七年级数学上册与直角有关的折叠、旋转习题(新版)鲁教版
《平面直角坐标系》同步达标训练 2021-2022学年鲁教版七年级数学上册

2021-2022学年鲁教版七年级数学上册《5.2平面直角坐标系》同步达标训练(附答案)1.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)4.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D.5个5.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)6.已知点A(m,2m)和点B(3,m2﹣3),直线AB平行于x轴,则m等于()A.﹣1B.1C.﹣1或3D.37.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)8.已知点A(m,n),且有mn≤0,则点A一定不在()A.第一象限B.第二象限C.第四象限D.坐标轴上9.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.510.在直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x+3y=7,则满足条件的点有()A.1个B.2个C.3个D.4个11.若点M(a+3,2a﹣4)到y轴的距离是到x轴距离的2倍,则a的值为()A.或1B.C.D.或12.若+|b+2|=0,则点M(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,点(﹣1,+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限14.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在()A.第一象限B.第二象限C.第三象限D.第四象限15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2021个点的横坐标为.16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2022的坐标是.17.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.18.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.19.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.20.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图2,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=.21.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.22.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.23.已知:点P(2m+4,m﹣1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过A(2,﹣3)点,且与x轴平行的直线上.24.如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.25.如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出B和C的坐标;(3)计算△ABC的面积.26.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.27.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.28.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=1时,求点C的坐标.29.已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.30.已知点M(3a﹣2,a+6).(1)若点M在x轴上,求点M的坐标(2)变式一:已知点M(3a﹣2,a+6),点N(2,5),且直线MN∥x轴,求点M的坐标.(3)变式二:已知点M(3a﹣2,a+6),若点M到x轴、y轴的距离相等,求点M的坐标.参考答案1.解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.2.解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.3.解:方法一:矩形的长宽分别为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲、乙回到原出发点,则每相遇三次,两点回到出发点,∵2021÷3=673…2,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),方法二:设经过t秒甲、乙相遇,t+2t=12,解得:t=4,此时相遇点在(﹣1,1),事实上,无论从哪里起始,它们每隔4秒相遇一次,所以,再过4秒,第二次在(﹣1,﹣1)相遇,再过4秒,第三次在A(2,0)相遇,…此时甲、乙回到原出发点,则每相遇三次,两点回到出发点,∵2021÷3=673…2,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,故选:D.4.解:由图可知,AB∥x轴,且AB=3,设点C到AB的距离为h,则△ABC的面积=×3h=3,解得h=2,∵点C在第四象限,∴点C的位置如图所示,共有3个.故选:B.5.解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选:A.6.解:∵直线AB平行于x轴,∴点A的纵坐标与B的纵坐标相等,∴2m=m2﹣3,即m2﹣2m﹣3=0,∴(m﹣3)(m+1)=0,∴m﹣3=0或m+1=0,∴m=3或m=﹣1.∵A、B是两个点,才能连线平行X轴,∴m≠3,∴m=﹣1故选:A.7.解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.8.解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.9.解:∵点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,∴a﹣2=1,解得a=3.故选:B.10.解:∵2x+3y=7,∴x=2,y=1,满足条件的点有1个.