新人教版2017-2018学年八年级(上)期末数学试卷(含答案)
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和44.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式.10.(3分)当x=时,分式的值为零.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.12.(3分)已知y﹣x=3xy,则代数式的值为.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是.14.(3分)已知=+,则整式A﹣B=.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为cm.16.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1=(2)+=18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(6分)若关于x的方程+2=有增根,求增根和k的值.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF ⊥CD,垂足为F,求证:EF=AP.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.【解答】解:由题意可知:﹣2+=0x2﹣2x(x﹣5)+(x﹣5)(x+1)=0x2﹣2x2+10x+x2﹣4x﹣5=06x=5x=经检验,x=是分式方程的解故选:B.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和4【解答】解:∵数据3,4,x,6,7的平均数是5,∴3+4+x+6+7=5×5解得:x=5,∴中位数为5,方差为s2= [(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故选:B.4.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等【解答】解:A、等边三角形的三个角都是60°,正确;B、平行于同一条直线的两直线平行,正确;C、直线经过外一点有且只有一条直线与已知直线平行,正确;D、两边及一角分别对应相等的两个三角形全等,错误;故选:D.5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°【解答】解:如图,∵m∥n,∴∠1=25°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠2=60°﹣25°=35°,∵l∥m,∴∠α=∠2=35°.故选:C.6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选:D.8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4【解答】解:分式方程去分母得:2x+a=﹣x+2,移项合并得:3x=2﹣a,解得:x=,∵分式方程的解为非负数,∴≥0,且≠2,解得:a≤2,且a≠﹣4.故选:C.二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.10.(3分)当x=3时,分式的值为零.【解答】解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.12.(3分)已知y﹣x=3xy,则代数式的值为4.【解答】解:∵y﹣x=3xy,∴x﹣y=﹣3xy,则原式====4.故答案是:4.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是3.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是(2x1﹣1+2x2﹣1+2x3﹣1+2x4﹣1+2x5﹣1)=3.故答案为:3.14.(3分)已知=+,则整式A﹣B=﹣1.【解答】解:∵=+=,∴3x﹣4=A(x﹣2)+B(x﹣1),整理得出:3x﹣4=(A+B)x﹣2A﹣B,∴,解得:,则整式A﹣B=1﹣2=﹣1,故答案为:﹣1.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为8cm.【解答】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE 的周长是:CD +DE +CE=AE +DE +CD=AD +CD=8,故答案为:8.16.(3分)如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,△ABC 的面积是 42 .【解答】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4,∴△ABC 的面积是:S △AOB +S △AOC +S △OBC =×AB ×OE +×AC ×OF +×BC ×OD=×4×(AB +AC +BC )=×4×21=42,故答案为:42.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1= (2)+=【解答】解:(1)方程两边都乘以2(x+3),得:4x+2(x+3)=7,解得:x=,当x=时,2(x+3)=≠0,所以分式方程的解为x=;(2)方程两边都乘以(1﹣3x)(1+3x),得:(1﹣3x)2﹣(1+3x)2=12,解得:x=﹣1,当x=﹣1时,(1﹣3x)(1+3x)=﹣8≠0,所以分式方程的解为x=﹣1.18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.19.(6分)若关于x的方程+2=有增根,求增根和k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=﹣x+4∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,k=1.