双星及三星模型
444核心素养培养双星三星模型——模型建构能力的培养

①各自所需的向心力由彼此间的万有引力提供,即
GmL12m2=m1ω21r1,GmL12m2=m2ω22r2
r1
②两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2
③两颗星的半径与它们之间的距离关系为:r1+r2=L
(3)两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21。
双星问题提示: 两星间的万有引力分别给两星 提供做圆周运动的向心力,且 两星的角速度相等.
8
@《创新设计》
转到解析
目录
备选训练
2. 2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋 转的超大质量双黑洞系统,如图所示。这也是天文学家首次在正常星系中发现超大质量 双黑洞。这对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应性等都具有 十分重要的意义。我国今年底也将发射全球功能最强的暗物质探测卫星。若图中双黑洞 的质量分别为M1和M2,它们以两者连线上的某一点为圆心做匀速圆周运动。根据所学 知识,下列选项正确的是( )
n3 A. k2T
n3 B. k T
n2 C. k T
n D. kT
区分开星体间距与 轨道半径的不同
审题 1、此双星满足什么物理规 设疑 律?
2、双星质量改变后,原表达式要进行 哪些修改?
对 m 恒星:GMLm2 =m2Tπ2·r 对 M 恒星:GMLm2 =M2Tπ2(L-r)
2
@《创新设计》
L r2
目录
课堂互动
2.三星模型
(1)三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为 R 的圆形轨道上运行(如 图 7 甲所示)。其中一个环绕星由其余两颗星的引力提供向心力:GRm22+(G2Rm)2 2=ma
“双星”及“三星”问题

“双星”及“三星”问题宇宙中,因天体间的相互作用而呈现出诸如双星、三星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。
而三星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。
多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。
由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。
一、“双星”问题:两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
1.要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
2.要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
3.要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
4.“双星”问题的分析思路质量m1,m2;球心间距离L;轨道半径 r1 ,r2;周期T1,T2 ;角速度ω1,ω2 线速度V1 V2;周期相同:(参考同轴转动问题) T1=T2角速度相同:(参考同轴转动问题)ω1 =ω2向心力相同:Fn1=Fn2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)轨道半径之比与双星质量之比相反:(由向心力相同推导)r1:r2=m2:m1m1ω2r1=m2ω2r2m1r1=m2r2 r1:r2=m2:m1线速度之比与质量比相反:(由半径之比推导) V1:V2=m2:m1V1=ωr1 V2=ωr2双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为,经过一段时间演化后,两星总质量变为原来的倍,两星之间的距离变为原来的倍,则此时圆周运动的周期为()A. B.C. D.设两颗恒星的质量分别为和,两颗恒星的运行半径分别为和,两恒星之间的距离,两恒星运动时都是由它们之间的万有引力提供向心力,即,,联立得两恒星的质量和,故,当质量和变为原来的k倍,距离变为原来倍时,两恒星做圆周运动的周期,B项正确.二、“三星”问题有两种情况:第一种三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;第二种三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的外接圆轨道运行,三星运行周期相同。
双星及三星模型教学内容

双星及三星模型收集于网络,如有侵权请联系管理员删除《双星及三星模型》导学提纲设计人:班级: 组名: 姓名:【学习目标】 1. 理解双星模型特点2. 掌握双星及三星运动的向心力来源 【导读流程】一.双星模型条件及特点 :例1 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.T k n 23B.T k n 3C.T kn 2D.T k n例2(2015•天门模拟)经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.则可知( )A. m 1、m 2做圆周运动的线速度之比为3:2B. m 1、m 2做圆周运动的角速度之比为3:2C. m 1做圆周运动的半径为 2/5LD. m 2做圆周运动的半径为 2/5L二. 三星模型的向心力来源 :例3. (2015安微理综)由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)。
若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ;(2)B 星体所受合力大小F B ;(3)C 星体的轨道半径R C ;(4)三星体做圆周运动的周期T。
2021学年高中物理微专题四双星三星模型课件人教版必修2.ppt