故选:A.11.解:由题意得|a+3|=2|2a﹣4|,∴a+3=2(2a﹣4)或a+3=2(4﹣2a),解得a=或a=1,故选:A.12.解:由题意得,a﹣3=0,b+2=0,解得a=3,b=﹣2,所以,点M的坐标为(3,﹣2),点M在第四象限.故选:D.13.解:因为点(﹣1,1),横坐标小于0,纵坐标1一定大于0,所以满足点在第二象限的条件.故选:B.14.解:∵(x+3)2+|y+2|=0,∴x=﹣3<0,y=﹣2<0.则点A在第三象限.故选:C.15.解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2021个点是(45,4),所以,第2021个点的横坐标为45.故答案为:45.16.解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2022÷4=505…2;∴A2022的坐标在第四象限,横坐标为(2022﹣2)÷4+1=506;纵坐标为﹣506,∴点A2022的坐标是(506,﹣506).故答案为:(506,﹣506).17.解:(1)S△ABC=3×4﹣×2×3﹣×2×4﹣×1×2=4;(2)如图所示:以BP1,BP2为底,符合题意的有P1(﹣6,0)、P2(10,0)、以AP3,AP4为底,符合题意的有:P3(0,5)、P4(0,﹣3).18.解:(1)A1(0,1),A3(1,0),A12(6,0);(2)当n=1时,A4(2,0),当n=2时,A8(4,0),当n=3时,A12(6,0),所以A4n(2n,0);(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.19.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)△ABC是等腰三角形,理由如下:∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.20.解:【应用】:(1)AB的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).故答案为:(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案为:2或﹣2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴|x|×3=3,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案为:4或8.21.解:(1)∵C(﹣1,﹣3),∴|﹣3|=3,∴点C到x轴的距离为3;(2)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3)∴AB=4﹣(﹣2)=6,点C到边AB的距离为:3﹣(﹣3)=6,∴△ABC的面积为:6×6÷2=18.(3)设点P的坐标为(0,y),∵△ABP的面积为6,A(﹣2,3)、B(4,3),∴6×|y﹣3|=6,∴|y﹣3|=2,∴y=1或y=5,∴P点的坐标为(0,1)或(0,5).22.解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.23.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1=0,解得m=1,所以P点的坐标为(6,0);(3)令m﹣1=(2m+4)+3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(4)令m﹣1=﹣3,解得m=﹣2.所以P点的坐标为(0,﹣3).24.解:分别过C点和B点作x轴和y轴的平行线,如图,则E(5,3),所以S四边形ABCO=S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.25.解:(1)如图所示:建立平面直角坐标系;(2)根据坐标系可得出:B(﹣3,﹣1)C(1,1);(3)S△ABC=4×4﹣4×2﹣×3×4﹣×1×2=5.26.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).27.解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.28.解:(1)∵AB∥x轴,∴A、B两点的纵坐标相同.∴a+1=4,解得a=3.∴A、B两点间的距离是|(a﹣1)+2|=|3﹣1+2|=4.(2)∵CD⊥x轴,∴C、D两点的横坐标相同.∴D(b﹣2,0).∵CD=1,∴|b|=1,解得b=±1.当b=1时,点C的坐标是(﹣1,1).当b=﹣1时,点C的坐标是(﹣3,﹣1).29.解:(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2020+2020=(﹣1)2020+2020=2021.∴a2020+2020的值为2021.30.解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5).。
初中数学《旋转》专题100题含答案

(1)画出O AB'C';
(2)点B'的坐标为;
(3)求点C旋转到C'所经过的路线长.
28. 取一副三角板按如图所示拼接,固定三角板A‸C,将三角板ABC绕点A顺时针方向旋转,旋转角度为αto€αtt5o,得到OABC'.
(1)当α为多少度时,AB∥‸C?
(2)将O ABC绕点0逆时针旋转9to,画出旋转后得到的O A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
15.如图,OABC和OA'B'C'是两个完全重合的直角三角板,²B=²B' =3to,斜边长为1tcm.三角形板A'B'C'绕直角顶点C顺时针旋转,当点A'落在AB边上时,求C'A'旋转所构成的扇形的弧长AˆA'.
(2)将O ABC绕着点B顺时针旋转9to后得到O A2BC2,请在图中画出O A2BC2,并求出线段
BC旋转过程中所扫过的面积(结果保留π).
18.如图所示,正方形网格中,O ABC为格点三角形(即三角形的顶点都在格点上).
(1)把O ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的O A1B1C1;
(2)当旋转到图③所示位置时,α为多少度?
(3)连接B‸,当to€αtt5o时,探求²‸BC' +²CAC' +²B‸C值的大小变化情况,并给出你的证明.
29.如图,试画出四边形ABC‸绕点0逆时针旋转9to之后的图形A1B1C1‸1,C1的坐标是;BB1=.
30.如图,点h是正方形ABC‸的边‸C上一点,把OA‸h顺时针旋转到OAB′的位置.
