE是等腰梯形;③AE=OE;④OF=CG.其中正确的结论只有()20.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.21.如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EF∥AC交CD于F,连接OE下列结论:①EF=AE,②∠AOE=∠AEO,,④S△ACE=2S△DCE,.其中正确的是()22.如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=EF;⑤∠AFB=∠AEB.其中正确结论的个数是()23.(2011•牡丹江)如图,在正方形ABCD中,点O为对角线AC的中点,过点0作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=0A;(4)AE2+CF2=20P•OB.正确的结论有()个.24.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF=2AD2;④EF•EP=4AO•PO.其中正确的是()25.如图,等腰直角△ABC中,∠BAC=90°,AB=AC,AD是高,∠ABC的平分线交AD、AC于E、F,点P是BF 延长线上一点,且∠APB=45°,连接PC;以下结论:①CF=2DE;②BE=PE;③AE•CF=AP•EF;④BF•PB+CF•AC=AB2.其中正确的结论是()26.在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF其中正确的是()27.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A 恰好与BD上的点F重合,折痕DE分别交AB、AC于点E、G,连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③△AGD的面积=△OGD的面积;④AE=GF;⑤BE=2OG.其中正确结论的序号是()28.如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①AB2=BN•DM;②AF平分∠DFE;③AM•AE=AN•AF;④.其中正确的结论是()二.填空题(共2小题)29.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_________.(填序号)30.(2011•沈阳)如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是_________(只填写序号).2013年4月刘艳的初中数学组卷参考答案与试题解析一.选择题(共28小题)1.(2012•黑龙江)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC 边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正确的个数有()AD=AE=AB=BC BC面积的面积的可得出三个三角形面积相等都为梯形面积的,的面积为梯形面积的,EF=EC=3x=y=BE=:SS2.如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有()∵∵∵3.如图,直角梯形ABCD中,∠A=90°,AD∥BC,AB=AD,DE⊥BC于E,点F为AB上一点,且AF=EC,点M 为FC的中点,连接FD、BD、ME,设FC与DE相交于点N,下列结论:①∠FDB=∠FCB;②△DFN∽△DBC;③FB=ME;④ME垂直平分BD,其中正确结论的个数是()∵BM=DM=BCMEH==ME4.如图,梯形ABCD中,AD∥BC,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,则下列关系式中成立的有()①;②;③;④CE2=CD×BC;⑤BE2=AE×BC.①正确,②正确;不相似,故③5.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥CD,BD=CD,CE平分∠BCD,交AB于点E,交BD 于点H,EN∥DC交BD于点N,连接DE.下列结论:①BH=BE;②EH=DH;③tan∠EDB=;④;其中正确的有()BH=BE=BH=BN=DN=DH+NH=EDB==∴∴∵∴6.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,AE=AD.连接DE、AC交于F,连接BF.则有下列4个结论:①△ACD≌△ACE;②△CDE为等边三角形;③EF:BE=():2;④S△ECD:S△ECF=EC:EF.其中正确的结论是()1+AE=x))AB=xx=)×7.如图,矩形ABCD中,AB=3,AD=4,△ACE为等腰直角三角形,∠AEC=90°,连接BE交AD、AC分别于F、N,CM平分∠ACB交BN于M,下列结论:①AB=AF;②AE=ME;③BE⊥DE;④,其中正确的结论的个数有()NC=×,NH=HC=×=EH=,8.如图,四边形ABCD中,AB=AD,∠DAB=90°,AC与BD交于点H,AE⊥BC于点E,AE交BD于点G,点F 是BD的中点,连接EF,若HG=10,GB=6,tan∠ACB=1,则下列结论:①∠DAC=∠CBD;②DH+GB=HG;③4AH=5HC;④EC﹣EB=EF;其中正确结论是()16+DH=EFAB16+DH=AH=4,HC=3.2,AB=12,AE=CE=7.2BE=2.4,AH=4.8FN=0.5CD=2.4,,,,BE=9.如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH 交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边;⑤CF=BD.正确的有()个.形GHCE∴10.如图:直角梯形ABCD中,AD∥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交AD于H,OF交AB于G,交CD于K,以下结论:①OE=OF;②OH=FG;③DF﹣DE=BD;④四边形OHDK的面积是△BCD面积的一半,其中结论正确的是(),结合图形CD=S11.