2021年人教版七年级数学下册第八章《二元一次方程组》测试题.(含答案) (3)

合集下载

七年级数学下册《第八章 二元一次方程组》单元测试题含答案(人教版)

七年级数学下册《第八章 二元一次方程组》单元测试题含答案(人教版)

七年级数学下册《第八章 二元一次方程组》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二元一次方程的是( )A .xy +y =1B .1x +1=yC .x −12y =2D .2x −y2.已知方程2mx −y =10的一组解为{x =1y =2,则m 的值是( ) A .6 B .16 C .4 D .14 3.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本书.若每人出9元,则多了4元;若每人出8元,则少了3元,设学生有x 人和该书单价为y 元,下列方程组正确的是( )A .{9x −y =4y −8x =3B .{x −9y =48y −x =3C .{9x −y =3y −8x =4D .{9x +y =4y +8x =34.在解二元一次方程组{x −2y =2①4x −2y =5②时,下列方法中无法消元的是( ) A .①−②B .由①变形得x =2+2y ③,将③代入②C .①×4+②D .由②变形得2y =4x −5③,将③代入①5.已知x 、y 满足方程组{2x +y =6x +2y =3,则x −y =( ) A .-3 B .3 C .2 D .06.已知{x =4y =−2与{x =−2y =−5都是方程y =kx +b 的解,则k 与b 的值为( ) A .k =12,b =−4B .k =−12C .k =12,b =4D .k =−127.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则他的付款方式共有( )A .1种B .2种C .3种D .4种8.若{x =2y =1是方程组{ax +by =712bx +2cy =5的解,则a −c 的值是( ) A .1B .32C .2D .52 二、填空题 9.若x m−2+3y 3n−m =9是关于x ,y 的二元一次方程,则m +n = .10.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程x +y =3的解,则k 的值为 . 11.已知a 、b 满足方程组{2a −b =2a +2b =6,则3a+b 的值为 . 12.把一根长20m 的钢管截成2m 长和3m 长两种规格均有的短钢管,且没有余料,不同的截法有 种.13.已知方程组{3x +2y =m +12x +y =m −1当m = 时,x 比y 大2. 三、解答题14.解方程组:(1){2y −x =−4x +y =−5(2){5(x +y)−3(x −y)=163(x +y)−5(x −y)=015.若{x =1,y =2是关于x 、y 的二元一次方程ax −by =1的一个解,且a +b =−5,求a −b 的值. 16.为引导广大青少年树立正确的世界观、人生观、价值观,传承红色基因,某校组织480名师生去红色革命圣地-延安开展研学旅行,学校向租车公司租赁A 、B 两种车型接送师生往返,已知每辆A 型车有45个座位,每辆B 型车有60个座位.若租车公司最多能提供7辆B 型车,且学校两种车型都要租用,没有剩余座位,请问有几种租车方案?并写出符合题意的所有租车方案.17.某公司计划印制一批宣传册.该宣传册每本共10页,由A 、B 两种彩页构成.已知A 种彩页制版费300元/页,B 种彩页制版费200元/页,共计2400元.(注:彩页制版费与印数无关)(1)求每本宣传册中A 、B 两种彩页各有多少页.(2)据了解,A 种彩页印刷费2.5元/页,B 种彩页印刷费1.5元/页,公司准备印制这批宣传册1500本,求印制这批宣传册制版费与印刷费的总和是多少元.18.为了防治“新型冠状病毒”,某小区准备用3500元购买医用口罩和消毒液发放给本小区住户,若医用口罩买800个,消毒液买120瓶,则钱还缺100元;若医用口罩买1000个,消毒液买100瓶,则钱恰好用完.(1)求医用口罩和消毒液的单价;(2)由于实际需要,除购买医用口罩和消毒液外,还需购买单价为6元的N95口罩m个.若需购买医用口罩和N95口罩共1000个,剩余的钱正好买了n瓶消毒液,求m与n的关系式.(用含m的代数式表示n)(3)在(2)的基础上,若100<m<200,求出N95口罩的个数.参考答案1.C2.A3.A4.C5.B6.A7.C8.A9.13310.311.812.313.514.(1)解:{2y −x =−4①x +y =−5② ①+②得:3y =−9解得:y =−3把y =−3代入②得:∴x =−2∴方程组的解为:{x =−2y =−3. (2)解:{5(x +y)−3(x −y)=16①3(x +y)−5(x −y)=0②①+②得:8x +8y −8x +8y =16解得:y =1把y =1代入①得:5x +5−3x +3=16解得:x =4∴方程组的解为:{x =4y =1.15.解:∵{x =1,y =2是关于x 、y 的二元一次方程ax −by =1的一个解 ∴a −2b =1∵a +b =−5∴联立方程组{a −2b =1,a +b =−5, 解得:{a =−3,b =−2,∴a −b =−3−(−2)=−1.16.解:设租m 输A 型车,n 辆B 型车依题意,得:45m +60n =480解得:n =8−34m .∵m ,n 为整数.∴{m =8,n =2,或{m =4,n =5,或{m =0,n =8,(不合题意,舍去) ∴有两种租车方案方案1:租4辆A 型车、5辆B 型车;方案2;租8辆A 型车、2辆B 型车.17.(1)解:设每本宣传册中A 种彩页有x 页,B 种彩页有y 页依题意得:{x +y =10300x +200y =2400解得:{x =4y =6. 答:每本宣传册中A 种彩页有4页,B 种彩页有6页;(2)解:2400+(2.5×4+1.5×6)×1500=2400+(10+9)×1500=2400+19×1500=2400+28500=30900(元).答:印制这批宣传册制版费与印刷费的总和是30900元.18.(1)解:设医用口罩的单价为x 元,消毒液的单价为y 元由题意得:{800x +120y =3500+1001000x +100y =3500解得:{x =1.5y =20答:医用口罩的单价为1.5元,消毒液的单价为20元(2)解:∵需购买单价为6元的N95口罩m 个,需购买医用口罩和N95口罩共1000个 ∴购买医用口罩(1000−m)个由题意得:1.5(1000−m)+6m +20n =3500化简得:n =100−940m(3)解:∵均为正整数,且100<m <200∴m 为40得倍数∴m =120或160。

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题1.若21x y =-⎧⎨=⎩是关于,x y 的方程组17ax y x by -=⎧⎨+=⎩的解,则+a b 的值为( ) A .6 B .10 C .8 D .42.如图,在大长方形ABCD 中,放入六个相同的小长方形,则阴影部分的面积为( )A .140 cm2B .96cm2C .44 cm2D .16 cm23.若21x y =-⎧⎨=⎩是方程组17ax by bx by +=⎧⎨+=⎩的解,则(a+b )·(a -b )的值为( ) A .-353 B .353C .-33D .16 4.二元一次方程组{3,24x y x +==的解是 ( ) A .{2,y 1x ==-B .{2,y 5x ==C .{2,y 5x ==-D .{2,y 1x == 5.下列方程中:①221x y +=;②234x y +=;③230x y +=;④743x y +=,二元一次方程有( )A .1个B .2个C .3个D .4个6.为了丰富学生课外小组活动,培养学生动手操作能力,张老师让学生把7m 长的彩绳截成2m 或1m ,用来作手工编织.在不浪费的前提下,不同的截法有( )A .1种B .2种C .3种D .4种7.把方程23x y -=改写成用含x 的式子表示y 的形式( )A .23y x =-B .23y x =+C .1322x y =+D .132x y =+8.使方程组21230x my x y +=⎧⎨-=⎩有自然数解的整数m ( ) A .只有6个 B .只能是偶数 C .是小于12的自然数 D .是小于10的自然数9.下列方程中①4z ﹣7=0;②3x +y =z ;③x ﹣7=x 2;④4xy =3;⑤,属于二元一次方程的个数为( )A .0个B .1个C .2个D .3个10.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A .36,8B .28,6C .28,8D .13,311.以下各组中,是方程组34x y x y =⎧⎨-=⎩的解的是( ) A .62x y =⎧⎨=⎩ B .26x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 12.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ) A .1B .2C .3D .4二、填空题 13.三元一次方程组102317328x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩的解是________.14.明代数学家程大位在其所著《直指算法统宗》一书中有如下问题:假如井不知深,先将绳三折入井,绳长四尺;后将绳四折入井,亦长一尺.问井深及绳长各若干?意思是:“用绳子测量井深,把绳子折成三折来量,井外余绳4尺;把绳子折成四折来量,井外余绳1尺.井深和绳长各是多少?”那么井深为_____尺,绳长为_____尺.15.已知()222260x y x y --++-=,则x y -=________.16.我市新建成的龙湖公园,休息长廊附近的地面都是用一种长方形的地砖铺设的,如图,测得8块相同的长方形地砖恰好可以拼成面积为2400cm 2的长方形ABCD ,则矩形ABCD 的周长为__.17.若(m ﹣3)x+2y|m ﹣2|+8=0是关于x ,y 的二元一次方程,m= _________ .18.已知213x y -=,用含x 的代数式表示y 为:y =________. 19.已知23x k y k =⎧⎨=⎩是二元一次方程214x y +=的解,则k 的值是_____________. 20.某道路安装的护栏平面示意图如图所示,每根立柱宽为0.2米,立柱间距为3米,设有x 根立柱,护栏总长度为y 米,则y 与x 之间的关系式为_______.三、解答题21.(1)计算:(﹣2)2sin60°﹣(﹣)•﹣(﹣)0; (2)已知x ,y 满足方程组,求2x ﹣2y 的值.22.甲、乙二人同时解方程组321ax y x by +=⎧⎨-=⎩,甲看错了a ,解得11x y =⎧⎨=-⎩;乙看错了b ,解得13xy=-⎧⎨=⎩.求原方程组的正确解.23.某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调查.获取信息如下:如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.24.某商场按定价销售某种商品时,每件商品可以获利140元,已知按定价的八折销售该商品3件与将定价降低20元销售该商品2件所获得的利润相等,请求出该商品的进价和定价分别是多少?25.已知关于x、y的方程组253{524x y kx y k+=+=-,的解满足不等式x-y>1,求满足条件的k的取值范围.26.在等式y=kx-b 中,当x=2时,y=-3;当x=-2 时,y=-5.求k 和b 的值.27.列方程(组),解应用题:一副带45°和30°的直角三角板按如图所示的方式摆放,且∠1比∠2大40°,求∠1与∠2的度数.28.若⊙O 1和⊙O 2的圆心距为4,两圆半径分别为r 1、r 2,且r 1、r 2是方程组1212r 2r 6{3r 5r 7+=-=的解,求r 1、r 2的值,并判断两圆的位置关系.29.福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?参考答案1.C2.C3.C4.D5.B6.D7.A8.A9.B10.A11.A12.A13.325x y z =⎧⎪=⎨⎪=⎩14.8 3615.016.200cm17.1.18.162x - 19.220.y =3.2x ﹣3.21.(1)3﹣1;(2)-422.13x y =-⎧⎨=⎩23.(1)红色地砖每块8元,蓝色地砖每块10元;(2)购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.24.商品的进价为160元,定价为300元25.14k < 26.124k b ⎧=⎪⎨⎪=⎩27.∠1的度数为65°,∠2的度数为25°.28.12r 4{r 1==两圆的位置关系为相交 29.(1)制作衬衫和裤子的人分别为15人,9人;(2)需要安排18名工人制作衬衫.。