鲁教版七年级数学-基础训练--直角三角形性质应用(习题及答案)-2019年精选教育文档

直角三角形性质应用〔习题〕1.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .l2.如图,在△ABC 中,∠C=45°,点D在AB 上,点E在BC 上.假设AD=DB=DE,AE=1,则A C 的长为.ACDPB EC B A第2题图第3题图3.如图,在△ABC 中,∠ACB=90°,AB=6,BC=3,BD 平分∠ABC,交A C 于点D,P 是B D的中点,则C P 的长为.4.如图,△ABC 是等边三角形,D 为BC 边上一点,DE⊥AB 于点E,DF⊥AC 于点F.假设DE+DF=3,则△ABC 的周长为AAB DC FEB M C第4题图第5题图5.如图,在△ABC 中,CF⊥AB 于点F,BE⊥AC 于点E,M 为BC 的中点.假设E F=7,BC=10,则△EFM 的周长为.6.如图,直线l1∥l2∥l3,且l1 与l3 之间的距离为,l2 与l3 之间的距离为 1.假设点A,B,C 分别在直线l1,l2,l3 上,且AC ⊥BC,AC=BC,AC 与直线l2 交于点D,则B D 的长为.Al1l2C l37.如图,在 Rt△ABC 中,∠C=90°,AD∥BC,BD 交AC 于点E,∠CBE =1∠ABE ,F 是DE 的中点.假设BC=1,AF=4,则AC 2的长为.A DFEB C8.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC=4,CD=5,AD= 5A ,则B D 的长为.EDDAOB CC B第8题图第9题图9.如图,Rt△ABC 中,∠ACB=90°,以斜边A B 为边向外作正方形A BDE,且正方形对角线交于点O,连接O C.假设A C=2,BC=4,则O C= .10.如图,在正方形ABCD 中,对角线AC,BD 相交于点O,点E 是边AB 上一点,连接DE,过点A 作AF⊥DE 于点F,连接O F,假设D F=3,OF= ,则A F= .A DBEAB C D第10 题图第11 题图11.如图,在 Rt△ABC 中,∠ACB=90°,AC=2,AB= ,以点B 为直角顶点,在△ABC 的同侧作等腰直角三角形ABD,点O 是A D 中点,连接O C,则O C 的长为.思考小结本讲我们梳理了直角有关的性质,直角与其他特征组合搭配,往往会出现一些固定的结构和用法,为我们解题提供思路.例如:直角与边长的平方搭配,我们往往想到勾股定理.请根据特征补全以下图形.①直角+中点〔直角三角形斜边中线等于斜边的一半〕CA D B②直角+特殊角〔由特殊角构造直角三角形〕CA B③弦图结构【参考答案】1. 42.3.4. 6 35. 176.7.8.9. 310. 111.2 2。
鲁教版七年级直角三角形练习50题及参考答案(难度系数0.62)

七年级直角三角形(难度系数0.62)一、单选题(共20题;共40分)1.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A. 5B.C. 5或D. 不确定【答案】C【考点】勾股定理2.图中字母所代表的正方形的面积为144的选项为()A. B. C. D.【答案】 D【考点】勾股定理的应用3.如图所示,在△ABC中,D为AB的中点,BE⊥AC,垂足为点E,若DE=4,AE=6,则BE的长度是()A. 10B. 2C. 8D. 2【答案】 D【考点】直角三角形斜边上的中线,勾股定理4.如图所示,A是斜边长为m的等腰直角三角形,B,C,D都是正方形。
则A,B,C,D的面积的和等于( )A. 94m2 B. 52m2 C. 114m2 D. 3m2【答案】A【考点】勾股定理,等腰直角三角形5.将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是()A. 12cm≤h≤19cmB. 12cm≤h≤13cmC. 11cm≤h≤12cmD. 5cm≤h≤12cm【答案】C【考点】勾股定理6.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A. 7B. 5C. 3D. 2【答案】B【考点】直角三角形全等的判定7.如图,小正方形边长为1,连接小正方形的三个顶点得△ABC,则AC边上的高是().A. 310√5 B. 32√2 C. 45√5 D. 35√5【答案】 D【考点】勾股定理8.