(1)对第一种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有
GRm12 2+G2Rm122=mR1(2Tπ)2. (2)对第二种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有Gm2 r2源自cos30°+Grm2 2
cos 30°=mR22Tπ2
答案:BD
练 2 月球与地球质量之比约为 1:80,有研究者认为月球和
地球可视为一个双星系统,它们都围绕地月连线上某点 O 做匀
速圆周运动.据此观点,可知月球与地球绕 O 点运动线速度大
小之比约为( )
A.1:6 400 B.1:80
C.80:1
D.6 400:1
解析:月球和地球绕 O 点做匀速圆周运动,它们之间的万有引 力提供各自的向心力,则地球和月球的向心力相等.且月球、地球 和 O 点始终共线,说明月球和地球有相同的角速度和周期.因此有 mω2r=Mω2R,所以vv′=Rr =Mm,线速度和质量成反比.故选 C.
微专题(四) 双星、三星模型
模型建构
模型一 双星模型
1.模型构建 在天体运动中,将两颗彼此相距较近,且在相互之间万有引 力作用下绕两者连线上的某点做周期相同的匀速圆周运动的星 球称为双星.
2.模型特点:它们间的距离为 L.此双星问题的特点是:
(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某 一点.
【解析】 双星系统周期相同(角速度相同),所受万有引力作 为向心力相同,所以 B 项错误,D 项正确;由 F=mω2r,m1r1ω2= m2r2ω2,得 m1v1=m2v2,vv12=mm21=23,A 项错误;rr12=mm21又 r1+r2=L,
专题 天体运动的“四个热点”问题

专题 天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图1所示。
图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为r 1+r 2=L(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
2.多星模型模型 三星模型(正三角形排列) 三星模型(直线等间距排列) 四星模型图示向心力的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力【例1】 (多选)(2018·全国Ⅰ卷,20)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。
将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析 由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s ,两中子星的角速度均为ω=2πT,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km ,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。
核心素养培养双星三星模型——模型建构能力的培养课件

双星三星模型的特点
综合性
双星三星模型涵盖了知识 、技能、态度和价值观等 多个方面,旨在培养学生
的全面发展。
实践性
该模型强调实践和应用, 通过项目式学习和合作学 习等方式,让学生在实践
中提升核心素养。
动态性
双星三星模型的评估标准 是动态的,根据学生的表 现和需求进行适时调整,
以实现个性化发展。
双星三星模型的应用范围
核心素养培养双星三星模型— —模型建构能力的培养
CONTENTS
• 引言 • 双星三星模型概述 • 模型建构能力的培养 • 核心素养与双星三星模型的关
系 • 案例分析 • 总结与展望
01
引言
背景介绍
随着社会的发展和科技的进步,人们越来越认识到教育的重要性。在教 育领域中,核心素养的培养成为了关注的焦点。为了更好地培养学生的 核心素养,研究者提出了双星三星模型这一概念。
题的能力。
案例二:利用双星三星模型培养物理实验能力
总结词
双星三星模型能够帮助学生更好地理解 物理实验的设计思路和操作过程,提高 实验能力。
VS
详细描述
在物理实验教学中,教师采用双星三星模 型引导学生进行实验设计和操作。学生需 要根据实验目标,设计实验方案,选择合 适的实验器材,进行实验操作并记录数据 ,最后分析实验结果并得出结论。这种教 学方法能够帮助学生更好地理解物理实验 的设计思路和操作过程,提高实验能力。
双星三星模型强调在教育过程中注重学生的主体性和主动性,通过引导 学生进行自我认知、自我规划和自我评价,培养学生的自主学习和终身
学习的能力。
在双星三星模型中,模型建构能力的培养是其中的一个重要方面。模型 建构能力是指学生能够运用所学知识,通过分析和解决问题,构建出相 应的模型,从而解决实际问题的能力。
(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
双星三星四星问题说课讲解

双星三星四星问题双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《双星及三星模型》导学提纲
设计人: 审核人:高三物理备课组
班级: 组名: 姓名:
【学习目标】 1. 理解双星模型特点
2. 掌握双星及三星运动的向心力来源 【导读流程】
一.
双星模型条件及特点 :
例1 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )
A.T k n 23
B.T k n 3
C.T k
n 2
D.T k n
例2(2015•天门模拟)经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.则可知( )
A. m 1、m 2做圆周运动的线速度之比为3:2
B. m 1、m 2做圆周运动的角速度之比为3:2
C. m 1做圆周运动的半径为 2/5L
D. m 2做圆周运动的半径为 2/5L
二. 三星模型的向心力来源 :
例3. (2015安微理综)由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运
动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)。
若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求: (1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ;
(3)C 星体的轨道半径R C ;
(4)三星体做圆周运动的周期T 。
例4.宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用,已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为
的圆轨道上运行,如图甲所示。
另一种形式是三
颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,如图乙所示,设每个星体的质量均为
,
(1)试求第一种形式下,星体运动的线速度和周期;
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少。