等腰三角形性质2
等腰三角形和等边三角形的性质

等腰三角形和等边三角形的性质等腰三角形和等边三角形是基础的几何形状,它们有着特殊的性质和特点。
在本文中,我们将一起探讨等腰三角形和等边三角形的性质,并分析它们在几何学中的重要性。
一、等腰三角形的性质等腰三角形是指具有两条边相等的三角形。
以下是等腰三角形的主要性质:1. 两底角相等:等腰三角形的底边是两边相等的边,因此,其对应的底角相等。
即∠A = ∠C,其中A、C为等腰三角形的两个底角。
2. 顶角平分底角:等腰三角形的顶角恰好平分了底角。
也就是说,等腰三角形的顶角∠B恰好等于底角∠A和∠C的一半。
3. 等腰三角形的高线:等腰三角形的高线是连接顶点与底边垂直的线段。
在等腰三角形ABC中,高线BD垂直于底边AC,并且BD是AC的中线(即BD=DC)。
4. 等腰三角形的中线:等腰三角形中线是分别连接底边中点与顶点的线段。
在等腰三角形ABC中,中线BE与底边AC相等(即BE=EC)。
二、等边三角形的性质等边三角形是指三条边相等的三角形。
以下是等边三角形的主要性质:1. 三个内角相等:等边三角形的三个内角都相等,即∠A = ∠B =∠C = 60°。
2. 三条高线重合:等边三角形的三条高线分别由顶点向底边上的三个顶点所引。
这三条高线相交于同一个点,也就是等边三角形的垂心。
3. 等边三角形的中线:等边三角形的中线是分别连接底边中点与顶点的线段,也就是等边三角形的高线。
由于等边三角形的三边相等,中线也为等边三角形三边的中线。
三、等腰三角形和等边三角形的重要性等腰三角形和等边三角形在几何学中具有重要的应用和特点。
以下是它们的一些重要性:1. 判定等腰三角形:利用等腰三角形的性质,我们可以通过两条边的长度相等来判定一个三角形是否为等腰三角形。
2. 判定等边三角形:等边三角形的三条边相等,因此,我们可以通过三条边的长度相等来判定一个三角形是否为等边三角形。
3. 等腰三角形的应用:等腰三角形的性质常常应用在各类数学问题中,如三角函数、三角恒等式、三角面积等计算中。
等腰三角形的性质

等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
在几何学中,等腰三角形具有一些特殊的性质,这些性质不仅有助于我们理解和解决几何问题,还在各种实际应用中起着重要的作用。
本文将探讨等腰三角形的性质及其相关定理。
一、等腰三角形的定义等腰三角形是指具有两条边长度相等的三角形。
在一个三角形中,如果两条边的边长相等,我们就可以称之为等腰三角形。
通常,我们用字母a来表示等腰三角形的两条相等的边的长度,而用字母b表示与这两条边相对应的底边的长度。
二、等腰三角形的性质1. 等腰三角形的两个底角相等等腰三角形的两条等边,也是两个底角之间的夹角。
因此,等腰三角形具有两个底角相等的性质。
例如在一个等腰三角形ABC中,∠A 和∠B是相等的。
2. 等腰三角形的顶角等腰三角形的顶角是等腰三角形中与两个等边相对应的角。
这个角称为等腰三角形的顶角。
在等腰三角形ABC中,∠C就是顶角。
3. 等腰三角形的高线等腰三角形的高线是从顶角所在顶点到底边上的垂线,也就是等腰三角形顶角所在顶点到底边所在直线的垂直的线段。
等腰三角形的高线将底边平分,并且和两边构成相似三角形。
具体来说,等腰三角形ABC的高线CD将底边AB平分,同时构成了与等腰三角形ABC相似的等腰三角形ACD。
4. 等腰三角形中位线的性质等腰三角形中位线是从底边中点到对顶点的线段,在等腰三角形中,三条中位线相交于同一点,且对顶点到交点的距离是底边的一半。
5. 等腰三角形的外接圆和内切圆等腰三角形的外接圆是过等腰三角形三个顶点的圆,它的圆心与顶角所在顶点重合。
等腰三角形的内切圆是切于等腰三角形三边的圆,它的圆心位于等腰三角形的高线和中位线的交点上。
6. 等腰三角形的面积等腰三角形的面积可以通过底边和高线的长度来计算。
等腰三角形的面积等于底边长度乘以高线长度再除以2。
三、等腰三角形的相关定理1. 等腰三角形的高线定理在一个等腰三角形中,高线、底边和等腰腰长构成的直角三角形相似。
等腰三角形的性质定理2

∠CDE的度数是( D )
A.36° B.30°
C.22.5°
D.15°
1 11.已知等腰△ABC 中,AD⊥BC 于点 D,且 AD=2BC,则△ABC 底角的度数为( C ) A.45° C.45°或 15° 或 75° B.75°或 15° D.60°
12.(例4变式)如图,已知线段a和线段h(a>h),用直尺和圆规作等腰三 角形ABC,使AB=AC=a,底边BC上高AD=h.