以a.b.c为边的三角形是直角三角的为()A. a=2,b=3,c=4B. a=1,b= ,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【考点】勾股定理的逆定理9.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A. 3,4,5B. √3,√4,√5C. 6,8,10D. 9,12,15 【答案】B【考点】勾股定理的逆定理10.下列各组长度的线段能构成直角三角形的一组是( )A. 30,40,50B. 7,12,13C. 5,9,12D. 3,4,6【答案】A【考点】勾股定理的逆定理11.如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( )A. 1B. 2C. 3D. 4【答案】 D【考点】勾股定理,勾股定理的应用12.如图,△ABC中,∠ACB=90°,∠A=25°,点D为斜边AB上的中点,DE⊥CD交AC于点E,则∠AED的度数为()A. 105°B. 110°C. 115°D. 125°【答案】C【考点】直角三角形斜边上的中线13.如图,一根长5米的竹竿AB斜靠在一竖直的墙AO上,这时AO为4米,如果竹竿的顶端A沿墙下滑1米,竹竿底端B外移的距离BD()A. 等于1米B. 大于1米C. 小于1米D. 以上都不对【答案】A【考点】勾股定理的应用14.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6。
鲁教版(五四制)初中数学七年级上册_【例题与讲解】轴对称与坐标变化

3 轴对称与坐标变化1.图形的坐标变化与图形平移之间的关系在平面直角坐标系中,当纵坐标不变,横坐标都加上或减去一个正数a 时,图形会向右或向左平移a个单位长度;当横坐标不变,纵坐标都加上或减去一个正数a时,图形会向上或向下平移a个单位长度.【例1】如图①所示的箭头是将坐标为(0,0),(1,2),(1,1),(4,1),(4,-1),(1,-1),(1,-2),(0,0)的点用线段依次连接而成的,若纵坐标保持不变,横坐标分别加1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?若是横坐标保持不变,纵坐标分别减2呢?分析:当横坐标不变,纵坐标加上或减去一个正数a时,原图形就相应地向上或向下平移a个单位长度;当纵坐标不变时,横坐标加上或减去一个正数a 时,则原图形会向右或向左平移a个单位长度.解:若纵坐标保持不变,横坐标分别加1,则所得各点的坐标依次是(1,0),(2,2),(2,1),(5,1),(5,-1),(2,-1),(2,-2),(1,0),将各点用线段依次连接起来,所得图案如图②所示,所得图案与原图案相比,箭头的形状、大小不变,整个箭头向右平移了1个单位长度.若横坐标保持不变,纵坐标分别减2,则所得各点的坐标依次是(0,-2),(1,0),(1,-1),(4,-1),(4,-3),(1,-3),(1,-4),(0,-2),将各点用线段依次连接起来所得图案如图③所示,所得图案与原图案相比,箭头的形状、大小不变,整个箭头向下平移了2个单位长度.点评:解答本题的关键是求出图形变化后的点的坐标,再根据坐标用线段依次将点连接起来即可得到新图案.2.图形的坐标变化与图形的伸长和压缩之间的关系在平面直角坐标系中,当图形的纵坐标不变,横坐标扩大或缩小一定倍数时,图形就相应地被横向拉长或压缩该倍数,而纵向不变;当图形的横坐标不变,纵坐标扩大或缩小一定倍数时,图形就相应地被纵向拉长或压缩该倍数,而横向不变.【例2】如图所示的小船是将坐标为(1,0),(3,0),(4,1),(2,1),(2,3),(1,2),(1,1),(0,1),(1,0)的点用线段依次连接而成的,现将各点的坐标作如下变化:纵坐标保持不变,横坐标分别变成原来的 1.5倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:纵坐标保持不变,横坐标分别变为原来的 1.5倍,所得各个点的坐标依次是:(1.5,0),(4.5,0),(6,1),(3,1),(3,3),(1.5,2),(1.5,1),(0,1),(1.5,0),将各点用线段依次连接起来,所得图案如图所示,与原图相比,整条船被横向拉长为原来的1.5倍.析规律坐标与图形变化的对应关系当横坐标不变,纵坐标扩大或缩小为原来的a倍时,图形就要被纵向拉长或压缩为原来的a倍;当纵坐标不变,横坐标扩大或缩小为原来的b倍时,原图形就要被横向拉长或压缩为原来的b倍.3.