三次样条插值的Matlab实现(自然边界和第一边界条件)
matlab实现三次样条插值法

题目背景:对y=1/(1+x^2)在[-1,1]区间以Xn=-1+0.1*(n-1),n=1 (21)为插值点做三次样条插值求解思路简析:以插值为四段三次函数为例进行说明(题干为插值20段三次函数),可看出方程组为q*x=d,其中q为方程组系数矩阵,x为所求三次函数的系数矩阵,其中方程组系数矩阵和d均呈规律性变化(边界点除外,首位两个点特殊堪虑)function qiujieyangtiao %%定义求解函数q=zeros(80); %%方程组的系数矩阵,赋初值为0n=-1:0.1:1; %%插值点的横坐标nd=zeros(80,1); %%插值点q*x=d中的dy=zeros(21,1); %%插值点的纵坐标向量a=1;for i=-1:0.1:1y(a)=1/(1+i^2);a=a+1; %%给插值点的纵坐标y通过原函数赋值endq(1,3)=2;q(1,4)=6*n(1);q(2,1)=1;q(2,2)=n(1);q(2,3)=n(1)^2;q(2,4)=n(1)^3;d(2)=y(1); %%给左端边界点的两个方程组系数赋值j=2;for i=3:4:75q(i,i-1)=1;q(i,i)=2*n(j);q(i,i+1)=3*n(j)^2;q(i,i+3)=-1;q(i,i+4)=-2*n(j);q(i,i+5)=-3*n(j)^2;d(i)=0;q(i+1,i)=2;q(i+1,i+1)=6*n(j);q(i+1,i+4)=-2;q(i+1,i+5)=-6*n(j);d(i+1)=0;q(i+2,i-2)=1;q(i+2,i-1)=n(j);q(i+2,i)=n(j)^2;q(i+2,i+1)=n(j)^3;d(i+2)=y(j);q(i+3,i+2)=1;q(i+3,i+3)=n(j);q(i+3,i+4)=n(j)^2;q(i+3,i+5)=n(j)^3;d(i+3)=y(j);j=j+1;end %%给系数矩阵赋值q(79,79)=2;q(79,80)=6*n(21);d(79)=0;q(80,77)=1;q(80,78)=n(21);q(80,79)=n(21)^2;q(80,80)=n(21)^3;d(80)=y(21); %%给右端边界点的两个方程组系数赋值result=q\d; %%求解系数矩阵function A=fun(x)if x>=-1&&x<-0.9A=result(1)+result(2)*x+result(3)*x*x+result(4)*x*x*x;elseif x>=-0.9&x<-0.8A=result(5)+result(6)*x+result(7)*x*x+result(8)*x*x*x;elseif x>=-0.8&x<-0.7A=result(9)+result(10)*x+result(11)*x*x+result(12)*x*x*x; elseif x>=-0.7&x<-0.6A=result(13)+result(14)*x+result(15)*x*x+result(16)*x*x*x; elseif x>=-0.6&x<-0.5A=result(17)+result(18)*x+result(19)*x*x+result(20)*x*x*x; elseif x>=-0.5&x<-0.4A=result(21)+result(22)*x+result(23)*x*x+result(24)*x*x*x; elseif x>=-0.4&x<-0.3A=result(25)+result(26)*x+result(27)*x*x+result(28)*x*x*x; elseif x>=-0.3&x<-0.2A=result(29)+result(30)*x+result(31)*x*x+result(32)*x*x*x; elseif x>=-0.2&x<-0.1A=result(33)+result(34)*x+result(35)*x*x+result(36)*x*x*x; elseif x>=-0.1&x<0A=result(37)+result(38)*x+result(39)*x*x+result(40)*x*x*x; elseif x>=0&x<0.1A=result(41)+result(42)*x+result(43)*x*x+result(44)*x*x*x; elseif x>=0.1&x<0.2A=result(45)+result(46)*x+result(47)*x*x+result(48)*x*x*x; elseif x>=0.2&x<0.3A=result(49)+result(50)*x+result(51)*x*x+result(52)*x*x*x; elseif x>=0.3&x<0.4A=result(53)+result(54)*x+result(55)*x*x+result(56)*x*x*x; elseif x>=0.4&x<0.5A=result(57)+result(58)*x+result(59)*x*x+result(60)*x*x*x; elseif x>=0.5&x<0.6A=result(61)+result(62)*x+result(63)*x*x+result(64)*x*x*x; elseif x>=0.6&x<0.7A=result(65)+result(66)*x+result(67)*x*x+result(68)*x*x*x; elseif x>=0.7&x<0.8A=result(69)+result(70)*x+result(71)*x*x+result(72)*x*x*x; elseif x>=0.8&x<0.9A=result(73)+result(74)*x+result(75)*x*x+result(76)*x*x*x; elseA=result(77)+result(78)*x+result(79)*x*x+result(80)*x*x*x; endend %%插值函数用子函数表达,方便调用x=linspace(-1,1);for i=1:length(x)A(i)=fun(x(i));endY=1./(1+x.