17.如图,在△ABC中,AB=AC=4,∠BAC=90°,D为斜边BC 的中点,点M,N分别在AB,AC上,且BM=AN,连结MN. (1)猜想△DMN是什么形状的特殊三角形,并说明理由; (2)求四边形AMDN的面积.
解:(1)猜想:△DMN 是等腰直角三角形.理由:连结 AD,∵ AB=AC,∠BAC=90°,D 为 BC 的中点,∴∠B=∠C=45°, ∠ADB=90°, ∠BAD=∠CAD=45°, ∴∠B=∠BAD=∠CAD, ∴BD=AD.又∵BM=AN, ∴△BDM≌△ADN(SAS), ∴DM=DN, ∠BDM=∠ADN, ∵∠BDM+∠ADM=90°, ∴∠ADN+∠ADM =90°,即∠MDN=90°,∴△DMN 是等腰直角三角形.(2)由(1) 知△BDM≌△ADN, ∴S△BDM=S△ADN, ∴S 四边形 AMDN=S△ADM+S△ADN 1 1 1 =S△ADM+S△BDM=S△ABD=2S△ABC=2×2×4×4=4.
∴BF=FC.同理,DF=EF,∴BF-DF=FC-
FE,即BD=CE.
14 . ( 龙湾区期中 ) 如图,在等腰三角形 ABC 中, AB = AC , BD 平分
∠ ABC ,在 BC 的延长线上取一点 E ,使CE = CD ,连结 DE ,求证:
等腰三角形的性质与定理

等腰三角形的性质与定理等腰三角形是指具有两条边长度相等的三角形。
在几何学中,等腰三角形具有一些独特的性质和定理。
本文将对等腰三角形的性质与定理进行详细的介绍。
一、等腰三角形的定义和性质等腰三角形的定义:等腰三角形是指具有两条边的长度相等的三角形。
在等腰三角形ABC中,若AB=AC,则∠B=∠C。
等腰三角形的性质:1. 等腰三角形的底角(底边上的角)两个相等。
证明:由等腰三角形的定义可知,AB=AC,再加上三角形内角和为180度的性质,可得∠A+∠B+∠C=180度。
由于∠A=∠B=∠C,所以∠B+∠B+∠B=180度,即3∠B=180度,所以∠B=∠C=60度。
2. 等腰三角形的高(从顶点到底边的垂直线段)和斜边的中线相等。
证明:作等腰三角形ABC的高AD和BC的中线DE。
首先证明AD=DE。
由于三角形ABC是等腰三角形,所以∠A=∠B=∠C=60度。
又因为∠DAB和∠DEC是等腰三角形的底角,所以∠DAB=∠DEC=60度。
因此,由三角形内角和为180度的性质可知,∠DAB+∠BAD+∠BDA=180度,即60度+∠BAD+90度=180度,解得∠BAD=30度。
同理,∠DCE=30度。
再考虑三角形ABD和DEC,由于∠BAD=∠DCE=30度,∠DAB=∠DEC=60度,所以根据AA相似性质可知,∠ABD=∠DEC,故两个三角形相似。
根据相似三角形的性质,可得AD/DE=BD/EC=AB/DC=1/2。
又已知BD=DC,所以AD=DE。
3. 等腰三角形的对顶角(顶点所对的两边的角)相等。
证明:在等腰三角形ABC中,已知∠B=∠C,∠BAC是三角形内角和,即∠BAC+∠CAB+∠ABC=180度,即2∠B+∠ABC=180度,解得∠ABC=180度-2∠B。
同理,∠ACB=180度-2∠C。
由于∠B=∠C,所以∠ABC=∠ACB。
因此,等腰三角形的对顶角相等。
二、等腰三角形的定理1. 等腰三角形底角的平分线是高和对称轴。
等腰三角形的性质