图形的坐标变化与图形的轴对称之间的关系在平面直角坐标系中,当图形上各点的横坐标不变,纵坐标乘-1时,所得的新图形与原图形关于x轴对称;当图形上各点的纵坐标不变,横坐标乘-1时,所得的新图形与原图形关于y轴对称;当图形上各点的横、纵坐标都乘-1时,那么所得到的新图形与原图形关于原点对称.谈重点对称点的坐标变化规律对应点的坐标对称情况可以简单记为:关于横轴对称,“横不变,纵相反”;关于纵轴对称,“纵不变,横相反”;关于原点对称,“全相反”.【例3】按要求回答问题:(1)在平面直角坐标系中描出点(1,2),(1,4),(1,6),(3,6),(1,4),(3,2),(1,2),并将各点用线段依次连接起来.(2)将上述各点作如下变化:①纵坐标不变,横坐标分别变成原来的2倍,再将所得的点用线段按第一问中的顺序连接起来,所得的图形与原来的图形相比有什么变化?②横坐标保持不变,纵坐标分别加3呢?③横、纵坐标分别乘-1呢?分析:解决本题的关键是分别在两坐标轴上找到对应点,过这两点分别平行于两坐标轴的直线的交点即为所求的点.如要描点(1,6)的位置,先在x轴上找到点1,在y轴上找到点6,过这两点分别平行于两坐标轴的直线的交点即为所求的点;理解平移、旋转、伸缩等图形的特征.解:(1)如图所示.(2)①按题中的变化要求各点的坐标依次是:(2,2),(2,4),(2,6),(6,6),(2,4),(6,2),(2,2).所得的图案如图所示,与原图案相比,图形被横向拉伸为原来的2倍.②各点的坐标依次是:(1,5),(1,7),(1,9),(3,9),(1,7),(3,5),(1,5).所得的图案如图所示,与原来的图案相比,图形向上平移了3个单位长度.③各点的坐标依次是:(-1,-2),(-1,-4),(-1,-6),(-3,-6),(-1,-4),(-3,-2),(-1,-2).所得的图案如图所示,与原图案相比,图形绕O点旋转了180°,即两个图形关于O点成中心对称.4.图形的变换与点的坐标的关系将图形放在平面直角坐标系中,我们可以求得各顶点的坐标,反过来,知道了一些点的坐标,我们还可以将各点顺次连接起来得到一些有趣的图形.通过点的坐标的变化与图形的变换,可以得到图形变换的规律.图形是由点组成的,点的坐标发生了变化,图形也会发生相应的变化;图形移动时,点的坐标也发生变化.其变化规律为:(1)纵坐标不变,横坐标按比例增大时,图形被横向拉长;纵坐标不变,横坐标按比例减小时,图形被横向“压缩”.(2)图形向右平移时,纵坐标不变,横坐标增大;图形向左平移时,纵坐标不变,横坐标减小;图形向上平移时,横坐标不变,纵坐标增大;图形向下平移时,横坐标不变,纵坐标减小.(3)横坐标加上一个数,纵坐标不变时,图形左、右平移(加负数,左移,加正数,右移);纵坐标加上一个数,横坐标不变时,图形上、下平移(加正数,上移,加负数,下移).(4)横坐标不变,纵坐标乘-1时,所得图形与原图形关于x轴对称;纵坐标不变,横坐标乘-1时,所得图形与原图形关于y轴对称.图1【例4】如图1,在平面直角坐标系内,一个封闭的图形ABCDE上各顶点的坐标分别为A(-2,0),B(1,2),C(2,1),D(3,2),E(2,0).(1)将各顶点的横坐标都加上3,纵坐标不变,并把得到的顶点依次连接,则所得的图形和原图形相比,位置有怎样的变化?(2)如果将各顶点的纵坐标都加上3,横坐标不变,顺次连接各顶点,所得图形与原图形的位置有什么变化?(3)将各顶点的横坐标都加上4,纵坐标都加上5,顺次连接各顶点,所得的图形与原图形的位置有怎样的变化?图2解:(1)A ,B ,C ,D ,E 点的横坐标都加上3,所得顶点的坐标分别是A 1(1,0),B 1(4,2),C 1(5,1),D 1(6,2),E 1(5,0),依次连接各点得图形A 1B 1C 1D 1E 1,图形A 1B 1C 1D 1E 1相当于图形ABCDE 向右平移了3个单位长度后得到的(如图2).(2)A ,B ,C ,D ,E 点的纵坐标都加上3,所得顶点的坐标分别是A 2(-2,3),B 2(1,5),C 2(2,4),D 2(3,5),E 2(2,3),顺次连接各点得到图形A 2B 2C 2D 2E 2,图形A 2B 2C 2D 2E 2相当于图形ABCDE 向上平移3个单位长度后得到的(如图2).(3)各顶点的坐标横坐标都加上4,纵坐标都加上5,所得顶点的坐标分别是A 3(2,5),B 3(5,7),C 3(6,6),D 3(7,7),E 3(6,5).依次连接各顶点,所得图形A 3B 3C 3D 3E 3相当于先把图形ABCDE 向右平移4个单位长度,再向上平移5个单位长度后得到的(如图2).5.从变化的“鱼”中探索坐标变化与图形变化的关系通过变化的“鱼”,在坐标系内,将图形的坐标变化与图形的平移、轴对称、伸长、压缩巧妙地融合在一起,既体现了图形的现实性、趣味性,又体现了数学的深刻性以及数形结合的思想方法.