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题 1.方程组的解是( )A .B .C .D .2.甲,乙,丙三人共解出100道题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,2人解出叫做中等题,3人都解出的题叫做容易题,试问:难题和容易题谁多,多几题( ) A .容易题比难题多20题 B .难题比容易题多20题 C .一样多D .无法确定3.已知(2x -3y +1)2与|4x -3y -1|互为相反数,则x ,y 的值分别是( ) A .-1,1B .1,-1C .-1,-1D .1,14.若21a b +-与()224a b ++互为相反数,则+a b 的值为( ) A .1-B .0C .1D .25.下列方程组中不是二元一次方程组的是( ) .A .215x y y +=⎧⎨=⎩B .23x y =⎧⎨=⎩C .21214x y y ⎧-=⎪⎨⎪+=⎩D .220x y y x -=⎧⎨-=⎩6.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x 棵,y 棵,可列方程组为( )A .500(13%)(14%)500 3.6%x y x y +=⎧⎨+++=⨯⎩B .5003%4%500 3.6%x y x y +=⎧⎨+=⨯⎩C .500(13%)(14%)500 3.6%x y x y +=⎧⎨-+-=⨯⎩D .5003%4%500(1 3.6%)x y x y +=⎧⎨+=+⎩7.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道8.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解是()A.6.32.2xy=⎧⎨=⎩B.8.31.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩9.下列是二元一次方程的是()A.3x-6=x B.3x=2y C.5x+ 2y=3z D.2x-3y=xy 10.已知方程组中的,互为相反数,则的值为()A.B.C.D.11.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A.36,8 B.28,6 C.28,8 D.13,312.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy x-=⎧⎨-=⎩二、填空题13.若x a y b=⎧⎨=⎩是方程20x y -=的解,则362a b -+=_______________________.14.已知235m n -=,则用n 的代数式表示m 为________________15.关于x,y 的方程组03x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⊗⎩,其中y 的值被盖住了.不过仍能求出m ,则m 的值是___.16.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .17.已知方程8mx ny +=的两个解是32x y =⎧⎨=⎩,12x y =⎧⎨=-⎩,则m =___________,n =___________18.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1 240本,则男生志愿者有___人 ,女生志愿者有___人.19.在平面直角坐标系xOy 中,对于点() A x y ,,若点B 的坐标为() ax y x ay ++,,则称点B 是点A 的“a a -演化点”.例如,点()26A -,的“1122-演化点”为()11262622B ⎛⎫⨯-+-+⨯ ⎪⎝⎭,,即()51B ,.(1)已知点(15)P -,的“33-演化点”是1P ,则1P 的坐标为________; (2)已知点()60T ,,且点Q 的“22-演化点”是()148Q ,,则1QTQ ∆的面积1QTQ S ∆为__________;(3)己知()00O ,,() 0 8A , ,() 50C ,,() 38D ,,且点()1K k -,的“k k -演化点”为1K ,当11K AD K OC S S ∆∆=时,k =___________.20.某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元,一个40人的旅游团到该旅馆住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费3680元.求两种客房各租住了多少间?若设租住了三人间x 间,二人间y 间,则根据题意可列方程组为____.三、解答题21.解二元一次方程组34 3.4 64 5.2 x yx y+=-⎧⎨-=⎩22.已知二元一次方程组3521ax yx by+=⎧⎨-=⎩的解为121xy⎧=⎪⎨⎪=-⎩,求a与b的值.23.由于近期出现新冠肺炎疫情,口罩出现热卖.某药店用8000元购进甲、乙两种口罩,销售完后宫获利2800元.进价和售价如下表:求该药店购进甲、乙两种口罩各多少盒?24.用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:由①-②,得33x =解法二:由②,得()332x x y +-=③ 把①代入③,得352x +=()1反思:上述两个解题过程中有无计算错误?若有误,哪种方法有错误? ()2请选择一种你喜欢的方法,完成解答.25.某种水果的价格如表:购买的质量(千克) 不超过10千克 超过10千克 每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?26.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发黄瓜和茄子分别多少千克?27.在等式y=kx+b中,当x=2时,y=-3;当x=4时,y=-7,求k,b的值.28.已知方程|2a+3b+1|+(3a-b-1)2=0,求a2+2ab+b2的值.29.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展觉馆,每一名学只能参加其中一项活动,共支付票款2000元,票价信息如下:请问参观历史博物馆和民俗展难馆的人数各是多少人?参考答案1.A2.B3.D4.A5.C6.A7.B8.A9.B10.D11.A12.B13.214.532n m+ =15.1 2 -16.375017.4 -2 18.12 1619.(2,14) 2020.3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==.21.0.21 xy=⎧⎨=-⎩22.该药店购进甲种口罩200盒,乙种口罩160盒.23.a=16,b=0.24.(1)解法一有误;(2)12 xy=-⎧⎨=-⎩25.张欣第一次、第二次购买这种水果的质量分别为7千克、18千克.26.这天他批发黄瓜15 kg,茄子25 kg.27.21 kb=-⎧⎨=⎩28.由已知得解得∴29.参观历史博物馆的有100人,参观民俗博物馆的有50人.。

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100079909411x yx y+=⎧⎪⎨+=⎪⎩C.100079999x yx y+=⎧⎨+=⎩D.1000411999x yx y+=⎧⎨+=⎩2.如图,某农家乐老板计划在一块长130米,宽60米的空地开挖两块形状大小相同的垂钓鱼塘,它们的面积之和为5750平方米,两块垂钓鱼塘之间及周边留有宽度相等的垂钓通道,则垂钓通道的宽度为()A.4.5m B.5m C.5.5m D.6m3.已知方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则()()()()2213313230.951x yx y⎧-=++⎪⎨-=-+⎪⎩的解是()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩4.若关于x,y的二元一次方程组2245x y kx y k+=⎧⎨-=⎩的解满足1x y-=,则k的值是()A.1B.2C.3D.45.方程组233730x yx zx y z+=⎧⎪-=⎨⎪-+=⎩的解为()A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩6.已知21x y =⎧⎨=-⎩是方程23x y m -=的解,则m 的值为( ) A .7 B .7- C .1 D .1-7.若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( ) A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩ B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩ D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.若等式||2(1)3m x m y +-=,是关于x ,y 的二元一次方程,则m 的值是( )A .1±B .1C .1-D .2±9.已知关于x ,y 的二元一次方程组=12+=3ax by ax by -⎧⎨⎩的解为=1=1x y ⎧⎨-⎩,那么代数式2a b -的值为( ) A .-2 B .2 C .3 D .- 310.若关于x 、y 的二元一次方程组3749ax y x y +=⎧⎨+=⎩与5358x y x by -+=⎧⎨+=⎩) A .1 B .1± C .2 D .2±11.若关于x ,y 的方程组()()()()111222a x y b x y c a x y b x y c ⎧+--=⎪⎨+--=⎪⎩,解为20222023x y =⎧⎨=⎩.则关于x ,y 的方程组1112221515a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩的解是( )A .80915x y =⎧⎪⎨=⎪⎩B .40451x y =⎧⎨=⎩C .20222023x y =⎧⎨=⎩D .2022520235x y ⎧=⎪⎪⎨⎪=-⎪⎩12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( ) A .﹣5 B .﹣1 C .3 D .7二、填空题(本大题共8小题,每小题3分,共24分)13.若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________.14.若关于x ,y 的二元一次方程组9876x y m x y n -=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()()()91827162a b m a b n ⎧--+=⎪⎨-++=⎪⎩的解为_______. 15.已知x ,y ,z 满足438324x y z +++==,且212x y z -+=,则x =____________. 16.若关于x ,y 的方程()12m m x y --=是一个二元一次方程,则m 的值为_____________.17.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为________ 18.重庆某大学对重庆某村实施“技术助农”.该村种植有A 、B 、C 三种经济作物,助农前,A ,B ,C 三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B 作物增加的亩数占总增加亩数的16.助农前,C 作物的亩产量是B 作物亩产量的2.5倍,A ,B 两种作物的亩产量之和恰好是C 作物的亩产量;助农后,A ,B 两种作物的亩产量分别增加了13和12,A ,B 两种作物的亩产量之和恰好仍是C 作物的亩产量.若助农后,B 作物的产量比助农前A ,B 产量之和多332,而C 作物的产量比助农前A ,B ,C 三种作物产量的总和还多5%,则助农前后A 作物的产量之比为__________.19.已知关于x ,y 的二元一次方程组21346x y a x y a +=-+⎧⎨-=+⎩(a 是常数),若不论a 取什么实数,代数式kx y -(k 是常数)的值始终不变,则k =______.20.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c +=⎧⎨+=''''⎩ 有关的2x y ''-的值为_____.三、解答题(本大题共5小题,每小题8分,共40分)21.解下列二元一次方程组:(1)=23+10=0y x x y -⎧⎨⎩(2)2+3=53+2=5x y x y -⎧⎨⎩22.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:求此款“冰墩墩”和“雪容融”玩具的零售价格.23.解方程组:(1)231915x yx y+=-⎧⎨=-⎩(用代入消元法)(2)49231x yx y-=⎧⎨+=⎩(用加减消元法)24.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)请自行写出一个除上述你方程外的“和解方程”:______(3)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.25.已知一个三位数=m abc,如果它的百位数字加上2与十位数字加上5的和等于个位数字加上8,则称这个三位数叫“258数”.如:245,∵()()22455813+++=+=,∵245是“258数”;437,∵()()423514+++= 7815+=,14≠15,∵437不是“258数”.(1)请根据材料判断526和738是不是“258数”,并说明理由;(2)若“258数”=m abc (19a b c ≤<<≤,且a ,b 、c 均为整数)能被3整除,请求出所有符合题意的m 的值.参考答案:1.A2.B3.D4.A5.C6.A7.A8.C9.B10.C11.A12.B13.714.20a b =⎧⎨=⎩ 15.1416.-117.-618.90:27119.-120.16-21.(1)24x y =⎧⎨=⎩;(2)55x y =-⎧⎨=⎩.22.此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元23.(1)143x y =-⎧⎨=⎩ (2)21x y =⎧⎨=-⎩24.(1)92m=-(2)1643x(答案不唯一)(3)23,3m n=-=-25.(1)526是“258数”,738不是“258数”,(2)267、627、357、537。