等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
它具有特殊的性质和应用,对几何学有重要的意义。
本文将介绍等腰三角形的定义、性质和相关定理,以及一些实际应用。
一、等腰三角形的定义等腰三角形是指具有两边相等(即两边长度相等)的三角形。
根据这个定义,一个等腰三角形必须满足两边相等,而第三边则可以不相等。
等腰三角形可以是直角三角形、锐角三角形或钝角三角形。
二、等腰三角形的性质1. 等腰三角形的底角(底边对应的角)和顶角(顶点对应的角)相等。
证明:设等腰三角形ABC中,AB=AC,我们需要证明∠B = ∠C。
由三角形内角和定理可知∠A + ∠B + ∠C = 180°,且由AB = AC可知∠A = ∠C。
因此,∠A + ∠B + ∠A = 180°,即2∠A + ∠B = 180°,推出∠B = ∠C。
2. 等腰三角形的高(从顶点到底边垂直的线段)是底边的中线和中线延长线的垂直平分线。
证明:设等腰三角形ABC中,AB=AC,M为底边BC的中点,D 为顶点A到底边BC的垂直线的交点。
由线段等分的定义可知BM = MC。
因为D为垂线的交点,所以ADM和ACM为直角三角形,且∠ADM = ∠ACM。
另一方面,AM为直线BC的中线,所以MB=MC。
因此,在三角形ADM和ACM中,AD = AC,∠ADM = ∠ACM,MB = MC,根据ASA(对应边相等)准则可知三角形ADM和ACM全等。
根据全等三角形的性质可知∠DAM = ∠CAM,即高AD是底边的中线和中线延长线的垂直平分线。
三、等腰三角形的定理1. 等腰三角形的高与底边的关系定理等腰三角形的高与底边的关系定理表明,等腰三角形的高是底边的平分线和垂直平分线。
即等腰三角形的高可以同时平分底边,使得两个等长的线段垂直于底边。
证明:设等腰三角形ABC中,AB=AC,M为底边BC的中点,D为顶点A到底边BC的垂直线的交点。
等腰三角形的性质

等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
等腰三角形的性质是数学中的重要概念之一,它具有许多有趣的特点和性质。
本文将介绍等腰三角形的性质及其相关定理。
一、等腰三角形的定义等腰三角形是指具有两条边长度相等的三角形。
在等腰三角形中,这两条边被称为腰,而另外一条边称为底边。
由于两条腰的长度相等,所以等腰三角形的底角也必然相等。
二、等腰三角形的性质1. 等腰三角形的底角相等:由等腰三角形的定义可知,两条腰的长度相等,因此底角也必然相等。
这是等腰三角形最基本的性质之一。
2. 等腰三角形的顶角平分底角:在等腰三角形中,顶角与底角之间的关系十分特殊。
根据平分角的性质,等腰三角形的顶角将平分底角,使得等腰三角形的顶角等于底角的一半。
3. 等腰三角形中,顶角、底边、高线之间存在特殊关系:等腰三角形中,高线是从顶角向底边作垂直线,垂足处的线段被称为高线。
根据等腰三角形的性质,高线将底边平分,并且高线与底边垂直。
4. 等腰三角形的两条腰上的高线相等:等腰三角形的两条腰上的高线长度相等。
因为两条腰的长度相等,所以它们与底边构成的高线长度也必然相等。
5. 等腰三角形的两边夹角相等:等腰三角形的两边夹角等于顶角的一半。
这是等腰三角形中重要的定理之一,也是许多证明问题中的关键。
6. 等腰三角形中,高线、中线、角平分线重合:在等腰三角形中,高线、中线和角平分线三者的垂足点重合。