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.【解答】解:(1)∵两组数据:3,a,2b,5与a,6,b的平均数都是8,∴,解得:;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6,12出现了3次,最多,即众数为12.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.【解答】(1)证明:过点D作DF∥AC交BC于点F,∴∠ACB=∠DFB,∠FDP=∠E,∵AB=AC(已知),∴∠ACB=∠ABC,∴∠ABC=∠DFB,∴DF=DB;又∵CE=BD(已知),∴CE=DF;又∵∠DPF=∠CPE,∴△ECP≌△DFP,∴PE=PD;(2)解:∵CE=BD,AC=AB,CE:AC=1:5(已知),∴BD:AB=1:5,∵DF∥AC,∴△BDF∽△BAC,∴==;∵BC=10,∴BF=2,FC=8,∵△DFP≌△ECP,∴FP=PC,∴PF=4,则BP=BF+FP=6.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:在线段BC上截取BE=BA,连接DE,如图所示.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.【解答】证明:连接PC,∵四边形ABCD是正方形,∴∠BCD=90°,∠ABD=∠CBD=45°,BA=BC,∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF是矩形,∴PC=EF,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∴AP=EF.。
2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。
人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。
XXX版2017-2018学年度八年级上学期数学期末试题及答案

XXX版2017-2018学年度八年级上学期数学期末试题及答案2017-2018学年第一学期八年级期末数学试题本试题共4页,满分120分,考试时间90分钟。
请考生在答题卡上填写姓名、座号和准考证号,并在试题规定位置填写考点、姓名、准考证号和座号。
考试结束后,仅交回答题卡。
一、选择题(共15题,每题3分,共45分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.下列实数中是无理数的是()A。
0.38.B。
π。
C。
4.D。
-22/72.以下各组数为三角形的边长,能构成直角三角形的是()A。
8,12,17.B。
1,2,3.C。
6,8,10.D。
5,12,93.在平面直角坐标系中,点P(-2,3)关于x轴的对称点在()A。
第四象限。
B。
第三象限。
C。
第二象限。
D。
第一象限4.等腰三角形一边长等于5,一边长等于9,则它的周长是()A。
14.B。
23.C。
19.D。
19或235.每年的4月23日是“世界读书日”。
某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:册数。
人数3.11.132.163.174.1则这50名学生读书册数的众数、中位数是()A。
3,3.B。
3,2.C。
2,3.D。
2,26.一次函数y=kx+b,y随x增大而增大,且b>0,则该函数的大致图象为()A。
三边垂直平分线的交点。
B。
三条中线的交点C。
三条高的交点。
D。
三条角平分线的交点7.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()8.关于函数y=-2x+1,下列结论正确的是()A。
图象必经过(-2,1)。
B。
y随x的增大而增大C。
图象经过第一、二、三象限。
D。
当x>1/2时,y<09.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()10.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果。
下面的调查数据中,他最关注的是()A。
[精品]甘肃省八年级上期末数学试题有答案
![[精品]甘肃省八年级上期末数学试题有答案](https://img.taocdn.com/s3/m/b80a82113169a4517723a395.png)
2017—2018学年第一学期八年级数学期末考试试卷一、选择题(每小题3分,共30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2、(π﹣2018)0的计算结果是()A.π﹣2018 B.2018﹣πC.0 D.13、下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(-ab)5÷(-ab)2=﹣a3b34、以下列各组线段为边作三角形,不能构成直角三角形的是()A.1、、B.5、12、13C.2、3、4D.9、40、415、下列分解因式正确的是( )A.()()311m m m m m-=-+B. x2-x-6=x(x-1)-6C.()222a ab a a a b++=+D.()222x y x y-=-6、已知a、b、c是三角形的三边长,如果满足(a﹣6)2+,则三角形的形状是()A.底与腰不相等的等腰三角形B.直角三角形C.钝角三角形D.等边三角形7、如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是:()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN8、等腰三角形的两个内角的比是1 2,则这个等腰三角形的顶角的度数是()A .72°B .36°或90°C .36°D .45°9、如图所示,两个全等的等边三角形的边长为1m ,一个微型机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2012m 停下,则这个微型机器人停在( )A .