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)(1)

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)(1)

人教版七年级数学下册第八章 二元一次方程组复习检测试题一、选择题1.以下各式,属于二元一次方程的个数有()① xy+2x - y=7; ②4x+1=x - y ;③ 1 +y=5; ④ x=y ;⑤ x 2- y 2=2x⑥ 6x -2y⑦x+y+z=1⑧ y ( y - 1) =2y 2- y 2+x A . 1B .2C . 3D .4x + y =★,x = 6,()2.假如方程组的解为那么被“★”“■”遮住的两个数分别是2x + y =16y =■,A . 10, 4B . 4,10C . 3,10D . 10,33. 已知二元一次方程3x y0 的一个解是x a 0 ,那么(y ,此中 a)bA.bB.bC.bD.以上都不对aaa4.若知足方程组的 x 与 y 互为相反数,则m 的值为()A .1B .﹣ 1C .﹣ 11D . 115 今年学校举行足球联赛,共赛 17 轮(即每队均需参赛 17 场),记分方法是:胜 1场得 3分,平 1 场得 1 分,负1 场得 0 分.在此次足球竞赛中,小虎足球队得16 分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的状况有( )A .2 种B .3种C .4 种D .5 种5x y 3 x 2 y 56. 已知方程组5 y和5x by 有相同的解,则 a , b 的值为 ( )ax 41a 1B.a 4a 6a14A.2b6C.2D.2b bb7. 某文具店一本练习本和一支水笔的单价共计为 3 元,小妮在该店买了20 本练习本和 10支水笔,共花了 36 元.假如设练习本每本为 x 元,水笔每支为y 元,那么依据题意,以下方程组中,正确的选项是 ( )x - y = 3B.x + y = 3A.20x + 10y = 3620x + 10y =36 y - x = 3D.x + y = 3C.10x + 20y = 3620x + 10y =368.某年级学生共有 246 人,此中男生人数y 比女生人数 x 的 2 倍少 2 人, ?则下边所列的方程组中切合题意的有()x y 246x y246x y 216x y 246 A. B. C. D.2 y x 22x y 2y 2x 2 2 y x 29.某商铺有两进价不一样的耳机都卖64元,此中一个盈余 60%,另一个赔本 20%,在此次买卖中,这家商铺()A、赔 8元B、赚 32 元C、不赔不赚D、赚 8元10.如图,宽为 50cm 的长方形图案由10个相同的小长方形拼成,此中一个小长方形的面积为()A .400cm2B .500cm2C. 600cm2D. 300cm2二、填空题1.将方程3y﹣ x= 2 变形成用含y 的代数式表示x,则 x=2.为了展开“阳光体育”活动,某班计划购置甲、乙两种体育用品此中甲种体育用品每件20 元,乙种体育用品每件30 元,共用去.( 每种体育用品都购置) ,150 元,请你设计一下,共有____ 种购置方案.3.已知│x- 1│ +( 2y+1)2=0,且2x-ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,此中有一段文字的粗心是:甲、乙两人各有若干钱.假如甲获取乙所有钱的一半,那么甲共有钱48 文;假如乙获取甲所有钱的,那么乙也共有钱48 文.甲、乙两人本来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是.三、解答题1.解方程组:2.定义一个非零常数的运算,规定:a*b= ax+by,比如: 2*3 = 2x+3y,若1*1 =8, 4*3 =27,求 x、 y 的值.3.甲、乙两位同学在解方程组时,甲把字母a 看错了获取方程组的解为;乙把字母 b 看错了获取方程组的解为.(1)求 a, b 的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550 台,经市场检查决定调整两种机器的产量,计划第二季度生产这两种机器共536 台,此中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅游社面向学生推出的收费标准以下:人数 m0<m≤ 100100< m≤ 200m> 200/收费标准(元人)908070已知该校七年级参加春游学生人数多于100 人,八年级参加春游学生人数少于100 人.经核算,若两个年级分别组团共需花销17700 元,若两个年级结合组团只要花销14700 元.( 1)两个年级参加春游学生人数之和超出200 人吗?为何?( 2)两个年级参加春游学生各有多少人?3 6.某商场第一次用4600 元购进甲、乙两种商品,此中甲商品件数的 2 倍比乙商品件数的倍少 40 件,甲、乙两种商品的进价和售价以下表(收益=售价﹣进价):甲乙进价(元/件)2230售价(元/件)2840(1)该商场第一次购进甲、乙两种商品的件数分别是多少?(2)该商场将第一次购进的甲、乙两种商品所有卖出后一共可获取多少收益?( 3)该商场第二次以相同的进价又购进甲、乙两种商品.此中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完此后获取的收益比第一次获取的收益多280 元,则第二次乙商品是按原价打几折销售的?参照答案一.选择题1.B.2. A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10. A.二.填空题1. 3y﹣ 22.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得: 2x= 4,解得: x= 2,把 x= 2 代入①得:2﹣ 2y=﹣ 3,解得: y=,即原方程组的解为:.2.解:∵ a* b= ax+by∴1*1 = 8,即为 x+y= 8,4*3 =27 即为 4x+3y= 27;解方程组① ×3﹣②,得﹣x=﹣3,解得 x=3,将 x= 3 代入①,得y= 5.3.解:( 1)依据题意得:,解得: a= 2, b=﹣ 3,( 2)方程组为,解得.4.解:设某工厂第一季度人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每题只有一个正确答案)1.以下各方程组中,属于二元一次方程组的是()A. B . C . D .2.以下各组数中,方程2x -=3和3+ 4= 10 的公共解是 () y x yA. B .C. D .3.用代入法解方程组有以下步骤:①由 (1),得 y=(3) ;②由 (3)代入 (1) ,得 7x-2×= 3;③整理得3= 3;④∴ x 可取全部有理数,原方程组有无数个解以上解法,造成错误的一步是()A.①B.②C.③D.④4.一船顺流航行 45 千米需要 3 小时,逆水航行 65 千米需要 5 小时,若设船在静水中的速度为 x 千米/时,水流速度为 y 千米/时,则 x, y 的值为()A.B. C .D.5.|3 x-y-4| + |4x+ y-3|=0,那么x与y的值分别为 ()A.B.C.D.6. 从方程组中求 x 与 y 的关系是()A.x+y=- 1B. x+y=1 C . 2 x-y= 7 D .x+y= 97. 假如ax+ 2y= 1是对于 x,y 的二元一次方程,那么 a 的值应知足()A.a是有理数B. a≠0C. a=0 D. a 是正有理数8.已知甲数的 60%加乙数的 80%等于这两个数的和的 72%,若设甲数为x,乙数为y,则以下方程中切合题意的是 ()A. 60%x+80%y=x+ 72%y B. 60%x+ 80%y= 60%x+yC. 60% +80% = 72%( +y )D. 60% +80% =+yx y x x y x9. 以下各组数中,不是方程2+= 10的解是 ()x yA.B.C.D.10.以下图,宽为 50 cm的矩形图案由 10 个全等的小长方形拼成,此中一个小长方形的面积为().A.400 cm 2B. 500 cm 2C.600 cm 2D. 4 000 cm 211.有大小两种货车, 2 辆大车与 3 辆小车一次能够运货15.5 吨, 5 辆大车与 6 辆小车一次能够运货 35吨, 3 辆大车与 5 辆小车一次能够运货为( 单位:吨 )()A. 25.5 B. 24.5C. 26.5D. 27.512.一文具店的装订机的价钱比文具盒的价钱的 3 倍少 1 元,购置 2 把装订机和 6 个文具盒共需 70 元,问装订机与文具盒价钱各是多少元?设文具盒的价钱为x 元,装订机的价钱为y 元,依题意可列方程组为()A.B.C.D.二、填空题13.在括号内填写一个二元一次方程,使其与二元一次方程5x- 2y= 1构成方程组的解是你所填写的方程为 ______________ .14.已知方程3x-2y= 5 的一个解中,y的值比x的值大 1,则这个方程的这个解是________.15.已知方程组则 x-y=______, x+ y=______.16.哥哥与弟弟的年纪和是 18 岁,弟弟对哥哥说:“当我的年纪是你此刻年纪的时候,你就是 18 岁”.假如此刻弟弟的年纪是x 岁,哥哥的年纪是y 岁,所列方程组为______.17. 已知方程 2x 2n-1-3y3m n是二元一次方程,则m=______,n=______.-+ 1=0三、解答题18、用代入消元法解方程组20.用加减消元法解方程组2x3y403x 4 y10,x y54x y9 0;19、用适合的方法解以下方程组2x y x 2 y03(2)5( 1)2 y8y3x x33ax 5 y 15①20.甲、乙两人共同解方程组4x by2② ,因为甲看错了方程①中的a,获取方程组x3的解为y1人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

