数据插值和函数逼近 MATLAB实现
《高等应用数学问题的MATLAB求解-第二版》math-chap08.ppt

高等应用数学问题的MATLAB求解 东北大学信息学院
例 8.9
假设已知某三元函数
可以通过该函数生成一些网格型样本点, 试根据样本点进行拟合,并给出拟合误差
高等应用数学问题的MATLAB求解 东北大学信息学院
插值并检验结果:
高等应用数学问题的MATLAB求解 东北大学信息学院
8.1.6 基于样本数据 点的离散最优化求解
验证结果:
高等应用数学问题的MATLAB求解 东北大学信息学院
例 8.2
编写一段程序,允许利用插值方法手工绘 制一条光滑的曲线利用插值方法手工绘制 一条光滑的曲线
高等应用数学问题的MATLAB求解 东北大学信息学院
接上页
需要用户自己选定几个点,然后就能绘制 出一条光滑的曲线 在绘制图形时,若给出vis变量,则绘制的 图形保留样本点处的圆圈,否则在绘制图 形后删去圆圈
是期望的插值位置
表示插值的结果,维数和
一致
‘v4’ 是MATLAB 4.0版本中提供的插值算法.
高等应用数学问题的MATLAB求解 东北大学信息学院
例 8.7
给定
在矩形区域 一组样本点
内随机生成
生成一组 的值,以这些值为已知数据,用 griddata()进行插值处理,并误差分析。
生成并显示已知的样本点:
运用外推法,在区间 函数调用格式为
外的点的插值的
高等应用数学问题的MATLAB求解 东北大学信息学院
例 8.1
已知的数据点来自函数 根据生成的数据进行插值处理,得出较平 滑的曲线直接生成数据 MATLAB求解语句:
高等应用数学问题的MATLAB求解 东北大学信息学院
调用interp1()函数:
matlab在两个数据点之间插值一条曲线的方法

一、插值的定义在数学和计算机科学中,插值是指在已知数据点的基础上,利用插值算法来估算出在这些数据点之间未知位置上的数值。
插值可以用于生成平滑的曲线、曲面或者函数,以便于数据的分析和预测。
二、matlab中的插值方法在matlab中,有多种插值方法可以用来在两个数据点之间插值一条曲线。
这些方法包括线性插值、多项式插值、样条插值等。
下面我们将逐一介绍这些方法及其使用场景。
1. 线性插值线性插值是最简单的插值方法之一。
它的原理是通过已知的两个数据点之间的直线来估算未知位置上的数值。
在matlab中,可以使用interp1函数来进行线性插值。
该函数的调用格式为:Y = interp1(X, Y, Xq, 'linear')其中X和Y分别是已知的数据点的横纵坐标,Xq是待估算数值的位置,'linear'表示使用线性插值方法。
使用线性插值可以快速地生成一条近似直线,但是对于非线性的数据分布效果可能不佳。
2. 多项式插值多项式插值是利用多项式函数来逼近已知数据点之间的曲线。
在matlab中,可以使用polyfit和polyval函数来进行多项式插值。
polyfit函数用于拟合多项式曲线的系数,polyval函数用于计算多项式函数在给定点的数值。
多项式插值的优点是可以精确地通过已知数据点,并且可以适用于非线性的数据分布。
3. 样条插值样条插值是一种比较常用的插值方法,它通过在每两个相邻的数据点之间拟合一个低阶多项式,从而保证整条曲线平滑且具有良好的拟合效果。
在matlab中,可以使用splinetool函数来进行样条插值。
样条插值的优点是对于非线性的数据分布可以有较好的拟合效果,且能够避免多项式插值过拟合的问题。
4. 三角函数插值三角函数插值是一种常用的周期性数据插值方法,它利用三角函数(如sin和cos)来逼近已知数据点之间的曲线。
在matlab中,可以使用interpft函数来进行三角函数插值。
用MATLAB作函数插值

1.先在三维坐标画出原始数据,画出粗糙的温度分布曲面图. 输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps) 2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值.
figure(5) subplot(1,3,1),contour(xi,yi,z1i,10,'r'); subplot(1,3,2),contour(xi,yi,z2i,10,'r'); subplot(1,3,3),contour(xi,yi,z3i,10,'r');
用MATLAB作散点数据的插值计算
例
已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。
X Y
0 3 5 7 9 1 1 1 1 1 1 2 3 4 5 0 12 17 20 21 20 18 12 10 16 . . . . . . . . .