点A 处B .点B 处C .点C 处D .点E 处10.一项工程,甲单独做要x 天完成,乙单独做要y 天完成,则甲、乙合做完成工程需要的天数为()二、填空题(每小题3共,共24分)11. 的算术平方根是________..13.李明同学从家到学校的平均速度是每小时a 千米,沿原路从学校返回家的速度是每小时b 千米,则李明同学回的平均速度是__________千米/小时(用含a 、b 的式子表示)15.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠18.如图,已知正六边形ABCDEF 的边长是5,点P 是AD 上的一动点,则PE +PF 的最小值是________.20.因式分解(4分):a(n-1)2-2a(n-1)+a.21.先化简,再求值(6分):(1﹣)÷,其中x=2.22. 解方程:(8分)(1)1x-3-2=3x3-x;(2)32x=2x+1.23(8分). 如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.24.(8分)如图,已知点A 、E 、F 、C 在同一直线上,12∠=∠,AE CF =,AD CB =.判断BE 和DF 的位置关系,并说明理由.25(8分)在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .21·世(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAE=30°,求∠ACF 的度数.26.(8分)某厂街道在规定时间内加工1500顶帐篷支援灾区人民的任务,在加工了300顶帐篷后,厂家把工作效率提高到原的2倍,于是提前6天完成任务,求原每天加工多少顶帐篷?27.(12分)如图,△ABC 中,AB=AC ,∠BAC=90°,点D 是直线AB 上的一动点(不和A 、B 重合),BE ⊥CD 于E ,交直线AC 于F(1)点D 在边AB 上时,试探究线段BD 、AB 和AF 的数量关系,并证明你的结论;(2)点D 在AB 的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论。
八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.04.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1 7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x2﹣3x=.12.(3分)方程=1的解是.13.(3分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD的周长是.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.21.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形【解答】解:三角形具有稳定性.故选:A.2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),∴横坐标相同,纵坐标互为相反数,∴P1和P2关于x轴对称的点,故选:C.3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.0【解答】解:根据题意得,x﹣1=0且x+1≠0,解得x=1且x≠﹣1,所以x=1.故选:A.4.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1【解答】解:A、(x3)2=x6,此选项错误;B、(﹣2x)2÷x=4x2÷x=4x,此选项正确;C、(x+y)2=x2+2xy+y2,此选项错误;D、+=﹣==﹣1,此选项错误;故选:B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选:B.9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠A PF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE , ∴△EFP 是等腰直角三角形,故③错误; ∵△APE ≌△CPF , ∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =S △ABC .故④正确, 故选:C .二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x 2﹣3x= x (x ﹣3) . 【解答】解:x 2﹣3x=x (x ﹣3).故答案为:x (x ﹣3)12.(3分)方程=1的解是 x=3 .【解答】解:去分母得:x ﹣1=2, 解得:x=3,经检验x=3是分式方程的解, 故答案为:x=313.(3分)如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是 15 .【解答】解:∵DE 是BC 的垂直平分线, ∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15, 故答案为:15.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=﹣10或10.【解答】解:∵代数式x2+kx+25是一个完全平方式,∴k=﹣10或10.故答案为:﹣10或10.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)【解答】解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷2ab=4ab÷2ab=2;(2)原式=•(﹣)=﹣.17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.