人教版七年级下第八章二元一次方程组综合练习题(含答案)

人教版七年级下第八章二元一次方程组综合练习题(含答案)

人教版七年级下第八章二元一次方程组综合练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是二元一次方程的是()A.2x+y=3z B.2x﹣1 y=2C.3x﹣5y=2D.2xy﹣3y=02.在下列方程组5231xy x=⎧⎨-=⎩、35x yx y+=⎧⎨-=⎩、3123xyx y=⎧⎨+=⎩、1111x yx y⎧+=⎪⎨⎪+=⎩、11xy=⎧⎨=⎩中,是二元一次方程组的有()个A.2个B.3个C.4个D.5个3.如图,AB⊥BC,⊥ABD的度数比⊥DBC的度数的两倍少15°,设⊥ABD和⊥DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩4.方程组1{25x yx y+=-=,的解是().A.1{2.xy=-=,B.2{3.xy,=-=C.2{1.xy==,D.2{1.xy==-,5.用代入法解方程组233210y xx y=-⎧⎨-=⎩①②将方程⊥代入⊥中,所得的正确方程是()A.3x-4x-3=10B.3x-4x+3=10C.3x-4x+6=10D.3x-4x-6=106.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .2700cm7.若31,21x t y t =+=-,用含y 的式子表示x 的结果是( ) A .253x y -=B .352y x +=C .253x y +=D .352y x -=8.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( ) A .0B .3-C .3D .69.关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x ay b =⎧⎨=⎩,若点P (a ,b )总在直线y =x上方,那么k 的取值范围是( ) A .k >1B .k >﹣1C .k <1D .k <﹣110.若方程组435,(1)8x y kx k y +=⎧⎨--=⎩的解中的x 的值比y 的值的相反数大1,则k 为( )A .3B .-3C .2D .-211.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( ) A .0B .6C .6-D .212.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( ) A .1{4250802900x y x y +=+=B .15{802502900x y x y +=+=C .1{4802502900x y x y +=+=D .15{250802900x y x y +=+=二、填空题13.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ .14.(1)若35m =,37=n ,则3m n +=________;(2)若x 、y 是正整数,且5222⋅=x y ,则x 、y 的值分别为________.15.在(1)32xy=⎧⎨=-⎩,(2)453xy=⎧⎪⎨=-⎪⎩,(3)1472xy⎧=⎪⎪⎨⎪=⎪⎩这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组3924x yx y-=⎧⎨+=⎩的解.16.若二元一次方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解,则a=_____.17.二元一次方程组321221x yx y+=⎧⎨-=⎩的解为________.18.已知|2x﹣4|+|x+2y﹣8|=0,则(x﹣y)2022=____.19.已知1,{2xy==是方程ax-3y=5的一个解,则a=________.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.三、解答题21(2x+3y+1)2互为相反数,求x﹣y的平方根.22.我市某著名景点门票价格规定如下表:小明妈妈的公司有一项短途旅行业务,就是去该景点一日游.学完一元一次方程以后,他妈妈让他给规划一个去该景点游玩的购票方案,给他的提示是:有甲、乙两个团队共32人,其中甲团队3人以上,不足10人.经估算,如果两个团队分别购票,则应付门票费2100元.(1)两个团队各有多少人?(2)如果两个团队联合起来,作为一个团体购票,可省钱元.(3)如果乙团队临时有事不能去了,只有甲团队单独去游玩,通过计算说明如何购票最省钱?23.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元,若购甲4件,乙10件,丙1件,共需420元.现在购甲、乙、丙各一件共需多少元?24.(1)解二元一次方程组5316,350;x y x y -=⎧⎨-=⎩(2)现在你可以用哪些方法得到方程组()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解?请你对这些方法进行比较.25.先阅读下列解法,再解答后面的问题. 已知2343212x A Bx x x x -=+-+--,求A 、B 的值.解法一:将等号右边通分,再去分母,得:()()3421x A x B x -=-+-,即:()()342x A B x A B -=+-+,⊥()324A B A B +=⎧⎨-+=-⎩解得12A B =⎧⎨=⎩.解法二:在已知等式中取0x =时,有22BA -+=--,整理得24AB +=; 取3x =,有522A B +=,整理得25A B +=. 解2425A B A B +=⎧⎨+=⎩,得:12A B =⎧⎨=⎩.(1)已知21131424643x A B x x x x=+--++-,用上面的解法一或解法二求A 、B 的值.(2)计算:()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅++⎢⎥-+++++++⎣⎦,并求x 取何整数时,这个式子的值为正整数.参考答案:1.C【详解】A 、2x+y=3z 不是二元一次方程,因为有3个未知数; B 、2x -1y=2不是二元一次方程,因为不是整式方程; C 、3x -5y=2是二元一次方程;D 、2xy -3y=0不是二元一次方程,因为最高项的次数为2. 故选C . 2.B【分析】根据二元一次方程组的定义逐个判断即可.【详解】解:方程组5231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,11x y =⎧⎨=⎩符合二元一次方程组的定义,是二元一次方程组.方程组3121xy x y =⎧⎨+=⎩属于二元二次方程组,不是二元一次方程组.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不是二元一次方程组.故选:B .【点睛】本题考查了二元一次方程组的定义,解题关键是明确二元一次方程组的定义,准确进行判断. 3.B【详解】⊥AB⊥BC , ⊥⊥ABD+⊥DBC=90°,又⊥⊥ABD 的度数比⊥DBC 的度数的两倍少15度, ⊥当设⊥ABD 和⊥DBC 度数分别为x y 、时,由题意可得:90215x y x y +=⎧⎨=-⎩ . 故选:B. 4.D【详解】方程组1{25x y x y +=-=①②,由⊥+⊥得3x =6,x =2,把x =2代入⊥中得y =-1, 所以方程组1{25x y x y +=-=的解是2{1x y ==-. 故选D. 5.C 【解析】略 6.A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键. 7.B【分析】根据21y t =-得,t =12y +,然后将其代入31x t =+即可求解. 【详解】解:由21y t =-,得t =12y +, ⊥31x t =+=3×12y ++1=352y +, 即x =352y +. ⊥用含y 的式子表示x 的结果是x =352y + 故选:B .【点睛】本题主要考查了二元一次方程的解法,解本题关键是把方程21y t =-中含有x 的项移到等号的右边,得到t =12y +. 8.A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:⊥324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,⊥=1324=1a b a b +⎧⎨+-⎩, 解得:=3=2a b ⎧⎨-⎩,⊥23=660+-=a b , 故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程. 9.B【分析】将k 看作常数,解方程组得到x ,y 的值,根据P 在直线上方可得到b >a ,列出不等式求解即可.【详解】解:解方程组3212331x y k x y k +=-⎧⎨+=+⎩可得,315715x k y k ⎧=--⎪⎪⎨⎪=+⎪⎩, ⊥点P (a ,b )总在直线y =x 上方, ⊥b >a ,⊥731155k k +>--, 解得k >-1, 故选:B .【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k 看作常数,根据点在一次函数上方列出不等式求解. 10.A【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,再列出关于两解的等式,求出k . 【详解】解:由题意,解得x =51974k k +-,y =53274k k --,⊥x 的值比y 的值的相反数大1, ⊥x +y =1,即51974k k +-+53274k k --=1, 解得k =3, 故选:A .【点睛】本题主要考查解二元一次方程组和它的解,熟练掌握解二元一次方程组的方法是关键. 11.B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=⎧⎨++=⎩①② , ⊥-⊥得:30a += , 3a =- ,把3a =-代入⊥得:()130b +-+= ,2b = ,解得:32a b =-⎧⎨=⎩ , 把32a b =-⎧⎨=⎩代入代数式2x ax b ++得:232x x -+, 当1x =-时,2326x x -+=. 故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键. 12.D【分析】根据关键语句“到学校共用时15分钟”可得方程:x +y =15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x +80y =2900,两个方程组合可得方程组.【详解】解:他骑车和步行的时间分别为x 分钟,y 分钟,由题意得:152********x y x y +=⎧⎨+=⎩ 故选D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 13.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】⊥本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可⊥令1a =,1b =,得x y c += ⊥把21x y =⎧⎨=-⎩代入方程x y c +=解出1c = ⊥1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.14. 