机翼下 轮廓线 y
x
x0=[0 3 5 7 9 11 12 13 14 15 ]; y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15; y1=lagr1(x0,y0,x); y2=interp1(x0,y0,x); y3=interp1(x0,y0,x,'spline'); subplot(3,1,1) plot(x0,y0,'k+',x,y1,'r') grid title('lagrange') subplot(3,1,2) plot(x0,y0,'k+',x,y2,'r') grid title('piecewise linear') subplot(3,1,3) plot(x0,y0,'k+',x,y3,'r') grid title('spline')
(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。
插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。
1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。
2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。
插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。
区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。
【拟合】要求得到一个具体的近似函数的表达式。
因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。
当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。
一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。
注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。
例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。
如何利用Matlab技术进行数据插值

如何利用Matlab技术进行数据插值数据插值是一种常用的数学方法,用于根据已知数据点的信息,推断出未知位置的数据。
在各个学科领域,如地理学、环境科学、经济学等,数据插值都被广泛应用于实际问题的解决中。
在这篇文章中,我们将探讨如何利用Matlab技术进行数据插值。
数据插值的目标是根据已有的数据点,建立一个适当的函数模型,并利用该模型对未知位置处的数据进行估计。
Matlab作为一种功能强大的数学计算和可视化软件,提供了各种强大的函数和工具箱,使得数据插值变得更加便捷和高效。
首先,我们需要将已有的数据点导入到Matlab中。
一般来说,数据以文本文件的形式存储,每一行代表一个数据点,包含该点的横坐标和纵坐标。
我们可以使用Matlab内置的读取文本数据的函数,如`dlmread`或`importdata`来导入数据。
导入后,我们可以使用`plot`函数将数据点绘制出来,以便于观察数据的分布情况。
在进行数据插值之前,首先需要对数据进行预处理。
如果数据中存在异常值或者缺失值,我们可以使用Matlab提供的函数来进行数据清洗。
例如,可以使用`isnan`函数判断数据是否缺失,并使用`interp1`函数对缺失值进行插值处理。
接下来,我们将介绍几种常用的数据插值方法,并演示如何在Matlab中应用这些方法。
首先是最简单的线性插值方法。
线性插值基于已知数据点之间的直线拟合,通过求解直线方程,来推测未知位置处的数据值。
Matlab提供了`interp1`函数来实现线性插值,我们可以指定插值的方法为`'linear'`,并传入已知数据点的横坐标和纵坐标,以及待插值的位置进行插值计算。
此外,Matlab还提供了其他更高级的插值方法,如多项式插值、样条插值等。
多项式插值使用多项式函数拟合已知数据点,通过计算多项式函数的值来进行插值。
Matlab提供了`polyfit`函数来拟合多项式函数,以及`polyval`函数来计算多项式函数的值。
matlab插值实验报告

matlab插值实验报告Matlab插值实验报告引言:在数学和工程领域中,插值是一种常见的数据处理方法。
它通过已知数据点之间的推断来填补数据的空缺部分,从而获得连续的函数或曲线。
Matlab是一种功能强大的数值计算软件,具备丰富的插值函数和工具包。
本实验旨在通过使用Matlab进行插值实验,探索插值方法的原理和应用。
实验步骤:1. 数据准备首先,我们需要准备一组实验数据。
以一个简单的二维函数为例,我们选择f(x) = sin(x),并在区间[0, 2π]上取若干个等间隔的点作为已知数据点。
2. 线性插值线性插值是插值方法中最简单的一种。
它假设函数在两个已知数据点之间是线性变化的。