^2);plot(x,Y,'--',x,A,':')legend('primitive','fitting') %%将原函数与该插值函数画在同一图上进行比较grid ontitle('三次样条插值')for m=1:20fprintf("S%d=%.3f+%.3f*x+%.3f*x.^2+%.3f*x.^3\n",m,result(4*m-3,1),result(4*m-2,1),result(4*m-1,1),result(4*m,1)) %%输出结果endend输出结果:S1=2.049+3.619*x+3.104*x.^2+1.035*x.^3S2=1.010+0.156*x+-0.743*x.^2+-0.390*x.^3S3=1.137+0.632*x+-0.149*x.^2+-0.143*x.^3S4=1.054+0.273*x+-0.660*x.^2+-0.386*x.^3S5=1.023+0.120*x+-0.916*x.^2+-0.528*x.^3S6=1.003+-0.002*x+-1.160*x.^2+-0.691*x.^3S7=0.997+-0.044*x+-1.265*x.^2+-0.779*x.^3S8=0.998+-0.034*x+-1.233*x.^2+-0.743*x.^3S9=1.000+-0.010*x+-1.113*x.^2+-0.543*x.^3S10=1.000+-0.000*x+-1.010*x.^2+-0.200*x.^3S11=1.000+-0.000*x+-1.010*x.^2+0.200*x.^3S12=1.000+0.010*x+-1.113*x.^2+0.543*x.^3S13=0.998+0.034*x+-1.233*x.^2+0.743*x.^3S14=0.997+0.044*x+-1.265*x.^2+0.779*x.^3S15=1.003+0.002*x+-1.160*x.^2+0.691*x.^3S16=1.023+-0.120*x+-0.916*x.^2+0.528*x.^3S17=1.054+-0.273*x+-0.660*x.^2+0.386*x.^3S18=1.137+-0.632*x+-0.149*x.^2+0.143*x.^3S19=1.010+-0.156*x+-0.743*x.^2+0.390*x.^3S20=2.049+-3.619*x+3.104*x.^2+-1.035*x.^3对比图。
matlab三次样条插值例题解析

文章标题:深度解析Matlab三次样条插值1. 前言在数学和工程领域中,插值是一种常见的数值分析技术,它可以用来估计不连续数据点之间的值。
而三次样条插值作为一种常用的插值方法,在Matlab中有着广泛的应用。
本文将从简单到复杂,由浅入深地解析Matlab中的三次样条插值方法,以便读者更深入地理解这一技术。
2. 三次样条插值概述三次样条插值是一种利用分段三次多项式对数据点进行插值的方法。
在Matlab中,可以使用spline函数来进行三次样条插值。
该函数需要输入数据点的x和y坐标,然后可以根据需要进行插值操作。
3. 三次样条插值的基本原理在进行三次样条插值时,首先需要对数据点进行分段处理,然后在每个分段上构造出一个三次多项式函数。
这些多项式函数需要满足一定的插值条件,如在数据点处函数值相等、一阶导数相等等。
通过这些条件,可以得到一个关于数据点的插值函数。
4. Matlab中的三次样条插值实现在Matlab中,可以使用spline函数来进行三次样条插值。
通过传入数据点的x和y坐标,可以得到一个关于x的插值函数。
spline函数也支持在已知插值函数上进行插值点的求值,这为用户提供了极大的灵活性。
5. 三次样条插值的适用范围和局限性虽然三次样条插值在许多情况下都能够得到较好的插值效果,但也存在一些局限性。
在数据点分布不均匀或有较大噪音的情况下,三次样条插值可能会出现较大的误差。
在实际应用中,需要根据具体情况选择合适的插值方法。
6. 个人观点和总结通过对Matlab中三次样条插值的深度解析,我深刻地理解了这一插值方法的原理和实现方式。
在实际工程应用中,我会根据数据点的情况选择合适的插值方法,以确保得到准确且可靠的结果。
我也意识到插值方法的局限性,这为我在实际工作中的决策提供了重要的参考。
通过以上深度解析,相信读者已经对Matlab中的三次样条插值有了更加全面、深刻和灵活的理解。
在实际应用中,希望读者能够根据具体情况选择合适的插值方法,以提高工作效率和准确性。
用MATLAB计算等距三次样条插值问题

2 表达式中系数的求解
S 4( π ) 中的任意一个三次样条函数可以表示成
38
n1
四川工业学院学报 2003 年 x ), x ∑ k iB i( ∈ [ a , b] ( 2) 于是求满足条件( 3) 、 ( 4) 的 三次插值样条函数( 2)的 问题转换为求解线性方程组( 7) 的问题 。 只要从( 7)中 解出 k i( i =-1 , 0 , …, n -3) , 即可求得样条函数 。
T
k n -1 = y n 及中间系数满足的等式 k -1 B -1( x 1)+ k 0 B 0( x 1)= y 1 - y 0 + h y′ 0 Bx 1) 2( 3