【解答】解:(1)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当xy=1时,原式=9;(2)原式=1﹣+=1﹣+=1+=,当x=0时,原式=2.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∵∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,即∠ADC=90°,∴∠CAD+∠C=90°,∵BF⊥AC,∠BAC=45°,∴∠CBF+∠C=90°,∠BFC=∠AFE=90°,BF=AF,∴∠CAD=∠CBF;在△AEF和△BCF中,∵,∴△AEF≌△BCF(ASA).21.(8分)计算下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,故答案为:x2﹣1;x3﹣1;x4﹣1;(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;故答案为:(1)x7﹣1;(2)x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、你是最聪明的,该怎样选你一定很清楚吧(每小题2分,共20分)1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,82.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4 C.a2•a3=a6D.(a2b)3=a2•a34.三角形的两个内角分别为60°和80°,则它的第三个内角的度数是()A.70°B.60°C.50°D.40°5.下列分式是最简分式的是()A.B.C.D.6.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个7.下列算式计算结果为x2﹣4x﹣12的是()A.(x+2)(x﹣6)B.(x﹣2)(x+6)C.(x+3)(x﹣4)D.(x﹣3)(x+4)8.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD 等于()A.30°B.36°C.38°D.45°9.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣110.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC 的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个二、比一比,看谁填得最好(每小题2分,共20分)11.若分式的值为0,则x的值等于.12.六边形的内角和等于度.13.在平面直角坐标系中,点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是.14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.15.已知x m=6,x n=4,则x m+n的值为.16.分解因式:a4﹣16=.17.已知,则的值是.18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)20.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n的代数式表示).三、解答题(每小题5分,共15分)21.计算:.22.因式分解:(x﹣y)3﹣4(x﹣y).23.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.四、(每小题5分,共15分)24.先化简,再求值:(a+2b)2+(a+b)(b﹣a),其中a=2,b=﹣1.25.解方程:.26.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.五、(每小题7分,共14)27.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.28.已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.六、(每小题8分,共16分)29.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.30.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.参考答案与试题解析一、你是最聪明的,该怎样选你一定很清楚吧(每小题2分,共20分)1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,8【考点】三角形三边关系.【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【解答】解:A、1+2=3,不符合三角形三边关系定理,故本选项错误;B、4+5=9,不符合三角形三边关系定理,故本选项错误;C、6+8>10,6+10>8,8+10>6,符合三角形三边关系定理,故本选项正确;D、5+8<15,不符合三角形三边关系定理,故本选项错误;故选C.【点评】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000000031=3.1×10﹣9,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4 C.a2•a3=a6D.(a2b)3=a2•a3【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A、C,根据幂的乘方,可判断B,根据积的乘方,可判断D.【解答】解:A a•a2=a3,故A错误;B (a2)2=a4,故B正确;C a2•a3=a5,故C错误;D(a2b)3=a6b3,故D错误;故选:B.【点评】本题考查了幂的乘方与积得乘方,幂的乘方底数不变指数相乘,积得乘方等于每个因式分别乘方,再把所得的幂相乘.4.