这是等腰三角形中有趣的性质之一。
三、等腰三角形的应用1. 利用等腰三角形的性质求解几何问题:等腰三角形的性质可以应用于各种几何问题的求解过程中。
例如,通过已知条件推导等腰三角形的性质,进而解决其他相关问题。
2. 构造等腰三角形:在实际应用中,有时候需要根据具体要求构造等腰三角形。
通过利用等腰三角形的性质,可以在平面上进行精确的构造,满足特定的需求。
4. 证明几何定理:在数学证明中,等腰三角形的性质往往被用作证明其他几何定理的基础,通过运用等腰三角形的特性来推导其他结论。
等腰三角形的性质

等腰三角形的性质等腰三角形是指具有两条边长度相等(称作等腰边)的三角形。
在几何学中,等腰三角形有很多独特的性质和特点。
本文将探讨等腰三角形的性质,帮助读者更好地理解这一概念。
1. 等腰三角形定义等腰三角形是指两条边的长度相等,形成一个顶角和两个底角的三角形。
等腰三角形的顶角通常被称为顶点角,而两个底角则被称为底边角。
2. 顶角和底角性质由于等腰三角形的两条边相等,所以顶角必然相等。
也就是说,等腰三角形的顶点角度总是相等的。
另一方面,等腰三角形的底角度数也是相等的。
3. 底边性质在等腰三角形中,两个边相等的边被称为底边。
底边上的两个底角也是相等的。
此外,底边的中垂线也同时也是等腰三角形的高线和中线。
换句话说,底边的中垂线将等腰三角形切分为两个完全相等的直角三角形。
4. 对称性质等腰三角形具有对称性质。
当我们将等腰三角形绕着顶点旋转180度时,所得到的图形与原等腰三角形重合。
这也意味着,等腰三角形的两条底边可以互换位置,而依然保持相等。
5. 面积计算方法等腰三角形的面积计算方法与其他三角形相同,即通过底边长度和高线的长度来计算。
由于等腰三角形的中垂线与底边相等,所以可以通过底边和顶角的正弦函数来计算高线的长度。
等腰三角形的面积公式为:面积 = 1/2 * 底边长度 * 高线长度。
6. 角平分线性质在等腰三角形中,顶角的角平分线既是等腰三角形的高线,也是等腰三角形的中线。
这意味着角平分线将顶角分成两个相等的角,并且它们与等腰三角形的底边相等。
7. 判定等腰三角形的方法为了判定一个三角形是否为等腰三角形,我们可以观察其边的长度或者角度的度数。
如果三角形的两条边长度相等,则该三角形是等腰三角形。
另一种判定方法是观察顶点角和底边角的度数,如果它们相等,则该三角形是等腰三角形。
总结:等腰三角形是一种具有两条边长度相等的三角形。
它具有许多独特的性质和特点,包括顶角和底角的相等性,底边的中垂线、高线和中线的重合性,对称性质,面积计算方法以及角平分线的性质。
等腰三角形的性质

等腰三角形的性质等腰三角形是学习几何学时常见的一种特殊三角形,它具有很多独特的性质和特点。
本文将以点明等腰三角形的定义以及其性质为主线,讲解等腰三角形的一些基本知识和相关定理。
一、等腰三角形的定义等腰三角形是指两边(腰)的边长相等的三角形。
在一个等腰三角形中,通常会存在一个等腰线,即连接两个底角的线段,也是三角形的对称轴。
二、等腰三角形的基本性质1. 等腰三角形的底角相等:一个等腰三角形的两个底角(即不等边对应的两个角)相等,可记作∠A = ∠C。
2. 等腰三角形的等腰线中点角相等:等腰线将底边分为两段,连接等腰线与底边中点的线段,该线段分割出来的两个角相等,可记作∠BAD = ∠DAC,∠BDA = ∠DAB。