如图,直角梯形ABCD中,AD∥BC,∠A=∠B=90°,E是AB的中点,连接DE、CE,AD+BC=CD,以下结论:(1)∠CED=90°;(2)DE平分∠ADC;(3)以AB为直径的圆与CD相切;(4)以CD为直径的圆与AB相切;(5)△CDE的面积等于梯形ABCD面积的一半.其中正确结论的个数为()EF=(EF=CDEF=CDSEF=(EF=CDEG=AE=ABEF=12.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()的面积为,可得出梯形面积为∴,即=13.(2006•武汉)(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE 交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF 与△CFB.其中相似的为(),得=∴14.如图,正方形ABCD中,连接BD.点E在边BC上,且CE=2BE.连接AE交BD于F;连接DE,取BD的中点O;取DE的中点G,连接OG.下列结论:①BF=OF;②OG⊥CD;③AB=5OG;④sin∠AFD=;⑤其中正确结论的个数是()∴∴∴,OG=BC=OFAFD==OG=BE∴,∴15.如图,在正方形ABCD中,对角线AC、BD交于点O,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,AC交BG于点H,连接OG,下列结论:①OG∥AD;②△CHE为等腰三角形;③BH=GH;④tan∠F=2;⑤S△BCE:S△BDE=其中正确的结论有()F=∴,∴=,BC BC:16.如图,正方形ABCD中,点E是BC边的中点,连接DE,过点C作CF⊥DE交BD于点G,交AB于点H,连接BF,以下结论:①AH=BH;②∠BFH=45°;③;④DG=2BG.其中正确的结论是()HCB=HF+EF=BF∴17.如图,正方形ABCD的对角线相交于点O,AE平分∠BAC分别交DC、BC于点H、E,延长AB至点F,使BF=BE,连接CF,延长AE交CF于点G,连接OG.下列结论:①△ABE≌△CBF;②OG∥AB;③AH=HG;④以AG为直径的圆与CF相切.其中正确的个数有()18.已知如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点BD是对角线,AG∥DB,交CB的延长线于G,连接GF,若AD⊥BD.下列结论:①DE∥BF;②四边形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正确的是()===19.如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO于E点,CF⊥BE于F点,交BO于G点,连接EG、OF.下列四个结论:①CE=CB;②四边形ABGE是等腰梯形;③AE=OE;④OF=CG.其中正确的结论只有()OF AE=∠BCG=∠∠EG=AE=EG=OF=BE=CG20.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.CF<=22.5OH=BFDG=CG=BC CF GH=CF=BCBC∴21.如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EF∥AC交CD于F,连接OE下列结论:①EF=AE,②∠AOE=∠AEO,,④S△ACE=2S△DCE,.其中正确的是()GO=MAGO=AEGO=AE=DN=NE=EF=xDE=∴,+1(OG=AB=DA=DE+AE=x+2x+1∵,22.如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=EF;⑤∠AFB=∠AEB.其中正确结论的个数是(),得出∴∴DG=CDAG==AGF==FGC=∵×,CD=2EF==AF=∵23.(2011•牡丹江)如图,在正方形ABCD中,点O为对角线AC的中点,过点0作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=0A;(4)AE2+CF2=20P•OB.正确的结论有()个.正方形OF24.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF=2AD2;④EF•EP=4AO•PO.其中正确的是()x CP=x BP=BC=CP=x BP=CE=CEP==EBC=∴EF=2EG=2EF=2(EP=2PC=PAB=,PO=EP=2x×x25.如图,等腰直角△ABC中,∠BAC=90°,AB=AC,AD是高,∠ABC的平分线交AD、AC于E、F,点P是BF 延长线上一点,且∠APB=45°,连接PC;以下结论:①CF=2DE;②BE=PE;③AE•CF=AP•EF;④BF•PB+CF•AC=AB2.其中正确的结论是()BC=AF∠,AF=FG=FG=×AE=FG=HE=BE=FG=APBC=FG=AC=﹣))AB26.在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF其中正确的是()27.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A 恰好与BD上的点F重合,折痕DE分别交AB、AC于点E、G,连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③△AGD的面积=△OGD的面积;④AE=GF;⑤BE=2OG.其中正确结论的序号是()AED∠AED=,<AED=>EF=GF=OGBE=EF=×OG=2OG28.如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①AB2=BN•DM;②AF平分∠DFE;③AM•AE=AN•AF;④.其中正确的结论是()EF=二.填空题(共2小题)29.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有①②③.(填序号)GM=CG CM=××CG×CG=30.(2011•沈阳)如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).(∠(DG=AD=CD=2+,DF=1+EF=CF=,而×DF=2+CE=2+。

相关文档
最新文档