三角形的两个内角分别为60°和80°,则它的第三个内角的度数是()A.70°B.60°C.50°D.40°【考点】三角形内角和定理.【分析】因为三角形的内角度数和是180°,已知两个内角,先用减法求出第三个内角的度数由此得解.【解答】解:180°﹣60°﹣80°=40°.故选D.【点评】此题主要考查三角形的内角和,关键是根据三角形的内角和是180度解答.5.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A.不能约分,是最简分式,B.=,C.=,D.=﹣1,故选:A.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.6.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【解答】解:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形不是轴对称图形;第四个图形是轴对称图形.所以轴对称图形有第一个与第四个共2个图形.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.下列算式计算结果为x2﹣4x﹣12的是()A.(x+2)(x﹣6)B.(x﹣2)(x+6)C.(x+3)(x﹣4)D.(x﹣3)(x+4)【考点】多项式乘多项式.【分析】利用十字相乘法分解因式即可得到结果.【解答】解:x2﹣4x﹣12=(x+2)(x﹣6),则(x+2)(x﹣6)=x2﹣4x﹣12.故选A.【点评】此题考查了多项式乘多项式,熟练掌握十字相乘法是解本题的关键.8.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD 等于()A.30°B.36°C.38°D.45°【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.【解答】解:∵AB=AC,∠BAC=108°,∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,∵BD=AB,∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.故选B.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.9.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣1【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:A、x2+x+1,无法分解因式,故此选项错误;B、x2+2x+1=(x+1)2,故此选项错误;C、x2+2x﹣1,无法分解因式,故此选项错误;D、x2﹣2x﹣1,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.10.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC 的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等腰直角三角形.【分析】结论①错误.因为图中全等的三角形有3对;结论②正确.由全等三角形的性质可以判断;结论③正确.利用全等三角形的性质可以判断.结论④正确.利用全等三角形和等腰直角三角形的性质可以判断.【解答】解:结论①错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论②正确.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,即△ABC的面积等于四边形CDOE的面积的2倍.结论③正确,理由如下:∵△AOD≌△COE,∴OD=OE;结论④正确,理由如下:∵△AOD≌△COE,∴CE=AD,∵AB=AC,∴CD=EB,∴CD+CE=EB+CE=BC.综上所述,正确的结论有3个.故选:C.【点评】本题是几何综合题,考查了等腰直角三角形、全等三角形的判定与性质等重要几何知识点.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.二、比一比,看谁填得最好(每小题2分,共20分)11.若分式的值为0,则x的值等于1.【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.六边形的内角和等于720度.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:(6﹣2)•180=720度,则六边形的内角和等于720度.【点评】解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.13.在平面直角坐标系中,点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是:(﹣3,﹣2).故答案为:(﹣3,﹣2).【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x m=6,x n=4,则x m+n的值为24.【考点】同底数幂的乘法.【专题】计算题;实数.【分析】原式逆用同底数幂乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x m=6,x n=4,∴x m+n=x m•x n=6×4=24.故答案为:24.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.16.分解因式:a4﹣16=(a+2)(a﹣2)(a2+4).【考点】因式分解-运用公式法.【分析】根据平方差公式进行分解即可,注意分解因式要彻底.【解答】解:a4﹣16=(a2﹣4)(a2+4)=(a+2)(a﹣2)(a2+4).故答案为:(a+2)(a﹣2)(a2+4).【点评】此题主要考查了公式法分解因式,正确记忆平方差公式是解题关键.17.已知,则的值是﹣2.【考点】分式的加减法.【分析】先把所给等式的左边通分,再相减,可得=,再利用比例性质可得ab=﹣2(a﹣b),再利用等式性质易求的值.