激光切割的工艺过程及其参数分析(精)
激光切割实验报告

激光切割实验报告激光切割实验报告激光切割是一种高精度、高效率的切割技术,广泛应用于工业生产和科学研究领域。
本实验旨在探究激光切割的原理、参数对切割质量的影响以及其在实际应用中的潜力。
一、激光切割原理激光切割是利用激光束的高能量密度将工件表面局部加热至熔化或汽化,通过气流将熔融或气化的材料吹散,从而实现切割的过程。
激光切割具有热影响区小、切割速度快、切割质量高等优点,适用于各种材料的切割。
二、实验装置和参数设置本实验采用了一台高功率CO2激光切割机,激光功率为2000W,切割速度可调节。
实验材料选择了不锈钢板,厚度为2mm。
实验过程中,我们分别调节了激光功率、切割速度和气流压力等参数,以观察其对切割质量的影响。
三、实验结果与分析通过实验,我们发现激光功率对切割质量有明显影响。
当激光功率过低时,切割速度较慢,切割面不光滑,存在较大的毛刺;而当激光功率过高时,切割过程过于猛烈,容易导致材料熔化过度,出现熔渣和裂纹。
因此,选择适当的激光功率是保证切割质量的关键。
切割速度也是影响切割质量的重要参数。
实验中我们发现,在一定范围内,切割速度的增加会导致切割面的质量下降。
这是因为切割速度过快时,激光束在材料上停留的时间较短,无法充分加热材料,导致切割面出现不完全熔化的现象。
因此,选择适当的切割速度是保证切割质量的关键。
气流压力对切割质量也有一定影响。
适当增加气流压力可以将熔融或气化的材料及时吹散,防止其在切割面上重新凝固,从而保证切割面的光洁度。
但是,气流压力过大会导致切割过程中材料被吹散,影响切割线的精度。
因此,选择合适的气流压力是保证切割质量的关键。
四、激光切割在实际应用中的潜力激光切割技术在工业生产中有着广泛的应用前景。
首先,激光切割可以实现对各种材料的高精度切割,适用于金属、非金属等多种材料。
其次,激光切割速度快、效率高,能够大幅提高生产效率。
此外,激光切割无需接触工件表面,避免了传统切割方式中刀具磨损和材料变形的问题。
激光切割机切割工艺参数

激光切割机切割工艺参数激光切割技术是一种先进的金属材料加工方法,广泛应用于金属加工、汽车制造、航空航天等领域。
激光切割机切割工艺参数的设置直接影响到激光切割的效率和质量。
在进行激光切割时,需要合理设置激光功率、切割速度、气体类型和流量等参数,以确保切割工艺顺利进行,同时获得高质量的切割结果。
一、激光功率激光功率是指激光切割机产生的激光的功率大小,通常以瓦(W)为单位。
激光功率的选择需根据被加工材料的类型和厚度来确定。
对于不同材料和厚度,需要调整激光功率以获得最佳的切割效果。
一般来说,对于较薄的金属材料,可以选择较低的激光功率,而对于较厚的金属材料,则需要较高的激光功率。
二、切割速度切割速度是指激光切割机在切割过程中移动的速度,通常以毫米/分钟(mm/min)为单位。
切割速度的选择需考虑到材料的种类、厚度以及激光功率等因素。
一般来说,对于相同材料,在增加激光功率的情况下,切割速度可以相应提高;而在降低激光功率的情况下,切割速度则需要适当减小。
合理的切割速度可以提高切割效率,同时保证切割质量。
三、气体类型和流量在激光切割过程中,通常需要利用辅助气体来吹扫切割区域,并帮助排除熔融材料。
常用的辅助气体包括氮气、氧气和纯净的惰性气体等。
不同的气体在激光切割中具有不同的作用,需要根据具体的切割要求来选择。
还需要根据切割材料的种类和厚度来确定合理的气体流量,以保证切割效果。
四、聚焦镜焦距聚焦镜焦距是指激光束在通过聚焦镜后的聚焦焦点距离镜片的距离,通常以毫米(mm)为单位。
合理选择聚焦镜焦距可以影响激光束的聚焦效果,进而影响切割质量。
一般来说,对于不同的材料和厚度,需要选择合适的聚焦镜焦距,以获得理想的切割效果。
在进行激光切割机切割工艺参数设置时,需要根据实际加工需求和技术要求来综合考虑各个参数的影响,调整合理的数值。
还需要在实际加工过程中不断进行试验和调整,以获得最佳的切割效果。
只有合理设置切割工艺参数,才能确保激光切割机在加工过程中取得高效、高质量的切割结果。
激光切割的工作方法和步骤