3. 等腰三角形的顶角平分底角:等腰三角形的顶角(即等边对应的角)等于两个底角之和的一半,可记作∠B = ∠A + ∠C。
4. 等腰三角形的高线及中线:等腰三角形的高线是从顶点到底边的垂直线段,等腰三角形的中线是从顶点到底边的中点的线段。
在等腰三角形中,高线和中线重合,且与底边垂直。
三、等腰三角形的相关定理1. 在等腰三角形中,如果两条边相等,那么两个对应的角也相等,即边对角相等定理。
例如,若AC = BC,则∠A = ∠B。
2. 在等腰三角形中,如果一个角为直角,则它对应的两边必然相等,即等腰直角三角形的两条腰相等。
例如,在直角等腰三角形ABC中,如果∠C = 90°,则AC = BC。
3. 在等腰三角形中,如果一条边平分对脚的底角,则该边为底边(腰),且等腰线也平分对脚的顶角。
例如,在等腰三角形ABC中,如果AD是BC的平分线,则BD = CD,且∠BAD = ∠CAD。
通过对等腰三角形的定义、基本性质和相关定理的分析,我们可以更好地理解和应用等腰三角形。
在实际应用中,等腰三角形常用于解决与对称性、垂直性、角度和边长之间关系等问题。
对等腰三角形有着深入的理解,对于解题和推理能力的培养会有积极的促进作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奈曼旗东明中学人教版八年数学◆上册◆导学案
13.3.1等腰三角形2
设计人:张丽华班级:姓名:
学习目标:1、记住等腰三角形的判定定理;
2、会应用等腰三角形的判定定理进行证明和计算;
3、会做给定底边和底边上的高线的等腰三角形,并知
道做图的道理。
课堂活动
一、创设情境,引入新课
给我们一个三角形怎样才能判断是不是等腰三角形呢?本节课我们就来学习,同时我们还能学会证明两条线段相等的新方法.
二、走进文本,学习新课
(一)自学提示:自学教材77页思考开始至78页,完成下列要求
1、完成思考中的问题
2、认真看77页思考下面的证明过程
3、自学例2,不懂的地方做标记,
4、自学例3,
(二)自学检测
1、如图:在△ABC中,∠B=∠C,求证:AB=AC.(提示:作AD⊥
BC)
A
B C
★★★★★自主★★★★★合作★★★★★探究★★★★★
2、已知在△ABC 中,∠B =∠C =36°,∠ADE =∠AED =72°,则图中共有等腰三角形( )
A.3个
B. 4个
C. 5个
D. 6个 三、尝试应用,深化问题
例1;如图,AC 和BD 相交于点O ,且AB ∥DC ,
OA =OB .
求证:OC =OD
例2、已知:OD 平分∠AOB ,ED ∥OB .请说明:EO=ED .
变式训练:1、已知:OD 平分∠AOB ,EO=ED .请说明:
ED ∥OB.
2、已知:ED ∥OB ,EO=ED .请说明:OD 平分∠AOB .
A B
C
D
O
奈曼旗东明中学
人教版八年数学◆上册◆导学案
四、回顾反思,强化小结
谈谈本节课的收获
五、当堂训练,分层达标
基础题
1. 如图,△ABC中,∠B=∠C,DE∥BC,写出图中所有相等的线段: .
2. 如图,△ABC中,∠BAD=80°, ∠B=50°, ∠C=25°,若CD=2,则AB= .
提高题
如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF ∥BC,交AB于点E,交AC于点F
求证:EF=EB+FC.
A
B
F E O。