【解答】解:∵﹣=,∴=,∴ab=2(b﹣a),∴ab=﹣2(a﹣b),∴=﹣2.故答案是:﹣2.【点评】本题考查了分式的加减法,解题的关键是通分,得出=是解题关键.18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.【考点】三角形的外角性质;等腰三角形的性质.【分析】根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.19.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).【点评】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.20.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为4n+2(用含n的代数式表示).【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故答案为:4n+2.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.三、解答题(每小题5分,共15分)21.计算:.【考点】分式的混合运算.【分析】根据运算顺序,先算括号里面的,再约分即可.【解答】解:原式=÷=•=.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.22.因式分解:(x﹣y)3﹣4(x﹣y).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=(x﹣y)[(x﹣y)2﹣4]=(x﹣y)(x﹣y+2)(x﹣y﹣2).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】(1)由AB的垂直平分线DE交AC于D,垂足为E,根据线段垂直平分线的性质,易得AD=BD,即可求得∠ABD的度数,又由三角形外角的性质,即可求得答案;(2)易得△BCD是含30°角的直角三角形的性质,继而求得BD的长,则可求得答案.【解答】解:(1)∵AB的垂直平分线DE交AC于D,垂足为E,∴AD=BD,∴∠ABD=∠A=30°,∴∠BDC=∠ABD+∠A=60°;(2)∵在△ABC中,∠C=90°,∠BDC=60°,∴∠CBD=30°,∴BD=ACD=2×3=6,∴AD=BD=6,∴AC=AD+CD=9.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.四、(每小题5分,共15分)24.先化简,再求值:(a+2b)2+(a+b)(b﹣a),其中a=2,b=﹣1.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=2,b=﹣1时,原式=﹣8+5=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程去分母,得(x﹣1)(x+2)﹣(x2﹣4)=8,解这个方程,得x=6,经检验,x=6是原方程的根,则原方程的解为x=6.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.26.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.【解答】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.五、(每小题7分,共14)27.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【考点】作图-轴对称变换.【分析】(1)根据关于x轴对称的点的坐标特点画出△A1B1C1,并写出点C1的坐标即可;(2)根据关于y轴对称的点的坐标特点画出△A2B2C2,并写出点C2的坐标即可.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.28.已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】利用HL证明Rt△BEC与Rt△AED全等,再利用全等三角形的性质解答即可.【解答】解:垂直关系,理由如下:∵BE⊥CD于点E,在Rt△BEC与Rt△AED中,,∴Rt△BEC≌Rt△AED(HL),∴∠B=∠D,∵∠D+∠EAD=90°,∠EAD=∠FAB,∴∠B+∠FAB=90°,∴DF⊥BC.【点评】此题考查全等三角形的判定和性质,关键是利用HL证明Rt△BEC与Rt△AED全等.六、(每小题8分,共16分)29.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.【考点】分式方程的应用.【分析】根据题意,设原来火车的速度是x千米/时,进而利用从甲站到乙站的运行时间缩短了11小时,得出等式求出即可.【解答】解:设原来火车的速度是x千米/时,根据题意得:﹣=11,解得:x=80,经检验,是原方程的根且符合题意.故80×3.2=256(km/h).答:高铁的行驶速度是256km/h.【点评】此题主要考查了分式的方程的应用,根据题意得出正确等量关系是解题关键.30.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.【分析】(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.【解答】解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠CEB=∠ADC=180°﹣∠CDE=120°,∴∠AEB=∠CEB﹣∠CED=60°;(2)∠AEB=90°,AE=BE+2CM,理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A、D、E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