平移:原图形的坐标中,横坐标保持不变,纵坐标分别增加(减少)a (a >0),则所得图案被向上(向下)平移a 个单位长度,形状、大小未发生改变;反之,纵坐标不变,横坐标分别增加(减少)a (a >0),则所得图案被向右(向左)平移a 个单位长度.轴对称:原图形的坐标中,横(纵)坐标保持不变,纵(横)坐标分别乘-1,则所得的图案与原图案关于横轴(纵轴)对称.伸长:新图案的坐标变为原图案坐标的a倍,则将原图案伸长a倍,便可得新图案.压缩:新图案的坐标变为原图案坐标的1a(a>1),则将原图案压缩1a,便可得新图案.【例5】下面的方格纸中画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立平面直角坐标系,可得点A的坐标是(__________,__________).分析:(1)只要数一数正方形的个数就能解决;(2)先利用网格的条件找到每个点的对称点,再连接起来即可;(3)按要求画出直角坐标系立即可得答案,这样的问题可充分考查学生的动手能力,又让学生在操作中体验着成功.解:(1)观察图形:“小猪”所占面积包括29个小正方形和7个小三角形面积和,每个小三角形面积是小正方形面积的一半,所以“小猪”所占面积为32.5.(2)“小猪”关于直线DE对称的图案如图所示.(3)点A的坐标是(-4,1).。
最新学年七年级数学上册 直角三角形性质应用习题 (新版)鲁教版(考试必备)

D 45° FE 直角三角形性质应用(习题)1. 如图,在直线 l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是 1,2,3,正放置的四个正方形的面积依次是 S 1,S 2,S 3,S 4,则 S 1+S 2+S 3+S 4= .l2. 如图,在△ABC 中,∠C =45°,点 D 在 AB 上,点 E 在 BC 上.若 AD =DB =DE ,AE =1,则 AC 的长为 .ACDP B E C B A第 2 题图 第 3 题图3. 如图,在△ABC 中,∠ACB =90°,AB =6,BC =3,BD 平分∠ABC ,交 AC 于点 D ,P 是 BD 的中点,则 CP 的长为 .4. 如图,△ABC 是等边三角形,D 为 BC 边上一点,DE ⊥AB 于点 E ,DF ⊥AC 于点 F .若 DE +DF =3,则△ABC 的周长为 .AAB DC FEB M 第 4 题图 第 5 题图5. 如图,在△ABC 中,CF ⊥AB 于点 F ,BE ⊥AC 于点 E ,M 为 BC 的中点.若 EF =7,BC =10,则△EFM 的周长为 .S 3 S4S 2 S 1 1 2 336. 如图,直线 l 1∥l 2∥l 3,且 l 1 与 l 3 之间的距离为 ,l 2 与 l 3 之间的距离为 1.若点 A ,B ,C 分别在直线 l 1,l 2,l 3 上,且 AC ⊥BC ,AC =BC ,AC 与直线 l 2 交于点 D ,则 BD 的长为 .12l 37. 如图,在 Rt △ABC 中,∠C =90°,AD ∥BC ,BD 交 AC 于点 E ,CBE 1 ABE ,F 是 DE 的中点.若 BC =1,AF =4,则 AC 2的长为 .A DFEB C8. 如图,在四边形 ABCD 中,∠ABC =90°,AB =3,BC =4,CD =5,AD = 5A ,则 BD 的长为 .EDDA OB C C B第 8 题图 第 9 题图9. 如图,Rt △ABC 中,∠ACB =90°,以斜边 AB 为边向外作正方形 ABDE ,且正方形对角线交于点 O ,连接 OC .若 AC =2, BC =4,则 OC = .22 C OFO 10. 如图,在正方形 ABCD 中,对角线 AC ,BD 相交于点 O ,点E 是边 AB 上一点,连接 DE ,过点 A 作 AF ⊥DE 于点 F ,连 接 OF ,若 DF =3,OF= ,则 AF = .A DBE AB C 第 10 题图 第 11 题图11. 如图,在 Rt △ABC 中,∠ACB =90°,AC =2,AB = ,以点B 为直角顶点,在△ABC 的同侧作等腰直角三角形 ABD ,点O 是 AD 中点,连接 OC ,则 OC 的长为 .5思考小结本讲我们梳理了直角有关的性质,直角与其他特征组合搭配,往往会出现一些固定的结构和用法,为我们解题提供思路.例如: 直角与边长的平方搭配,我们往往想到勾股定理.请根据特征补全下列图形.①直角+中点(直角三角形斜边中线等于斜边的一半)A D B②直角+特殊角(由特殊角构造直角三角形)A B③弦图结构【参考答案】1. 42.3.4. 6 35. 176. 7. 8. 9. 3 10. 1 11. 2 22 34 3 3 15 652。