35 14x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩.【分析】(1)根据333m n m n +=⋅求解即可;(2)求根据5222⋅=x y 得到522x y +=即5x y +=,再由x 、y 是正整数求解即可. 【详解】解:(1)⊥35m =,37=n , ⊥3335735m n m n +=⋅=⨯=; (2)⊥5222⋅=x y ⊥522x y +=, ⊥5x y +=, ⊥x 、y 是正整数,⊥14xy=⎧⎨=⎩或23xy=⎧⎨=⎩或32xy=⎧⎨=⎩或41xy=⎧⎨=⎩.故答案为:35;14xy=⎧⎨=⎩,23xy=⎧⎨=⎩,32xy=⎧⎨=⎩,41xy=⎧⎨=⎩.【点睛】本题主要考查了同底数幂的乘法的逆用,二元一次方程,解题的关键在于能够熟练掌握相关知识进行求解.15.(1),(2)(1),(3)(1)【分析】根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.【详解】解:当32xy=⎧⎨=-⎩时,方程39x y-=的左边为:()33329x y-=-⨯-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程39x y-=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程39x y-=的左边为:534393x y⎛⎫-=-⨯-=⎪⎝⎭,方程左右两边相等,⊥453xy=⎧⎪⎨=-⎪⎩是方程39x y-=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程39x y-=的左边为:174133424x y⎛⎫-=-⨯=-⎪⎝⎭,方程左右两边不相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程39x y-=的解;当32xy=⎧⎨=-⎩时,方程24x y+=的左边为:()22324x y+=⨯+-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程24x y+=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程24x y+=的左边为:51322333x y⎛⎫+=⨯+-=⎪⎝⎭,方程左右两边不相等,⊥453xy=⎧⎪⎨=-⎪⎩不是方程24x y+=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程24x y+=的左边为:1722442x y+=⨯+=,方程左右两边相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程24x y+=的解;⊥方程组3924x yx y-=⎧⎨+=⎩的解为32xy=⎧⎨=-⎩;故答案为:⊥(1),(2);⊥(1),(3);⊥(1).【点睛】本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.16.9 7【分析】根据方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解得2+93210x yx y=⎧⎨-=⎩求出x,y得值,再代入方程152aax y--=,即可解答.【详解】1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解∴得2+9 3210x yx y=⎧⎨-=⎩解得:41 xy=⎧⎨=⎩把41xy=⎧⎨=⎩代入方程152aax y--=得:1452aa--=解得:a=9 7【点睛】此题考查了二元一次方程组的解,解决本题的关键是明确方程组的解即为能使方程组中两方程成立的未知数的值.17.23 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:321221x yx y+=⎧⎨-=⎩①②.⊥+⊥×2得:7x=14,解得:x=2,把x=2代入⊥得:2×2-y=1解得:y=3,所以,方程组的解为23xy=⎧⎨=⎩,故答案为:23xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.1【分析】由非负数的意义求出x,y的值,再代入计算即可.【详解】解:⊥|2x﹣4|≥0,|x+2y﹣8|≥0,|2x﹣4|++|x+2y﹣8|=0,⊥2x﹣4=0,x+2y﹣8=0.⊥x=2,y=3.⊥(x﹣y)2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查非负数的意义,掌握绝对值,偶次幂的运算性质是解决问题的前提.19.11【详解】本题考查的是二元一次方程的解的定义由题意把1,{2xy==代入方程ax-3y=5即可得到结果.由题意得,20.2753x yx y+=⎧⎨=⎩【分析】根据图示可得:大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程即可.【详解】解:根据图示可得大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程得到: 2753x y x y+=⎧⎨=⎩, 故答案为:2753x y x y +=⎧⎨=⎩【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.21.x ﹣y 的平方根为(2x +3y +1)2()22310x y ++=,再结合二次根式非负性及平方的非负性得到4302310x y x y +-=⎧⎨++=⎩,求解代值即可得到结论.【详解】解:()2231x y ++互为相反数,()22310x y ++=, ()240,2310x y x y +++≥, ⊥4302310x y x y +-=⎧⎨++=⎩,解得11x y =⎧⎨=-⎩, ⊥x ﹣y =2,⊥x﹣y 的平方根为【点睛】本题考查求代数式的平方根,涉及到相反数的性质、二次根式非负性及平方的非负性、解二元一次方程组等知识点,熟练掌握相反数的性质和常见非负式的运用是解决问题的关键.22.(1)甲团队有9人,乙团队有23人;(2)500;(3)11张【分析】(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,再根据门票的收费标准列出方程求解即可;(2)算出合在一起买的花销,然后用分开买的花销减去合买的花销即可;(3)分别算出单买和合买11张的花销,然后比较即可得到答案.【详解】解:(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,列方程得8060(32)2100x x +-=解方程,得9x =这时,3223x -=答:甲团队有9人,乙团队有23人.(2)由题意得人数一共有32人,则合买的花销=3250=1600⨯ 元,⊥可省钱2100-1600=500元故答案为:500;(3)直接购买:809720⨯=(元);按团体票购买:6011660⨯=(元)⊥720>660,⊥购买11张票最省钱.答:购买11张票最省钱.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够准确找到等量关系列出方程求解.23.105元【分析】先设甲、乙、丙各一件分别需要x ,y ,z 元,根据购甲3件,乙7件,丙1件,共需315元,购甲4件,乙10件,丙1件,共需420元,列出方程组求出x y z ++的值即可.【详解】解:设购甲、乙、丙各一件分别需要x ,y ,z 元,根据题意得:37315410420x y z x y z ++=⎧⎨++=⎩①② ⊥×3-⊥×2得105x y z ++=.则现在购甲、乙、丙各一件共需105元【点睛】此题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x ,y ,z 以整体形式出现.24.(1)5,3;x y =⎧⎨=⎩;(2)见解析 【分析】(1)利用加减消元法解方程组;(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为53x y x y +=⎧⎨-=⎩,再利用加减法求解.【详解】解:(1)5316350x y x y -=⎧⎨-=⎩①②, 由35⨯-⨯①②得16y =48,⊥y =3,将y =3代入⊥得x =5,⊥这个方程组的解是53x y =⎧⎨=⎩; (2)方法一:去括号得到方程组2816,280,x y x y +=⎧⎨-+=⎩再解得结果41;x y =⎧⎨=⎩; 方法二:由(1)5316,350;x y x y -=⎧⎨-=⎩解为53x y =⎧⎨=⎩,可得()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解为53x y x y +=⎧⎨-=⎩,解得41x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.25.(1)3,2A B =-=;(2)61x -,当x 取2,3,4,7时,这个式子的值为正整数. 【分析】(1)解法一:先等式两边同乘以(6)(43)x x +-去分母,去括号化简可得一个关于A 、B 的二元一次方程组,解方程组即可得;解法二:分别取0x =和1x =可得一个关于A 、B 的二元一次方程组,解方程组即可得;(2)先将括号内的每一项拆分成两项的差的形式,再计算分式的加减法与乘法运算即可得,然后根据整数性质求出符合条件的整数x 的值即可.【详解】(1)解法一:21131424643x A B x x x x =+--++-, 等式两边同乘以(6)(43)x x +-去分母,得11(43)(6)x A x B x =-++,即11(3)46x A B x A B =-+++,则311460A B A B -+=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; 解法二:21131424643x A B x x x x =+--++-, 取0x =,得064A B +=,即230A B +=, 取1x =,得1177B A =+,即117A B +=, 联立230711A B A B +=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; (2)()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅+⎢⎥-+++++++⎣⎦, ()111111111112111335911x x x x x x x x x ⎛⎫-+-+-+⋅⋅⋅+-+ ⎪-++++⎝⎭=+++, ()111112111x x x ⎛⎫-+ ⎪⎝⎭=-+, ()11112(1)(11)(11()1)11x x x x x x x ⎡⎤--+⎢⎥-+-+⎣⎦+=, ()1112(1)(11)12x x x ⋅⋅++=-, 61x =-, 要使61x -为正整数,则整数1x -的所有可能取值为1,2,3,6, 即整数x 的所有可能取值为2,3,4,7,经检验,当x 取2,3,4,7时,分式的分母均不为零,故当x 取2,3,4,7时,这个式子的值为正整数.【点睛】本题考查了分式的加减法与乘法运算、二元一次方程组的应用,读懂阅读材料中的两种解法是解题关键.。