激光切割的工作方法和步骤激光切割是一种先进的材料加工方法,通过高能密集的激光束对材料进行切割,广泛用于金属、塑料、木材等材料的加工。
激光切割具有精度高、速度快、热影响小等优点,在工业领域得到广泛应用。
下面将介绍激光切割的工作方法和步骤。
工作方法激光切割的工作方法主要包括以下几个步骤:1.激光发射:激光切割系统通过激光器产生高能密集的激光束。
激光束经过准直器、反射镜等光学元件调整成所需的光束形态和能量密度。
2.焦距调整:激光束通过聚焦镜汇聚成高能密集的光斑,使材料表面局部升温,达到切割的目的。
焦距的调整影响着切割的深度和速度。
3.材料切割:通过计算机控制系统对激光束的位置、功率和速度进行精确控制,将激光束聚焦在材料表面,使其局部升温并蒸发,从而实现切割。
4.气体辅助:在切割过程中,通常会利用惰性气体(如氮气、氩气)进行吹扫,将蒸发的材料气体扫走,以便更好地进行切割,防止材料边缘焊渣的产生。
切割步骤激光切割的具体步骤包括以下几个阶段:1.材料准备:首先需要准备待加工的材料,根据加工要求进行表面处理和定位,保证材料表面平整干净。
2.程序设计:利用计算机辅助设计(CAD)软件设计加工图形,包括切割路径、速度、功率等参数,生成激光切割程序。
3.设备调试:对激光切割设备进行调试,包括焦距调整、气体流量设置、功率参数调整等,保证设备正常运行。
4.切割加工:将程序上传至激光切割设备的控制系统,启动设备进行切割加工,根据程序设定的路径和参数完成切割任务。
5.质检验收:完成切割后,对加工零件进行质量检验,检查切割边缘光滑度、尺寸精度等是否符合要求。
通过以上步骤,激光切割实现了高效精确的材料加工,为工业生产提供了重要的技术支持。
激光切割技术参数详解

激光切割技术参数详解激光切割机的应用越来越普及,如何高质高效的利用激光技术生产产品,则需要激光切割机操作人员好好学习相关知识,更重要的是要在实践中不断总结经验。
下面先搞懂常用的几个激光切割技术参数。
1.专用的装置减少因聚焦前光束尺寸变化带来的焦点光斑尺寸的变化,国内外激光切割系统的制造商提供了一些专用的装置供用户选用:(1)平行光管。
这是一种常用的方法,即在CO2激光器的输出端加一平行光管进行扩束处理,扩束后的光束直径变大,发散角变小,使在切割工作范围内近端和远端聚焦前光束尺寸接近一致。
(2)在切割头上增加一独立的移动透镜的下轴,它与控制喷嘴到材料表面距离(standoff)的Z轴是两个相互独立的部分。
当机床工作台移动或光轴移动时,光束从近端到远端F轴也同时移动,使光束聚焦后光斑直径在整个加工区域内保持一致。
(3)控制聚焦镜(一般为金属反射聚焦系统)的水压。
若聚焦前光束尺寸变小而使焦点光斑直径变大时,自动控制水压改变聚焦曲率使焦点光斑直径变小。
(4)飞行光路切割机上增加x、y方向的补偿光路系统。
即当切割远端光程增加时使补偿光路缩短;反之当切割近端光程减小时,使补偿光路增加,以保持光程长度一致。
2.切割穿孔技术任何一种热切割技术,除少数情况可以从板边缘开始外,一般都必须在板上穿一小孔。
早先在激光冲压复合机上是用冲头先冲出一孔,然后再用激光从小孔处开始进行切割。
对于没有冲压装置的激光切割机有两种穿孔的基本方法:(1)爆破穿孔:(Blastdrilling),材料经连续激光的照射后在中心形成一凹坑,然后由与激光束同轴的氧流很快将熔融材料去除形成一孔。
一般孔的大小与板厚有关,爆破穿孔平均直径为板厚的一半,因此对较厚的板爆破穿孔孔径较大,且不圆,不宜在要求较高的零件上使用(如石油筛缝管),只能用于废料上。
此外由于穿孔所用的氧气压力与切割时相同,飞溅较大。
(2)脉冲穿孔:(Pulsedrilling)采用高峰值功率的脉冲激光使少量材料熔化或汽化,常用空气或氮气作为辅助气体,以减少因放热氧化使孔扩展,气体压力较切割时的氧气压力小。
激光切割机工艺参数指导书