βαDCBA 2017-2018学年度上期八年级数学期末模拟试卷(考试时间:120分钟,满分:150分)一、选择题:(本大题12个小题,每小题4分,共48分) 1.下列大学的校徽图案中,是轴对称图形的是( )A. B. C. D. 2.下列长度的三条线段,能组成三角形的是( )A .3,4,8;B .5,6,11;C .12,5,6;D .3,4,5 . 3.若分式1x x-有意义,则x 的取值范围是( ) A .x ≠-1; B .x ≠1; C .x ≥-1; D .x ≥1. 4.下列运算正确的是( )A .3x 2+2x 3=5x 5;B .0)14.3(0=-π; C .3-2=-6; D .(x 3)2=x 6.5.下列因式分解正确的是( )A .x 2-xy +x =x (x -y );B .a 3+2a 2b +ab 2=a (a +b )2;C .x 2-2x +4=(x -1)2+3;D .ax 2-9=a (x +3)(x -3).6.化简:=+++1x x1x x 2( ) A .1; B .0; C .x ; D .x 2。
7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( ) A .180°; B .220°;C .240°;D .300°.8如图,在△ABC 中,D 是BC 边上一点,且AB =AD =DC ,PDCB AN MDCBAOFEC DBA∠BAD =40°,则∠C 为( ).A .25°;B .35°;C .40°;D .50°。
9.如图,△ABC 的外角∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,若∠BPC =40°,则∠CAP 的度数是( )A.30°;B.40°;C.50°;D.60°。
10.若分式2y 1x 1=-,则分式yxy 3x y4xy 5x 4---+的值等于( ) A .53-; B .53; C .54-; D .54. 11.关于x 的方程21x m1x 2x 3=+-+-无解,则m 的值为( ) A.-8; B.-5; C.-2; D.5.12. 在△ABC 中,∠ACB =90°,AC =BC =4,点D 为AB 的中点,M ,N 分别在BC ,AC 上,且BM =CN 现有以下四个结论:①DN =DM ; ② ∠NDM =90°; ③ 四边形CMDN 的面积为4; ④△CMN 的面积最大为2.其中正确的结论有( ) A.①②④; B. ①②③; C. ②③④; D. ①②③④. 二、填空题:(本大题6个小题,每小题4分,共24分)13.已知一个多边形的内角和等于1260°,则这个多边形是 边形. 14.因式分解:2a 2-2= . 15.解方程:13x 321x x -+=+,则x = .16.如图,∠ABF =∠DCE ,BE =CF ,请补充一个条件: , 能使用“AAS ”的方法得△ABF ≌△DCE . 17.若3x1x =+,则1x x x 2++的值是 .N MD CBA OD C BA18.在锐角△ABC 中,BC =8,∠ABC =30°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值是 。
三、解答题:(本大题2个小题,每小题8分,共16分)19. 如图,AB ∥DC ,AB =DC ,AC 与BD 相交于点O .求证:AO =CO20.△ABC 在平面直角坐标系中的位置如图所示.A (2,3),B (3,1),C (-2,-2)三点在格点上.(1)作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)直接写出△ABC 关于x 轴对称的△A 2B 2C 2的各点坐标; (3)求出△ABC 的面积.四、解答题:(本大题4个小题,每小题10分,共40分) 21.(1)计算:[(x +y )2-(x -y )2]÷(2xy ).(2)因式分解:(x -8)(x +2)+6x .22.先化简,2x x 1x 2x x x x x 222++--+÷+,再在-2,0,1,2四个数中选一个合适的代入求值.23.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?图1E DC B ANMEDC BA 图224. 如图1,C 是线段BE 上一点,以BC 、CE 为边分别在BE 的同侧作等边△ABC 和等边△DCE ,连结AE 、B D . (1)求证:BD =AE ;(2)如图2,若M 、N 分别是线段AE 、BD 上的点,且AM =BN ,请判断△CMN 的形状,并说明理由.五、解答题:(本大题2个小题,共22分)25. 若一个两位正整数m 的个位数为8,则称m 为“好数”. (1)求证:对任意“好数”m ,m 2-64一定为20的倍数;(2)若m =p 2-q 2,且p ,q 为正整数,则称数对(p ,q )为“友好数对”,规定:pq)m (H =,例如68=182-162,称数对(18,16)为“友好数对”,则981816)68(H ==,求小于50的“好数”中,所有“友好数对”的H (m )的最大值.NM E DCBANMEDCBA图2NMEDCBA图326. 如图,△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,M为DE的中点.过点E作与AD平行的直线,交射线AM于点N.(1)当A,B,C三点在同一条直线上时(如图1),求证:M为AN中点.(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一条直线上时(如图2),求证:△CAN为等腰直角三角形.(3)将图1中的△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.图1参考答案一、选择题:1,C ; 2,D ; 3,B ; 4,D ; 5,B ; 6,C ; 7,C ; 8,B ; 9,C ; 10,B ; 11,B ; 12,D . 二、填空题:13.9; 14.2(a +1)(a -1); 15.61x -=; 16.∠A =∠D ; 17.41; 18.4. 