2021-2022学年人教版初中数学七年级下册第八章二元一次方程组同步训练试卷(含答案详细解析)

2021-2022学年人教版初中数学七年级下册第八章二元一次方程组同步训练试卷(含答案详细解析)

初中数学七年级下册第八章二元一次方程组同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩2、二元一次方程324x y -=的解可以是( )A .2,1x y =⎧⎨=⎩B .3,2x y =⎧⎨=⎩C .1,1x y =-⎧⎨=⎩D .3,4x y =-⎧⎨=-⎩3、若关于x ,y 的二元一次方程组32129x y k x y +=+⎧⎨-=⎩的解互为相反数,则k 的值是( )A .4B .3C .2D .14、下列各式中是二元一次方程的是( )A .2327x y -=B .25x y +=C .123y x += D .234x y -=5、用加减法解方程组336x y x y +=-⎧⎨+=⎩①②由②-①消去未知数y ,所得到的一元一次方程是( ) A .29x = B .23x = C .49=x D .43x =6、已知23x y =-⎧⎨=⎩是方程22kx y +=-的解,则k 的值为( ) A .﹣2 B .2 C .4 D .﹣47、下列各组数值是二元一次方程2x ﹣y =5的解是( )A .21x y =-⎧⎨=⎩B .05x y =⎧⎨=⎩C .15x y =⎧⎨=⎩D .31x y =⎧⎨=⎩8、已知方程组242x y x y k +=⎧⎨+=⎩的解满足1x y +=,则k 的值为( ) A .7 B .7- C .1 D .1-9、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )A .1.2元B .1.05元C .0.95元D .0.9元10、下列方程组中是三元一次方程组的是( ).A .2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B .2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C .1141171110x y y zz x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D .::3:4:524x y z x y z =⎧⎨++=⎩ 二、填空题(5小题,每小题4分,共计20分)1、若关于x 、y 的方程()12m m x y ++=是二元一次方程,则m =_______.2、方程(1)(1)0a x a y ++-=,当a ≠___时,它是二元一次方程,当a =____时,它是一元一次方程.3、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x 文钱,乙原有y 文钱,可列方程组为____________.4、已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解,则1123a b -的值为____________.5、若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 三、解答题(5小题,每小题10分,共计50分)1、 “文明其精神,野蛮其体魄”,为进一步提升学生的健康水平,我市某校计划用760元购买14个体育用品,备选体育用品及单价如表:(1)若760元全部用来购买足球和排球,求足球和排球各购买的数量.(2)若该校先用一部分资金购买了a 个排球,再用剩下的资金购买了足球和篮球,且篮球和足球的个数相同,此时正好剩余80元,求a的值.(3)由于篮球和排球都不够分配,该校再补充采购这两种球共花费了480元,其中这两种球都至少购进2个,则有几种补购方案?2、《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大、小和尚各有多少人?3、下面4组数值中,哪一组是二元一次方程组73228x yx y-=⎧⎨+=⎩的解?(1)13xy=-⎧⎨=-⎩(2)24xy=⎧⎨=⎩(3)42xy=⎧⎨=⎩(4)16xy=⎧⎨=⎩4、用代入消元法解下列方程组:(1)32x yy x-=⎧⎨=⎩(2)528x yx y+=⎧⎨+=⎩(3)43524x yx y+=⎧⎨-=⎩(4)222312nmm n⎧-=⎪⎨⎪+=⎩5、在解方程组4635ax yx by+⎧⎨+-⎩=①=②时,由于小明看错了方程①中的a,得到方程组的解为12xy⎧⎨⎩==,小华看错了方程②中的b,得到方程组的解为x=2,y=1.(1)求a、b的值;(2)求方程组的正确解.---------参考答案-----------一、单选题1、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x y y x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩, 故选A .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.2、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A 、21x y =⎧⎨=⎩代入324x y -=中,方程左边=3221=4⨯-⨯ ,边等于右边,故此选项符合题意; B 、32x y =⎧⎨=⎩代入324x y -=中,方程左边=3322=5⨯-⨯ ,左边不等于右边,故此选项不符合题意; C 、11x y =-⎧⎨=⎩代入324x y -=中,方程左边()=3121=5⨯--⨯- ,左边不等于右边,故此选项不符合题意; D 、34x y =-⎧⎨=-⎩代入324x y -=中,方程左边()()=3324=1⨯--⨯-- ,左边不等于右边,故此选项不符合题意;故选A .本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.3、C【解析】【分析】先根据“方程组的解互为相反数”可得0x y +=,再与方程29x y -=联立,利用消元法求出,x y 的值,然后代入方程321x y k +=+即可得.【详解】解:由题意得:0x y +=,联立029x y x y +=⎧⎨-=⎩①②, 由①-②得:39y =-,解得3y =-,将3y =-代入①得:30x -=,解得3x =,将3,3x y ==-代入方程321x y k +=+得:196k +=-,解得2k =,故选:C .【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.4、B【解析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】2327x y -=中x 的次数为2,故A 不符合题意;25x y +=是二元一次方程,故B 符合题意;123y x +=中1x不是整式,故C 不符合题意; 234x y -=中y 的次数为2,故D 不符合题意;故选B .【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.5、A【解析】【分析】观察两方程发现y 的系数相等,故将两方程相减消去y 即可得到关于x 的一元一次方程.【详解】解:解方程组336x y x y +=-⎧⎨+=⎩①②,由②-①消去未知数y ,所得到的一元一次方程是2x =9, 故选:A .【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.6、C【分析】把23xy=-⎧⎨=⎩代入是方程kx+2y=﹣2得到关于k的方程求解即可.【详解】解:把23xy=-⎧⎨=⎩代入方程得:﹣2k+6=﹣2,解得:k=4,故选C.【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.7、D【解析】【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把21xy=-⎧⎨=⎩代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把5xy=⎧⎨=⎩代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把15xy=⎧⎨=⎩代入方程2x﹣y=5,2-5=-3≠5,不满足题意;D. 把31x y =⎧⎨=⎩代入方程2x ﹣y =5,6-1=5,满足题意; 故选:D .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.8、D【解析】【分析】①+②得出x +y 的值,代入x +y =1中即可求出k 的值.【详解】解:242x y x y k +=⎧⎨+=⎩①②①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=, ∴413k +=, ∴43k +=,解得:1k =-,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9、B【解析】【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得x y z ++的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据题意得:37 3.15482 4.2x y z x y z ++=⎧⎨++=⎩①②, ②–①可得: 1.05x y z ++=.故选:B .【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含x y z ++的等式.10、D【解析】【分析】三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.【详解】解:A 、a 的最高次数是2,选项错误;B 、x 、y 、z 的最高次数都是2,选项错误;C 、每个方程都是分式方程,选项错误;D 、符合题意,选项正确.故选:D【点睛】本题考查三元一次方程组的识别,牢记定义是解题的切入点.二、填空题1、1【分析】根据二元一次方程定义可得:|m |=1,且m-1≠0,进而可得答案.【详解】∵关于x 、y 的方程()12m m x y ++=是二元一次方程,∴|m |=1,且m -1≠0,解得:m =1,故答案为:1【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.2、±1 1-或1【分析】根据一元一次方程的定义可得分两种情况讨论,当10a +=,即1a =-时;当10a -=,即1a =时,方程为一元一次方程,即可得a 的值;根据二元一次方程的定义可得10a +≠且10a -≠,解可得a 的值.【详解】 解:关于x 的方程(1)(1)0a x a y ++-=,是二元一次方程,10a ∴+≠且10a -≠,解得:1a ≠±;方程(1)(1)0a x a y ++-=,是一元一次方程,分类讨论如下:当10a +=,即1a =-时,方程为20y -=为一元一次方程;当10a -=,即1a =时,方程为20x =为一元一次方程;故答案是:±1;1-或1.【点睛】本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.3、4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩【分析】设甲原有x 文钱,乙原有y 文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的2348=文钱,据此列方程组可得. 【详解】解:设甲原有x 文钱,乙原有y 文钱, 根据题意,得:4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.4、0【分析】结合题意,根据二元一次方程组的性质,将13x y =⎧⎨=⎩代入到原方程组,得到关于a 和b 的二元一次方程组,通过求解即可得到a 和b ,结合代数式的性质计算,即可得到答案.【详解】∵13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解 ∴将13x y =⎧⎨=⎩代入到()2715ax y x b y +=⎧⎨--=-⎩,得()2371315a b +=⎧⎨--=-⎩∴23a b =⎧⎨=⎩ ∴1111023a b -=-=故答案为:0.【点睛】本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.5、1 12-【分析】 单项式522325m n x y ++与632134m n x y ---的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得52263321m n m n ++=⎧⎨=--⎩,解方程即可求得m 和n 的值. 【详解】解:由题意知单项式522325m n x y ++与632134m n x y ---是同类项, 所以有52263321m n m n ++=⎧⎨=--⎩, 解得112m n =⎧⎪⎨=-⎪⎩. 故答案为:1;12-.【点睛】此题考查了合并同类项,以及单项式,熟练掌握合并同类项法则是解本题的关键.三、解答题1、(1)足球购买5个、排球购买9个;(2)a 的值为10;(3)则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【分析】(1)设购买足球x 个和排球y 个,根据两种球共14个,足球支出总钱数+排球支出总钱数=760元,列方程组804076014x y x y +=⎧⎨+=⎩,解方程组即可; (2)设篮球购买b 个,篮球和足球的个数相同,足球购买b 个,根据三种球共14个,排球支付的总钱数+足球支出总钱数+篮球球支出总钱数=760-80元,列方程组40806076080214a b b a b ++=-⎧⎨+=⎩,解方程组即可;(3)设篮球购买m 个和排球n 个,根据篮球支出总钱数+排球支出总钱数=480元,列二元一次方程60m +40n =480求方程的整数解即可.【详解】解:(1)设购买足球x 个和排球y 个,根据题意得:804076014x yx y+=⎧⎨+=⎩,解得59xy=⎧⎨=⎩,答足球购买5个、排球购买9个;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据题意得40806076080214a b ba b++=-⎧⎨+=⎩,解得102ab=⎧⎨=⎩,答a的值为10;(3)设篮球购买m个和排球n个,根据题意得60m+40n=480,整理得3m+2n=24,∵m≥2,n≥2,∴3122mn=-,当29m n==,;46m n==,,63m n==,,则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【点睛】本题考查列二元一次方程组解应用题,掌握列方程组解应用题的步骤与方法,列二元一次方程,求整数解确定方案是解题关键.2、大和尚有25人,小和尚有75人.【分析】设大和尚有x人,小和尚有y人,根据“100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头”建立方程组,解方程组即可得.【详解】解:设大和尚有x人,小和尚有y人,由题意得:100 31003x yyx+=⎧⎪⎨+=⎪⎩,解得2575xy=⎧⎨=⎩,答:大和尚有25人,小和尚有75人.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.3、(2)【分析】根据二元一次方程组解定义:使二元一次方程组的两个二元一次方程左右两边都相等的一对未知数的解,把四组解分别代入到方程组中看使得方程组中的两个二元一次方程左右两边是否相等即可.【详解】解:732 28x yx y-=⎧⎨+=⎩①②把13xy=-⎧⎨=-⎩代入①中,得到()()7133792⨯--⨯-=-+=,方程左右两边相等,把13xy=-⎧⎨=-⎩代入②中,方程左边()()2132358⨯-+-=--=-≠,方程左右两边不相等,故13xy=-⎧⎨=-⎩不是原方程的解,故(1)不符合题意;把24xy=⎧⎨=⎩代入①中,得到723414122⨯-⨯=-=,方程左右两边相等,把24xy=⎧⎨=⎩代入②中,方程左边224448⨯+=+=,方程左右两边相等,故24xy=⎧⎨=⎩是原方程的解,故(2)不符合题意;把42xy=⎧⎨=⎩代入①中,得到7432286222⨯-⨯=-=≠,方程左右两边不相等,把42xy=⎧⎨=⎩代入②中,方程左边242108⨯+=≠,方程左右两边不相等,故42xy=⎧⎨=⎩不是原方程的解,故(3)不符合题意;把16xy=⎧⎨=⎩代入①中,得到7136718112⨯-⨯=-=-≠,方程左右两边不相等,把16xy=⎧⎨=⎩代入②中,方程左边2168⨯+=,方程左右两边相等,故16xy=⎧⎨=⎩不是原方程的解,故(4)不符合题意;∴第(2)组是原方程组的解.【点睛】本题主要考查了二元一次方程组的解,解题的关键在于能够熟知二元一次方程组的解得定义.4、(1)11xy=-⎧⎨=-⎩(2)32xy=⎧⎨=⎩(3)21xy=⎧⎨=-⎩(4)32mn=⎧⎨=⎩【分析】方程组利用代入消元法求出解即可.【详解】解:(1)32x yy x-=⎧⎨=⎩①②,把②代入①得:-3=2x x,解得:x=-1,把x=-1代入②得:y=-1,则原方程组的解为:11xy=-⎧⎨=-⎩;(2)528x yx y+=⎧⎨+=⎩①②,由①得:y=5-x③把③代入②中得:2x+5-x=8,解得:x=3,把x=3代入③中得:y=5-3=2,则原方程组的解为:32x y =⎧⎨=⎩; (3)43524x y x y +=⎧⎨-=⎩①②, 由②得:x =4+2y ③,将③代入①得:4×(4+2y )+3y =5,解得:y =-1,将y =-1代入③中得:x =4+2×(-1)=2,则原方程组的解为:21x y =⎧⎨=-⎩; (4)222312n m m n ⎧-=⎪⎨⎪+=⎩①②, 由①得:m =2n +2③,将③代入②得: 2×(2n +2)+3n =12,解得:n =2,将n =2代入③中得: m =22+2=3, 则原方程组的解为:32m n =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、(1)1a =,4b =-;(2)14x = ,2316y =【分析】(1)根据方程组的解的定义,12x y ⎧⎨⎩==应满足方程②,x =2,y =1应满足方程①,将它们分别代入方程②①,就可得到关于a ,b 的二元一次方程组,解得a ,b 的值;(2)将a ,b 代入原方程组,求解即可.【详解】解:(1)将12x y =,=代入②得325b +=-,解得:4b =- 将x =2,y =1代入①得246a +=,解得:1a = ,∴1a =,4b =-;(2)方程组为:46345x y x y +⎧⎨-⎩=①=﹣②, ①+②得:365x x +=- ,41x = , 解得:14x = , 将14x =代入①得:1464y += ,2344y = , 解得:2316y = ,∴方程组的解为142316xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.。