ki 3 B i3( x i) +k i 2 B i2( xi ) +k i 1 B i1 ( xi )= y i i = 2 , 3 , … , n -2 k n -4 B n -4( xn -1)+k n -3 B n -3 = y n -1 h - y n - y ′ B ( x )= y i 3 n n -2 n -1 ( 6) 利用基函数( 1) , 及已知数据( 3) , 可将( 6) 式写成矩阵 形式 : 7 2 1 4 0 1 1 4 1 1 4 2 1 7 · k -1 k0 k1 ┇ k n -4 k n -3
用matlab计算等距三次样条插值问题matlab等距节点插值三次样条插值matlabmatlab样条插值matlab样条插值函数matlab样条插值求曲率matlabb样条插值拟合matlab中三次样条插值matlabb样条插值双三次样条插值matlab
四川工业学院学报
Journa l of Sichua n University o f Science and Technolog y
用Matlab实现了3次样条曲线插值的算法边界条件取为自然

用Matlab实现了3次样条曲线插值的算法。
边界条件取为自然边界条件,即:两个端点处的2阶导数等于0;共包含3各个函数文件,主函数所在文件(即使用的时候直接调用的函数)为spline3.m,另外两个函数文件是在splin3函数文件中被调用的自定义函数。
一个是GetParam.m,一个是GetM.m。
%GetParam.m文件的内容:%根据给定的离散点的横坐标所构成的向量,计算各个区间段的h值;function GetParam(Vx,Vy)global gh;global gf;global gu;global gr;global gd;global gff;global gM;%global gn;%n=length(Vx);%length()为向量Vx所含元素的个数;%n=legth(Vx);%gn=n;%n=gn;n=length(Vx);gh(1)=Vx(2)-Vx(1);gf(1)=(Vy(2)-Vy(1))/gh(1);for i=2:1:n-1%从区间0到区间n-1; gh(i)=Vx(i+1)-Vx(i);gf(i)=(Vy(i+1)-Vy(i))/gh(i);gu(i)=gh(i-1)/(gh(i-1)+gh(i));gr(i)=1-gu(i);gff(i)=(gf(i-1)-gf(i))/(Vx(i-1)-Vx(i+1)); gd(i)=6*gff(i);end%设置与边界条件有关的参数;gM(1)=0;%起点的2阶导数;gM(n)=0;%终点的2阶导数;end%GetM.m文件的内容:function GetM(Vx)global gh;global gf;global gu;global gr;global gd;global gff;global gM;%global gn;nn=length(Vx);%nn=gn;n=nn-2;b=zeros(n,1);A=zeros(n,n);A(1,1)=2;A(1,2)=gr(2);b(1)=gd(2)-gu(2)*gM(1);for i=2:1:n-1A(i,i)=2;A(i,i-1)=gu(i+1);A(i,i+1)=gr(i+1);b(i)=gd(i+1);endA(n,n-1)=gu(n);A(n,n)=2;b(n)=gd(nn-1)-gr(nn-1)*gM(nn); X=(inv(A))*b;for i=2:1:nn-1gM(i)=X(i-1);end%主函数文件spline3.m的内容:function result=spline3(x,Vx,Vy) global gh;global gf;global gu;global gr;global gd;global gff;global gM;%global gn;GetParam(Vx,Vy);GetM(Vx);%n=length(Vx);%n=gn;n=length(Vx);nn=length(x);y=zeros(1,nn);for j=1:1:nni=1;while(x(j)>Vx(i+1))endsn=i;t1=(Vx(sn+1)-x(j))^3/(6*gh(sn));t1=t1*gM(sn);t2=(x(j)-Vx(sn))^3/(6*gh(sn));t2=t2*gM(sn+1);t3=Vy(sn)-gM(i)*((gh(i))^2)/6;t3=t3*(Vx(sn+1)-x(j))/gh(sn);t4=Vy(sn+1)-gM(sn+1)*((gh(sn))^2)/6;t4=t4*(x(j)-Vx(sn))/gh(sn);y(j)=t1+t2+t3+t4;endresult=y;end函数调用的时候,result=spline3(x,Vx,Vy),x为代求点的横坐标向量,(Vx,Vy)为已知的点的坐标。
计算方法上机作业——求三次样条插值函数的matlab程序

附录 3 求三次样条插值函数的 matlab 程序 for f = 2:n-1; ly = 0; for g = 1:f-1 ly = ly+l(f,g)*yy(g); end yy(f) = D(f)-ly; end M1(n-1) = yy(n-1)/u(n-1,n-1); for rr=1:n-2 r = n-1-rr; uM1 = 0; for s=r+1:n-1 uM1 = uM1+u(r,s)*M1(s); end M1(r) = (yy(r)-uM1)/u(r,r); end M = [M1(n-1,1);M1]; end ss = 0; for t=1:n-1 