激光切割机工艺参数指导书一、工艺参数概述激光切割机作为一种高精度、高效率的切割设备,在使用过程中需要合理设置工艺参数,以确保切割效果和设备性能达到最佳状态。
本文将针对激光切割机的工艺参数进行详细的介绍和指导,帮助操作人员更好地掌握切割工艺。
二、切割速度切割速度是指激光束在工件表面移动的速度,通常以毫米/分钟为单位。
合适的切割速度可以保证切割质量和切割效率。
在设置切割速度时,需考虑材料的种类、厚度以及激光功率等因素,进行合理调整。
三、激光功率激光功率是影响切割质量的重要参数之一。
功率过低会导致切割不彻底,功率过高则会造成材料熔化过度。
因此,在设定激光功率时,需要根据材料性质和厚度进行适当调节,以达到最佳切割效果。
四、焦距焦距是指激光聚焦头焦点到材料表面的距离。
合理的焦距可以保证激光束在材料表面聚焦达到最佳效果。
一般情况下,焦距越短,切割质量越好,但也要考虑焦点的稳定性和材料的厚度等因素。
五、气体类型和气压激光切割机通常需要使用辅助气体,如氧气、氮气等,来吹扫切割区域,帮助排出熔化的材料。
不同的气体类型和气压对切割效果有明显影响,需要根据材料的特性和要求进行选择和调整。
六、加工参数调试在切割过程中,操作人员需要不断进行加工参数的调试和优化,以适应不同材料和要求的切割。
可以通过试验和实践相结合的方式,逐步确定最佳的工艺参数,提高切割效率和质量。
七、安全注意事项在使用激光切割机时,必须严格遵守相关的安全规定,避免发生激光辐射、化学品危害等意外事故。
操作人员应穿戴好个人防护装备,确保设备周围没有其他人员,保证操作环境安全。
八、总结激光切割机工艺参数的合理设置对于切割效果和设备性能至关重要。
通过本指导书的学习和实践,操作人员能够更好地掌握激光切割机的工艺参数调节方法,提高切割效率和质量,确保安全生产。
以上是关于激光切割机工艺参数的指导书,希望能对您的工作有所帮助。
如有任何疑问或需要进一步了解,请随时咨询相关专业人员。
激光切割加工主要参数(精)

激光切割加工主要参数1.切割速度给定激光功率密度和材料,切割速度符合一个经验公式,只要在阀值以上,材料的切割速度与激光功率成正比,即增加功率密度,可提高切割速度,切割速度同样与被切割材料密度和厚度成反比,提高切割速度的因素:(1 提高功率(500-3000w;(2改变光束模式;(3减小聚焦光斑大小(如采用短焦距透鏡对金属材料,其他工艺变量保存不变,激光切割速度可以有一个相对调节范围而仍能保持较满意的切割质量,这种调节范围在切割薄金属时显得比较宽。
2.焦点位置激光束聚光后光斑大小与透镜焦长成正比,光束经短焦长透镜聚焦后光斑尺寸很小,焦点处功率密度很高,对材料切割很有利,但它的不利之外是焦深很短,调节余量很小,一般比较适用于高速切割薄材,对于厚工件,由于长焦长透镜有较宽焦深,只要具有足够功率密度,用来对它切割比较合适,由于焦点处功率密度最高,在大多数情况下,切割时,焦点位置刚处于工件表面,或稍在工件表面之下,确保焦点与工件相对位置恒定是获得稳定的切割质量的重要条件,有时透镜工作中因冷却不善而受热从而引起焦长变化,这就需及时调整焦点位置。
3. 辅助气体辅助气体与激光光束同轴喷处,保护透镜免受污染并吹走切割区底部溶渣,对非金属和部分金属材料,使用压缩空气或惰性气体,清除溶化和蒸发材料,同时抑制切割区过度燃烧。
4. 辅助气体气压大多数金属激光切割则使用活性气体(氧气,形成与灼热金属发生氧化放热反应,这部分附加热量可提高切割速度1/3—1/2 当高速切割薄板材时,需要较高的气体压力防止切口背面沾渣,当材料厚度或切割速度较慢时,气体压力可以适当的降低。
5. 激光输出功率激光功率大小和模式好坏都会对切割发生重要的影响,实际操作时,常常设置最大功率以获得高的切割速度或用以切割较厚的材料。
激光切割工艺流程解析