精品解析2021-2022学年人教版初中数学七年级下册第八章二元一次方程组专题训练试题(含详细解析)

精品解析2021-2022学年人教版初中数学七年级下册第八章二元一次方程组专题训练试题(含详细解析)

初中数学七年级下册第八章二元一次方程组专题训练(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣1y=0 D.2x﹣3y=xy2、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是().A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=+⎩C.90152x yx y+=⎧⎨=-⎩D.90215x yx y+=⎧⎨=-⎩3、已知方程组242x yx y k+=⎧⎨+=⎩的解满足1x y+=,则k的值为()A.7 B.7-C.1 D.1-4、用加减法将方程组4311455x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=165、下列方程组中,不是二元一次方程组的是( ).A .23031x y y x -=⎧⎨=+⎩ B .112x y z +=⎧⎨-=⎩C .22236x x x y x y ⎧+=-⎨+=⎩D .2536y x x =+⎧⎨=-⎩6、若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .16 B .-1 C .-16 D .17、解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( )A .由①得743nm +=再代入② B .由②得25109nm +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①8、已知方程370x y --=,231x y +=,9y kx =-有公共解,则k 的值为( ).A .3 B .4C .0D .-19、小明解方程组27x y x y +=⎧⎨-=⎩■的解为5x y =⎧⎨=⎩★,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( ) A .■=8和★=3B .■=8和★=5C .■=5和★=3D .■=3和★=810、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个x 元,包子每个y 元,依题意可列方程组为( )A .5317211533.30.9x y x y +=+⎧⎨+=⨯⎩B .5317211533.30.9x y x y +=+⎧⎨+=÷⎩C .5317211533.30.9x y x y +=-⎧⎨+=⨯⎩D .5317211533.30.9x y x y +=-⎧⎨+=÷⎩二、填空题(5小题,每小题4分,共计20分)1、一元二次方程x ﹣3y =8写成用含y 的代数式表示x 的形式为______.2、已知3211203n m xy -+-=是关于x ,y 的二元一次方程,则n m +=______. 3、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab 的值为_____.4、已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程135x y x by -=⎧⎨-=⎩的解,则=a ______,b =______.5、若x ,y 满足方程组327233x y x y +=⎧⎨+=⎩,则化数式2())(x y x y -+-的值为 _____.三、解答题(5小题,每小题10分,共计50分)1、小明和小丽两人同时到一家水果店买水果.小明买了1kg 苹果和2kg 梨,共花了26元;小丽买了2kg 苹果和1kg 梨,共花了28元.苹果和梨的价格各为多少?根据题意,小明列出方程组:226,228.x y x y +=⎧⎨+=⎩而小丽列出的是:226,228.x y x y +=⎧⎨+=⎩交流后,他们发现两个方程组不同,于是展开了争论,都说自己是正确的,而对方是错误的.他们列的方程组正确吗?你认为他们产生分歧的原因是什么? 2、解下列方程组:(1)2431y x x y =-⎧⎨+=⎩;(2)2316413x yx y+=⎧⎨+=⎩.3、解方程(组):(1)2121 24x x--+=;(2)3142 4210x yx y⎧+=⎪⎨⎪-=⎩.4、解方程组:(1)2102x yy x+=⎧⎨=⎩;(2)3()2()107422x y x yx y x y++-=⎧⎪⎨+-+=⎪⎩.5、用代入消元法解下列方程组:(1)32x yy x-=⎧⎨=⎩(2)528x yx y+=⎧⎨+=⎩(3)43524x yx y+=⎧⎨-=⎩(4)222312nmm n⎧-=⎪⎨⎪+=⎩---------参考答案-----------一、单选题1、B【解析】【分析】根据二元一次方程的定义逐项判断即可得.【详解】A 、362x x -=是一元一次方程,此项不符合题意;B 、32x y =是二元一次方程,此项符合题意;C 、10x y-=是分式方程,此项不符合题意; D 、23x y xy -=是二元二次方程,此项不符合题意; 故选:B . 【点睛】本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的. 2、A 【解析】 【分析】此题中的等量关系有:90ABD DBC ∠+∠=︒,215ABC DBC ∠=∠-︒ ,根据等量关系列出方程即可. 【详解】设∠ABD 和∠DBC 的度数分别为x °,y °,则有90215x y x y y +=⎧⎨+=-⎩整理得:9015x y x y +=⎧⎨=-⎩,故选:A . 【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组. 3、D 【解析】①+②得出x +y 的值,代入x +y =1中即可求出k 的值. 【详解】解:242x y x y k +=⎧⎨+=⎩①②①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=, ∴413k +=, ∴43k +=, 解得:1k =-, 故选:D 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 4、D 【解析】 【分析】根据二元一次方程组的加减消元法可直接进行求解. 【详解】解:用加减法将方程组4311455x y x y -=⎧⎨+=-⎩①②中的未知数x 消去,则有①-②得:﹣8y =16;故选D .本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.5、B【解析】【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组22236x x x yx y⎧+=-⎨+=⎩中,2223x x x y+=-可以整理为23x y=-所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把21xy=-⎧⎨=⎩代入方程组得2127a bb a-+=⎧⎨-+=⎩,两式相加得8a b+=-;两式相差得:2a b -=, ∴()()16a b a b +-=-, 故选C . 【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 7、C 【解析】 【分析】观察两方程中m 系数关系,即可得到最好的解法. 【详解】解:解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是由①得347m n =+,再代入②.故选:C . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 8、B 【解析】 【分析】联立370x y --=,231x y +=,可得:2x =,1y =-,将其代入9y kx =-,得k 值. 【详解】370231x y x y --=⎧⎨+=⎩ ,解得21x y =⎧⎨=-⎩,把21x y =⎧⎨=-⎩代入9y kx =-中得:129k -=-,解得:4k =. 故选:B . 【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键. 9、A 【解析】 【分析】把5x =代入27x y -=求出3y =;再把53x y =⎧⎨=⎩代入x y +=■求出数■即可.【详解】解:把5x =代入27x y -=得,107y -=,解得,3y =;把53x y =⎧⎨=⎩代入x y +=■得,53+=■,解得,■=8; 故选A 【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算. 10、B 【解析】 【分析】设馒头每个x 元,包子每个y 元,根据李大爷买5个馒头、3个包子的钱数等于()172+元,张大妈买11个馒头、5个包子的钱数等于()33.30.9÷元列出二元一次方程组即可 【详解】解:设馒头每个x 元,包子每个y 元,根据题意得5317211533.30.9x y x y +=+⎧⎨+=÷⎩ 故选B 【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于()33.30.9÷元是解题的关键. 二、填空题 1、3y +8y 【分析】移项,利用等式的性质变形即可. 【详解】 解: x ﹣3y =8x =3y +8故答案为:3y +8 【点睛】本题属于二元一次方程变形的问题,依据等式的性质变形即可.本题比较简单. 2、4 【分析】根据二元一次方程的定义,可得方程组31211n m -=⎧⎨+=⎩,解得m 、n 的值,代入代数式即可. 