S(t,1) = (M(t+1)-M(t))/(6*h(t)); S(t,2) = (M(t)*x(t+1)-M(t+1)*x(t))/(2*h(t)); S(t,3) = (M(t+1)*x(t)^2-M(t)*x(t+1)^2)/(2*h(t))+(y(t+1)-y(t))/h(t)+h(t)*(M(t)-M(t+1))/6; S(t,4) = (M(t)*x(t+1)^3-M(1)*x(t)^3)/(6*h(t))+(y(t)*x(t+1)-y(t+1)*x(t))/h(t)+h(t)*(M(t+1)* x(t)-M(t)*x(t+1))/6; for x1 = x(t):(x(t+1)-x(t))/100:x(t+1) ss = ss+1; xx(ss) = x1; SS(ss) = S(t,1)*x1^3+S(t,2)*x1^2+S(t,3)*x1+S(t,4); end end plot(xx,SS,'-k','linewidth',2); hold on plot(x,y,'*k','markersize',10); hold on xlabel('x'); ylabel('S(x)'); grid; fprintf('\n 所求的三次样条插值函数为:\n'); for uu=1:n-1 fprintf('S(x) = %10.5f*x^3+%10.5f*x^2+%10.5f*x+%10.5f, %8.4f<= x <=%8.4f\n',S(uu,1),S(uu,2),S(uu,3),S(uu,4),x(uu),x(uu+1)); end
三次样条插值函数MATLAB编程实现

三次样条插值函数为()()[)()[]1011,,,,n n n S x x x x S x S x x x x-⎧∈⎪=⎨⎪∈⎩ 利用三次埃尔米特插值函数表示三次样条插值函数,即()()()()())111111,,j j j j j j j j j j j S x y x y x m x m x x x x ααββ++++++⎡=+++∈⎣(0,1,,1j n =-)基函数满足()()()()()()21112111121121111212jj j j j j j j j j j j j j j j j j j jj j j j x x x x x x x x xx xx x x x x x xx xx x x x xx x x x x x xααββ++++++++++++⎛⎫⎛⎫--=+ ⎪⎪ ⎪⎪--⎝⎭⎝⎭⎛⎫⎛⎫--=+ ⎪⎪ ⎪⎪--⎝⎭⎝⎭⎛⎫-=-⎪ ⎪-⎝⎭⎛⎫-=-⎪ ⎪-⎝⎭由上式易得()()()()()()()()()()()()()()1331111331112211112211612612246246j j j j j j j j j j j j j j j j j j j j j j jj j j j j x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx ααββ+++++++++++++++''=---+''=-+--+''=---+''=---则有()()()()()()()()()()()111111113333111111122221111661212242466j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j S x y x y x m x m x x x x x y x y x x x x x x x x x x x x x m x m x x x x x x x x x ααββ+++++++++++++++++++''''''''''=+++⎡⎤⎡⎤++⎢⎥⎢⎥=-+-+⎢⎥⎢⎥----⎣⎦⎣⎦⎡⎤++⎢⎥+-+-⎢⎥----⎣⎦)1,j j x x x +⎡⎤⎢⎥⎡∈⎣⎢⎥⎣⎦(0,1,,1j n =-)同理有()()()()()()()()()()()()()()()11111113333111111122221111661212242466j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j S x y x y x m x m x x x x x y x y x x x x x x x x x x x x x m x m x x x x x x x x x ααββ------------------''''''''''=+++⎡⎤⎡⎤++⎢⎥⎢⎥=-+-+⎢⎥⎢⎥----⎣⎦⎣⎦⎡⎤⎡++⎢⎥+-+-⎢⎥----⎣⎦⎣)1,j j x x x -⎤⎢⎥⎡∈⎣⎢⎥⎦(1,,j n =)根据样条函数二阶导数连续性,即()()100j j j j S x S x +''''+=-(1,,1j n =-)即()()()()()()()()()()()()()()()()111111332211111111113322111166426624j j jj j j j j j j jj j jj j j j j j jj j j j jj j j j j jjj jj jj jj x x y x x y x x x x m m x x xx xx xx x x y x x y x x x x m m x x xx xx xx ++++++++++--------------+++--------=+++----(1,,1j n =-)化简得()()()()()111111111111233j j j j j j j j j j j j j j j j j j jj j xx m x x m x x m x x x x y y y y x x x x +-+--+-++-+--+-+---=-+---(1,,1j n =-)可得线性方程组()()()()()()()()()()0121201023231213121221111110212110211032213221322122233333n n n n n n n n n n n n m m x x x x x x m x x x x x x m x x x x x x m m m x x x