在Matlab中,可以使用interp1函数进行线性插值。
我们将已知数据点和插值结果绘制在同一张图上,以比较它们之间的差异。
3. 多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近原始函数。
在Matlab中,polyfit函数可以用来拟合多项式。
我们可以选择不同的多项式次数进行插值,并观察插值结果与原始函数之间的差异。
4. 样条插值样条插值是一种更为精确的插值方法,它通过在每个小区间内构造局部多项式函数来逼近原始函数。
在Matlab中,可以使用spline函数进行样条插值。
我们可以选择不同的插值节点数目,并比较插值结果的平滑程度和逼近效果。
5. 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法,它通过构造插值多项式来逼近原始函数。
在Matlab中,可以使用polyval函数进行拉格朗日插值。
我们可以选择不同的插值节点数目,并观察插值结果与原始函数之间的差异。
实验结果:通过实验,我们得到了不同插值方法的结果,并将其与原始函数进行了比较。
在线性插值中,我们观察到插值结果与原始函数之间存在一定的误差,特别是在函数变化较快的区域。
而多项式插值和样条插值在逼近原始函数方面表现更好,特别是在插值节点数目较多的情况下。
matlab数据插值运算

matlab数据插值运算Matlab是一种强大的科学计算软件,用于数值计算、数据分析和可视化等应用。
在许多科研和工程项目中,我们经常需要对数据进行插值运算,以填补缺失值或对离散数据进行平滑处理。
本文将介绍如何使用Matlab进行数据插值运算。
数据插值是一种通过已知数据点来估计未知数据点的方法。
在Matlab中,有多种插值算法可以选择,包括线性插值、拉格朗日插值、样条插值等。
这些插值方法各有特点,根据不同的数据特征和需求,我们可以选择合适的插值算法。
我们需要准备好待插值的数据。
假设我们有一组离散的数据点,用来描述某个函数在一定范围内的取值情况。
为了方便演示,我们可以生成一组简单的数据点。
```Matlabx = 0:0.5:10;y = sin(x);```上述代码中,我们生成了一个从0到10的等间隔数据点,然后计算了对应的正弦函数值。
这样,我们就得到了一组离散的数据点。
接下来,我们可以使用Matlab提供的插值函数进行插值运算。
以线性插值为例,使用`interp1`函数可以实现对数据的线性插值。
```Matlabxi = 0:0.1:10;yi = interp1(x, y, xi, 'linear');```上述代码中,我们指定了插值的目标点`xi`,然后使用`interp1`函数对原始数据进行线性插值。
最后,我们得到了一组新的插值数据`yi`。
除了线性插值,Matlab还提供了其他插值方法,如拉格朗日插值和样条插值。
这些方法可以通过设置插值函数的参数来选择。
```Matlabyi = interp1(x, y, xi, 'spline');```上述代码中,我们使用`spline`参数来指定样条插值方法。
通过调整参数,我们可以根据数据的特点选择最合适的插值方法。
有时候我们还需要对插值结果进行进一步的平滑处理,以减少插值误差。
Matlab提供了一些平滑滤波函数,如`smoothdata`和`smooth`等。
插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。
插值是通过已知数据点之间的数值来估计未知位置的数值。
而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。
插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。
interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。
2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。
lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。
3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。
spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。
拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。
polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。
函数返回一个多项式的系数向量p,从高次到低次排列。
通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。
2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。
fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据插值和函数逼近
1 数据插值
由已知样本点,以数据更为平滑为目标,求出其他点处的函数
值。
在信号处理与图像处理上应用广泛。
求解方法:
y1=interp1(x,y,x1,'方法')
z1=interp2(x,y,z,x1,y1,'方法')
1.1 一维数据的插值
例:假设样本点来自x e x x x f x sin )53()(52-+-=,进行插值处理,得到平
例:草图样条曲线功能。
function sketch()
x=[]; y=[]; gca;
hold on; axis([0 1,0 1]);
while 1
[x0,y0,button]=ginput(1);
if(isempty(button)) break; end;
x=[x x0]; y=[y y0];
plot(x,y,'*');
end;
xx=[x(1):(x(end)-x(1))/100:x(end)];
yy=interp1(x,y,xx,'spline');
plot(xx,yy,x,y,'*');
end
1.2 二维网格数据的插值
例3:假设样本点来自xy y x e x x z ----=2
2)2(2,进行插值处理,得到平滑的曲
1.3 二维一般分布数据的插值
例4:假设样本点来自xy y x e
x x z ----=22)2(2,进行插值处理,得到平滑的曲
2 样条插值函数逼近
由已知样本点,求能对其较好拟合的函数表达式。
求解方法:
S=csapi(x,y); % 定义一个三次样条函数类
S=spapi(k,x,y); % 定义一个k 次B 样条函数类
ys=fnval(S,xs); % 计算插值结果
fnplt(S); % 绘制插值结果
例:从)sin(x y =中取样本点,计算三次样条函数。
练习:利用上例中的变量S,生成各个曲线段的参数方程,并绘
例:从)sin(x y =中取样本点,计算三次B 样条函数。
3 多项式的插值与函数逼近
3.1 多项式的基本运算
设多项式为:116251234++-x x x 直接输入系数向量创建多项式
p1=[1 -12 0 25 116];
y=poly2sym(p1);
求多项式的根
r=roots(p1);
由多项式的根逆推多项式
p2=poly(r); p2和p1等价
求多项式的值
polyval (p1,[1 2; 3 4]); % 以数组为运算单位
polyvalm(p1,[1 2; 3 4]); % 以矩阵为运算单位
求多项式的微积分
q=polyder(p); % 导数
r=polyint(q); % 积分
设多项式为:322++x x 与2+x 。
a=[1 2 3]; b=[1 2];
c=conv(a,b); % 乘积
[q,r]=deconv(a,b); % 相除
q=1 0 %商多项式
r=0 0 3 %余多项式
3.2 Lagrange 插值算法
∑∏=≠=--=N i N i j j
i i
x x x x y x 1,1)(φ
3.3 多项式函数逼近
求解方法:
p=polyfit (x,y,n); 计算n 次多项式的降幂排列的系数向量 y=polyval (p,x); 计算多项式的值
主要用于针对实验数据,进行解析描述。
例:假设样本点来自x e x x x f x sin )53()(52-+-=,比较3次、5次多项式插
4 函数设计中的参数逼近
4.1 函数线性组合的参数逼近
已知某函数是若干已知函数的组合,
C F x f c x f c x f c y n n ⋅=+++=)()()(2211 ,已知数据
),(11y x ,),(22y x ,……),(M M y x ,则有方程组:
Y C F =⋅
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=M n M n M M n n y y y Y c c c C x f x f x f x f x f x f x f x f x f F 2121212222
111211,,)()()()()()()()()( 有n 个待求的未知系数,有M 个方程,所以只能求方程的最小
二乘解: Y F C \=
例:已知函数原型为2443321)2cos()(x c e x c e
c c x g x x +-++=--,已知以下数
C
4.2 函数中的参数逼近
已知数据),(11y x ,),(22y x ,……),(N N y x ,满足函数),(x a f ,其中a
是待定系数的向量。
目标是求出a 。
即定义最优化问题:∑=-=N
i i i a x a f y J 12)],([min
[a,res]=lsqcurvefit(fun,a0,x,y)
例:设采样点如下:
x=0:1:10;
y=0.12*exp(-0.213*x)+0.54*exp(-0.17*x).*sin(1.23*x);
已知数据满足)sin(*),(5314
2x a e a e a x a f x a x a --+=,求最佳拟合的参
数。
4 多项式运算。