【详解】解:由题意得,31211n m -=⎧⎨+=⎩, 解得:40n m =⎧⎨=⎩, ∴n m +=4,故填:4.【点睛】本题考查二元一次方程的定义,属于基础题型.3、16【分析】根据图1和图2分析可得10a b +=,510a =,即可,a b 的值,进而可得ab 的值【详解】由图1可得长方形的长为b ,宽为a ,根据图2可知大长方形的宽可以表示为5,a a b +510,10a a b ∴=+=解得2,8a b ==16ab ∴=故答案为:16【点睛】本题考查了二元一次方程组,根据图中信息求得,a b 的值是解题的关键.4、3 1【分析】联立不含a 与b 的方程组成方程组求出x 与y 的值,代入剩下的方程求出a 与b 的值即可.【详解】解:联立得:351x y x y -=⎧⎨-=⎩, 解得:21x y =⎧⎨=⎩, 代入剩下的两方程得:65224b a -=⎧⎨-=⎩, 解得:13b a =⎧⎨=⎩, 故答案为:3,1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 5、0【分析】二元一次方程组两式相加得x +y =2,两式相减得x -y =4,将结果代入2())(x y x y -+-=0.【详解】∵327233x y x y +=⎧⎨+=⎩①②令+①②有5510x y +=∴2x y +=令①-②有4x y -=∴4x y -=将2x y +=,4x y -=代入2())(x y x y -+-得224440=--=.故答案为:0.【点睛】本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.三、解答题1、他们列的方程组都正确,见解析【分析】根据所列方程可知小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,由此进行判断即可得到答案.【详解】解:两个人所列的方程都是正确的,理由如下:由题意得:小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,因此他们所列方程组中,同一个x 的意义不同,当然所列方程组也就不相同了.【点睛】本题主要考查了从实际问题抽象出二元一次方程组,解题的关键在于能够正确理解两人所列方程的含义.2、(1)12x y =⎧⎨=-⎩;(2)52x y =⎧⎨=⎩ 【分析】(1)根据代入消元法计算即可;(2)根据加减消元法计算即可;【详解】解:(1)2431y x x y =-⎧⎨+=⎩①②, 把①代入②中,得到3241x x +-=,解得:1x =,把1x =代入①中,得:2y =-,∴方程组的解集为12x y =⎧⎨=-⎩; (2)2316413x y x y +=⎧⎨+=⎩①②, 2⨯-②①得:510y =,解得:2y =,把2y =代入②中,得:5x =,∴方程组的解为52x y =⎧⎨=⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.3、(1)x=85;(2)21xy=⎧⎨=-⎩【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)2121 24x x--+=,去分母,得2(2x﹣1)+(x﹣2)=4,去括号,得4x-2+x﹣2=4,移项,得4x+x=4+2+2,合并同类项,得5x=8,系数化为1,得x=85;(2)3142 4210x yx y⎧+=⎪⎨⎪-=⎩①②,①×2+②,得11112x=,解得x=2,把x=2代入②,得8﹣2y=10,解得x=﹣1,故方程组的解为21xy=⎧⎨=-⎩.【点睛】此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.4、(1)24x y =⎧⎨=⎩;(2)35x y =⎧⎨=-⎩ 【分析】(1)利用代入消元法解二元一次方程组即可;(2)先整理原方程得()()3()2()10214x y x y x y x y ++-=⎧⎨++-=⎩然后把()x y +和()x y -当做一个整体利用加减消元法求出2x y +=-③,8x y -=④,然后利用加减消元法求解即可.【详解】解:(1)2102x y y x +=⎧⎨=⎩①②, 把②代入①中得:410x x +=,解得2x =,把2x =代入②中得,4y =,∴方程组的解集为24x y =⎧⎨=⎩; (2)3()2()107422x y x y x y x y ++-=⎧⎪⎨+-+=⎪⎩ 整理得:()()3()2()10214x y x y x y x y ++-=⎧⎪⎨++-=⎪⎩①②, 用①-②得:()24x y +=-,解得2x y +=-③,把③代入①得:()6210x y -+-=,解得8x y -=④,用③+④得:26x =,解得3x =,把3x=代入③得5y=-,∴方程组的解为35xy=⎧⎨=-⎩.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.5、(1)11xy=-⎧⎨=-⎩(2)32xy=⎧⎨=⎩(3)21xy=⎧⎨=-⎩(4)32mn=⎧⎨=⎩【分析】方程组利用代入消元法求出解即可.【详解】解:(1)32x yy x-=⎧⎨=⎩①②,把②代入①得:-3=2x x,解得:x=-1,把x=-1代入②得:y=-1,则原方程组的解为:11xy=-⎧⎨=-⎩;(2)528x yx y+=⎧⎨+=⎩①②,由①得:y=5-x③把③代入②中得:2x +5-x =8,解得:x =3,把x =3代入③中得:y =5-3=2,则原方程组的解为:32x y =⎧⎨=⎩; (3)43524x y x y +=⎧⎨-=⎩①②, 由②得:x =4+2y ③,将③代入①得:4×(4+2y )+3y =5,解得:y =-1,将y =-1代入③中得:x =4+2×(-1)=2,则原方程组的解为:21x y =⎧⎨=-⎩; (4)222312n m m n ⎧-=⎪⎨⎪+=⎩①②, 由①得:m =2n +2③,将③代入②得: 2×(2n +2)+3n =12,解得:n =2,将n=2代入③中得:m=22+2=3,则原方程组的解为:32mn=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第八章 «二元一次方程组»单元测试
一、填空题(每题4分,共24分)
1、将方程3x-y=1变形成用y 的代数式表示x ,则x =___________。

2、若
是方程x -ky =1的解,则k=________。

3、写出一个以
____________。

4、在y kx b =+1时,4y =,当2x =时,10y =,则k = ,b = 。

5、已知4
3
x y =⎧⎨=⎩是方程组512ax by bx ay +=⎧⎨+=-⎩的解,则a= b= 。

6.写出5=+y x 的一组正整数解 ; 二.选择题(每题3分,共18分)
7.下列方程组中,是二元一次方程组的是 ( )
A 、
B
C 、
D 、 8、若x -2y a 、b 值分别是( )
A 、1,0
B 、0,-1
C 、2,1
D 、2,-3
9、在二元一次方程x+3y=1的解中,当x=2时,对应的y 的值是( )。

A 、31
B 、3
1- C 、1 D 、4
10、下列二元一次方程组中,以12
x y =⎧⎨=⎩为解的是( )
A 、135x y x y -=⎧⎨+=⎩
B 、135x y x y -=-⎧⎨+=-⎩
C 、331x y x y -=⎧⎨-=⎩
D 、2335x y x y -=-⎧⎨+=⎩ 11、若2(341)3250x y y x +-+--=则x =( )
A 、-1
B 、1
C 、2
D 、-2
12、我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动
员人数为x 人,组数为y 组,则列方程组为( )
⎩⎨⎧=++=x y x y 5837 B 、⎩⎨⎧=-+=x y x y 5837 C 、⎩⎨⎧+=-=5837x y x y D 、⎩⎨
⎧+=+=583
7x y x y 三、用适当的方法解方程组(每题6分,共24分)
13.⎩⎨⎧=-=4523y x y x 14.⎩⎨⎧=-=+5221532y x y x
15.10
325u v u v +=⎧⎨-=⎩ 16.⎩⎨⎧=+=-1732623y x y x
四、列方程组解决实际问题:(除20题6分。

21--24题各7分,共34分)
17、根据图给出的信息,求每件恤衫和每瓶矿泉水的价格。

18、为了奖励学习进步和成绩优秀的学生,班主任买了同样的笔记本和同种型号的钢笔。

其中笔记本和钢笔的数量总共为18,笔记本每本5元,钢笔每只6元。

一共花了100元。

问买了几本笔记本和几只钢笔。

19.如图,8块相同的长方形地砖拼成一个长方形,每
块长方形地砖的长和宽分别是多少?20.某商场按定价销售某种商品时,每件可获利45元,按定价八五折销售该商品8件与定价降低35元销售该商品12件所获利润相等,该商品进价、定价分别是多少?
21.某工厂在预定期内生产一批汽车,若按原计划每天生产20辆,则差100辆不能完成任务,现在每天生产25辆,结果比原计划多生产50辆,则原计划生产多少辆,预定期限是多少天?
60cm
答案
一填空题
1.1+3y/3
2.-1
3.(答案不唯一)
4.6,-2
5.8,-9
6.x=1,y=4(答案不唯一)
二.选择题
7.A
8.C
9.B
10.D
11.A
12.C
三.解方程组
13.x=12,y=4
14.x=4.5,y=2
15.u=5,v=5
16.x=4,y=3
四.列方程组解应用题
17.每件恤衫20元,每瓶矿泉水2元
18.8本笔记本,10支钢笔
19.长45厘米,宽15厘米
20.进价155元,定价200元。

21.原计划700辆,预定期限30天。

相关文档
最新文档