鲁教版(五四制)2020-2021学年七年级数学上册第二章《轴对称》检测卷(含答案)

轴对称一、选择题(本大题共9小题,共36.0分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. 3√3B. 6C. 4D. 53.下列四个图案中,轴对称图形的个数是()A. 1B. 2C. 3D. 44.如图,在Rt△ACB中,∠ACB=90∘,∠A=25∘,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A. 25∘B. 30∘C. 35∘D. 40∘5.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是()A. B. C. D.6.如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法不一定正确的是()A. AC=A′C′B. BO=B′OC. AA′⊥MND. AB//B′C′7.下列说法:①关于某条直线对称的两个三角形是全等三角形②两个全等的三角形关于某条直线对称③到某条直线距离相等的两个点关于这条直线对称④如果图形甲和图形乙关于某条直线对称,则图形甲是轴对称图形其中,正确说法个数是()A. 1B. 2C. 3D. 48.下列计划图形,不一定是轴对称图形的是()A. 角B. 等腰三角形C. 长方形D. 直角三角形9.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A. 100∘B. 90∘C. 50∘D. 30∘二、填空题(本大题共8小题,共24.0分)10.如图,ABCD是一张长方形纸片,且AD=2AB,沿过点D的折痕将A角翻折,使得点A落在BC上(如图中的点A′),折痕交AB于点G,则∠ADG=______ 度.11.一个等边三角形的对称轴有______ 条.12.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为______ .13.一张三角形纸片ABC中,∠C=90∘,AC=8cm,BC=6cm,现将纸片折叠:使点A与点B重合,那么折痕长等于______cm.14.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,则△BDE的面积为______cm2.15.如图,在正方形ABCD中,AB=3,点E在CD边上,且CE=2DE,将△ADE沿直线AE对折至△AEF,延长EF交BC于G,连接AG,则线段AG的长为______ .16.如图,Rt△ABC纸片中,∠C=90∘,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是______.17.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若∠1=∠2=50∘,则为______ .三、解答题(本大题共4小题,共40.0分)18.如图,△ABC的顶点都在方格纸的格点上.(1)画出△ABC关于直线MN的对称图形△A1B1C1;(2)画出△ABC关于点O的中心对称图形△A2B2C2;(3)画出△ABC绕点B逆时针旋转90∘后的图形△A3BC3.19.如图,在长方形ABCD中,AB=6,BC=8(1)求对角线AC的长;(2)点E是线段CD上的一点,把△ADE沿着直线AE折叠.点D恰好落在线段AC上,点F重合,求线段DE的长.20.如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB′C的位置,点B的对应点为B′,连结BB′.(1)直接填空:B′B与AC的位置关系是______;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB′C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB′E是直角三角形?21.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,求△ABD的周长.答案1. A2. B3. B4. D5. C6. D7. A8. D9. A10. 1511. 312. 4.813. 15414. 615. 3√5216. 2或517. 105∘18. 