x y y y y x x x x x x x x y y y y x x x x y ------⨯+-+⨯⎛⎫ ⎪ ⎪ ⎪---⎛⎫⎪ ⎪--- ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪--- ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭---+------+---=()()()121112112113n n n n n n n n n n n n n x x x x y y y x x x x ----------⨯⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪ ⎪-- ⎪-+- ⎪--⎝⎭为了使样条插值问题有惟一解,我们在原有方程基础上增加两个边界条件。
matlab三次样条插值的方法

matlab三次样条插值的方法Cubic spline interpolation is a common method used in MATLAB to approximate values between specified data points. This technique involves fitting a piecewise cubic polynomial to the data points, ensuring that the function is smooth and continuous at the knots. Through this process, the spline curve can accurately represent the overall trend of the data, making it particularly useful in various scientific and engineering applications.三次样条插值是MATLAB中常用的一种方法,用于在指定数据点之间近似数值。
这种技术涉及将分段三次多项式拟合到数据点,确保在节点处函数平滑连续。
通过这个过程,样条曲线可以准确地表示数据的总体趋势,使其特别适用于各种科学和工程应用。
One advantage of cubic spline interpolation is its ability to capture the local behavior of the data while maintaining global smoothness. This is achieved by constructing individual cubic polynomials between adjacent data points, ensuring that the interpolated curve passes through each data point without introducing significant oscillations or deviations. As a result, cubic splines provide a reliableand visually appealing way to interpolate data that may exhibit complex patterns or fluctuations.三次样条插值的一个优点是能够捕捉数据的局部行为,同时保持全局的平滑性。
三次样条插值端点约束条件的构造与Matlab实现

三次样条插值端点约束条件的构造与Matlab实现邢丽【摘要】Spline interpolation techniques are increasingly important in engineering calculations. The boundary conditions of the cubic spline interpolation are given according to the actual problem in the state of the endpoint. Through researching cubic spline function interpolation constraints for different endpoints, using Matlab computational analysis, each interval segment cubic spline function body expression is showed. The point of interpolation is calculated and each interval segment graph is displayed which is applied to practical problems. Endpoint constraints as well as mixed boundary conditions is focused on.% 在工程计算中,样条插值技术的研究越来越重要。
三次样条插值的边界条件是根据实际问题在端点的状态给出。
通过研究三次样条函数插值,针对不同的端点约束,用 Matlab 计算分析,显示各区间段三次样条函数体表达式,计算出已给点插值并显示各区间分段曲线图,并应用到实际问题中。
重点讨论端点约束条件以及混合边界条件。
【期刊名称】《上海第二工业大学学报》【年(卷),期】2012(000)004【总页数】5页(P319-323)【关键词】计算数学;三次样条插值;端点约束;Matlab【作者】邢丽【作者单位】上海第二工业大学理学院,上海201209【正文语种】中文【中图分类】P315.31在工程计算中,插值技术的研究越来越重要。