三、解答题:(本大题2个小题,每小题8分,共16分)19.证明: ∵AB ∥DC∴∠A =∠C ,∠B =∠D . (2分) 在△AOB 和△COD 中⎪⎩⎪⎨⎧∠=∠=∠=∠D B DC AB C A∴△AOB ≌△COD (ASA ) (6分) ∴AO =CO (8分) 20.解:(1)作图(略) (2分) (2)A 2(2,-3),B 2(3,-1),C 2(-2,2) (5分) (3)45215321212155S ABC ⨯⨯-⨯⨯-⨯⨯-⨯=∆ =25-1-7.5-10=6.5 (8分) 四、解答题:(本大题4个小题,每小题10分,共40分) 21.解:(1)原式=[x 2+2xy +y 2-x 2+2xy -y 2]÷(2xy ) (3分) =4xy ÷2xy=2 (5分) (2) 原式=x 2-6x -16+6x=x 2-16 (3分) =(x +4)(x -4) (5分) 22.解:原式=()()()()()2x x 2x 1x 1x 1x 1x x x+++--+∙+=2x x2x 1+++ =2x 1x ++ (5分) ∵分式的分母≠0 ∴x ≠-2、-1、0、1.又∵x 在-2、0、1、2. ∴x =2. (8分) 当x =2时, 原式=432212=++. (10分) 23.解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有x640030x 5.17800=+, (3分) 解得x =40,经检验,x =40是原分式方程的解,且符合题意, 所以: 1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(6分)(2)乙的进价:160x6400=, 甲的进价:160﹣30=130(元), 130×60%×60+160×60%×(40÷2)-160×[1-(1+60%)×0.5]×(40÷2) =4680+1920﹣640 =5960(元)答:售完这批T 恤衫商店共获利5960元. (10分) 24.证明:(1)∵△ABC 、△DCE 均是等边三角形,∴AC =BC ,DC =DE ,∠ACB =∠DCE =60°, ∴∠ACB +∠ACD =∠DCE +∠ACD , 即∠BCD =∠ACE , 在△DCB 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=DEDC ACE BCD BCAC∴△DCB ≌△ACE (SAS ),∴BD =AE ; (5分) (2)△CMN 为等边三角形,理由如下:由(1)可知:△ACE ≌△DCB ,∴∠CAE =∠CDB ,即∠CAM =∠CBN ,∵AC =BC ,AM =BN ,在△ACM 和△BCN 中,⎪⎩⎪⎨⎧=∠=∠=BNAM CBN CAM BCAC∴△ACM ≌△BCN (SAS ),∴CM =CN ,∠ACM =∠BCN ,∵∠ACB =60°即∠BCN +∠ACN =60°,∴∠ACM +∠ACN =60°即∠MCN =60°,∴△CMN 为等边三角形. (10分)五、解答题:(本大题2个小题,共22分)25.解:(1)证明:设m =10a +8(1≤a ≤9的整数)∴m 2-64=(10a +8)2-64=100a 2+160a +64-64=20a (5a +8)∵1≤a ≤9的整数,∴a (5a +8)为整数;∴m 2-64是20的倍数. (5分)(2)∵m =p 2-q 2,且p ,q 为正整数∴10a +8=(P +q )(p -q )当a =1时,18=1×18=2×9=3×6,没有满足条件的p ,q当a =2时,28=1×28=14×2= 4×7其中满足条件的p ,q 的数对有(8,6),即28=82-62∴H (28)=4386=当a =3时,38=1×38=2×19,没有满足条件的p ,q当a =4时,48=1×48=2×24=3×16=4×12=6×8;满足条件的p ,q 的数对为:⎩⎨⎧=+=-24q p 2q p 或⎩⎨⎧=+=-12q p 4q p 或⎩⎨⎧=+=-8q p 6q p解得:⎩⎨⎧==11q 13p 或⎩⎨⎧==4q 8p 或⎩⎨⎧==1q 7p即48=132-112=82-42=72-12∴H (48)=1311或H (48)=2184=或H (48)=71∵71<21<43<1311.∴所有“友好数对”的H (m )的最大值为1311(10分)26. 解:证明:(1)∵EN ∥AD∴∠MAD =∠N ,∠ADM =∠NEM∵M 为DE 的中点∴DM =EM在△ADM 和△NEM 中⎪⎩⎪⎨⎧=∠=∠∠=∠EMDM NEM ADM MNEMAD∴△ADM ≌△NEM∴AM =NM∴M 为AN 中点 (4分)(2)∵△BAD 和△BCE 均为等腰直角三角形∴AB =AD ,CB =CE ,∠CBE =∠CEB =45°∵AD ∥NE∴∠DAE +∠NEA =180°∵∠DAE =90°,∴∠NEA =90°∴∠NEC =135°∵A 、B 、E 三点在同一条直线上∴∠ABC =180°-∠CBE =135°∴∠ABC =∠NEC由(1),知△ADM ≌△NEM∴AD =NE∵AD =AB ,∴AB =NE在△ABC 和△NEC 中⎪⎩⎪⎨⎧=∠=∠=ECBC NEC ABC NEAB∴△ABC ≌△NEC∴AC =NC ,∠ACB =∠NCE∴∠ACB +∠BCN =∠NCE +∠BCN ,即∠ACN =∠BCE =90° ∴△CAN 为等腰直角三角形. (8分)(3) △CAN 仍为等腰直角三角形证明:延长AB 交NE 于点F ,由〔1),得△ADM ≌△NEM∴AD =NE∵AD =AB ,∴AB =NE∵∠BAD =90°,AD ∥NE∴∠BFE =90°在四边形BCEF 中,∵∠BCE =∠BFE =90°∴∠FBC +∠FEC =360°-90°-90°=180°∵∠FBC +∠ABC =180°∴∠ABC =∠FEC在△ABC 和△NEC 中⎪⎩⎪⎨⎧=∠=∠=ECBC FEC ABC NEAB∴△ABC ≌△NEC∴AC =NC ,∠ACB =∠NCE∴∠ACB +∠BCN =∠NCE +∠BCN ,即∠ACN =∠BCE =90°∴△CAN 为等腰直角三角形. (12分)。