解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)如图所示:△A3BC3即为所求.19. 解:(1)在直角△ABC中,AC=√AB2+BC2=√62+82=10;(2)根据题意得AF=AD=BC=8,DE=EF,FC=AC−AF=10−8=2.设DE=x,则EC=CD−DE=6−x,EF=DE=x.在直角△CEF中,EF2+FC2=EC2,则x2+4=(6−x)2,.解得x=8320. 垂直21. 解:由图形和题意可知:AD=DC,AE=CE=4cm,则AB+BC=30−8=22(cm),故△ABD的周长=AB+AD+BD=AB+CD+BC−CD=AB+BC=22cm,答:△ABD的周长为22cm.1、盛年不重来,一日难再晨。
鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
B 1
A'
30°
B 1
与直角有关的折叠、旋转(习题)
例题示范
例 1:将长方形纸片 ABCD 按如图所示方式折叠,AE ,EF 为折痕,∠BAE =30°,BE =1,折叠后点 C 落在 AD 边上的 C 1 处,并且点 B 落在 EC 1 上的 B 1 处,则 BC 的长为( ) A . B .2
C .3
D .2 A
C 1
D F
A C 1
D F
B
E
C B
E
C
思路分析:
①在 Rt △ABE 中,由∠BAE =30°,BE =1 得 AB =
,AE =2;
②由折叠得∠AEB =∠AEB 1,结合背景图形是长方形得∠EAC 1=
∠AEB 1,所以△AEC 1 是等腰三角形;
③由∠EAC 1=60°得△AEC 1 是等边三角形,所以 EC 1=AE =2; ④由折叠得 EC =EC 1=2,所以 BC =BE +EC =3.
巩固练习
1.
如图,在长方形 ABCD 中,E 是 AD 的中点,将△ABE 沿 BE
折叠后得到△GBE ,延长 BG ,交 CD 边于点 F .若 DF =2FC , 则
BC
的值为 .
AB
A
E
D
A P
B
F Q G
B
C
O
D
C
第 1 题图
第 2 题图
2.
已知一个长方形纸片 OABC ,OA =6,点 P 为 AB 边上一点,
AP =2,将△OAP 沿 OP 折叠,点 A 落在点 A ′处,延长 PA ′交边 OC 于点 D ,经过点 P 再次折叠纸片,点 B 恰好与点 D 重合,则 AB 的长为 .
3
3 3
C
3 3
9 3 O
3.
如图,在正方形纸片 ABCD 中,E ,F 分别是 AD ,BC 的中点, 沿过点 B 的
直线折叠,使点 C 落在 EF 上,落点为 N ,折痕交 CD 边于点 M ,BM 与 EF 交于点 P ,再展开.有下列结论:
①CM =DM ;②∠ABN =30°;③ AB 2 3CM 2 ;④△PMN 是等边三角形.其中正确结论的序号是 .
A
E D
B'
M
B F
C
A
A'
B
第 3 题图
第 4 题图
4.
如图,在 Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =1,将
△ABC 绕点 C 逆时针旋转至△A ′B ′C ,使得点 A ′恰好落在 AB 上,连接 BB ′,则 BB ′的长为 . 5.
如图,在 Rt △ABC 中,∠C =90°,∠B =70°,点 D 在 BC 边上, 且BD :DC =2: .
将线段BD 绕点D 逆时针旋转m (0<m <180) 度后,若点 B 的对应点恰好落在△ABC 的边上,则 m 的值为 .
A
O'
B
C
C
D
B
第 5 题图
第 6 题图
6.
如图,O 是等边三角形 ABC 内一点,OA =3,OB =4,OC =5,将线段 BO 以点 B
为旋转中心逆时针旋转 60°得到线段 BO ′,连接
AO′.有下列结论:①点 O 与点 O ′的距离为 4;②∠AOB =150°;
③ S 四边形
AOBO
= 6 3 ;④S △AOC +S △
AOB
= 6 .其中正确结
4
论的序号是
.
N
P
7.如图,△ABC 和△CDE 都是等腰直角三角形,∠ACB=
∠ECD=90°,D 为AB 边上一点.若AD=5,BD=12,求DE
的长. A
D
E
C B
8.如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD.若四边形ABCD 的
面积为 24,求AC 的长.
A
D
【参考答案】 1.
2 3
6 2. 12 3. ②③④ 4.
5. 40 或 150
6. ①②④
7. 13
8. 4 3
3。