激光切割工艺流程解析激光切割工艺是一种高精度、高效率的切割方法,在工业生产中得到广泛应用。
本文将分析激光切割的工艺流程,从设备准备、工件定位到切割操作,逐步介绍每个环节的具体步骤和要点。
一、设备准备激光切割工艺的第一步是准备好切割设备。
这包括激光切割机、辅助气体供应系统以及相应的控制系统。
在准备过程中,需要检查设备的状态,确保激光切割机的参数和参数设置正确。
同时,需要检查气体供应系统中的气体压力和流量是否正常,并确保切割头和焦距的调整合适。
二、工件定位在开始切割之前,需要将待加工的工件进行定位。
通过使用夹具、定位块等固定工件,确保其位置准确无误。
对于复杂形状的工件,可以通过摄像头等辅助设备进行定位。
三、光斑调整激光切割通过聚焦光束在工件上进行切割。
在开始切割之前,需要根据不同的材料和厚度进行光斑调整。
通过调整切割头的焦距、光斑形状以及光斑大小,使其适应不同切割需求。
四、切割操作在设备准备和工件定位完成后,可以开始进行切割操作。
切割操作包括以下几个方面:1. 激活激光切割机和辅助气体供应系统。
2. 根据切割要求,设置好激光功率、切割速度等参数。
3. 手动或自动控制切割头进行切割操作,确保切割路径正确无误。
4. 同时,辅助气体将会与切割区域接触,实现清除熔融材料并保护切割区域。
五、质量检验切割完成后,需要对切割质量进行检验,以确保满足加工要求。
质量检验可以包括以下几个方面:1. 检查切割边缘是否平整,是否有明显的裂纹和毛刺。
2. 检查切割尺寸是否与设计要求相符。
3. 对关键部位进行精确测量,以验证切割质量的准确性和可靠性。
4. 如果出现质量问题,需要进行切割参数或设备调整,以提高切割质量。
总结:激光切割工艺流程涉及设备准备、工件定位、光斑调整和切割操作等环节。
通过合理的流程控制和严格的质量检验,可以实现高精度和高效率的切割效果。
同时,切割操作人员需要具备一定的专业知识和经验,以确保切割过程的安全和稳定性。
激光切割加工中的参数优化与工艺分析

激光切割加工中的参数优化与工艺分析引言激光切割技术作为一种非接触式的加工方式,具有高精度、高效率、无污染等优点,广泛应用于金属加工领域。
而激光切割加工的质量和效率则受到各种参数的影响。
因此,对激光切割加工过程中的参数进行优化与工艺分析,对于提高加工质量和效率具有重要意义。
一、激光切割加工中的常用参数1. 激光功率:激光功率是激光切割中最基本的参数之一。
激光功率的大小直接影响切割速度和切割深度。
一般来说,功率过大容易造成切割过度熔化,功率过小则会导致切割效率低下。
2. 扫描速度:扫描速度是激光束在工件表面移动的速度。
扫描速度的选择直接影响切割速度和切割表面质量。
过高的扫描速度会导致切割不完整,过低则会导致切割速度过慢。
3. 焦点位置:焦点位置是指激光束在工件上的聚焦位置。
不同的焦点位置会对切割质量产生影响。
如果焦点位置过高或过低,将会影响切割线的质量和精度。
4. 气体类型与流量:在激光切割过程中,常用的气体有氮气、氧气和惰性气体等。
不同的气体类型和流量对切割质量起到重要作用。
例如,氮气可以防止切割过程中的氧化反应,而氧气可以提高切割速度。
二、参数优化与工艺分析方法1. 基于试验和经验的方法:通过在实际加工中调整参数并进行试验,观察切割效果和质量,得到合适的参数组合。
在此基础上,结合经验,不断优化参数,提高加工效果和质量。
2. 基于数学模型和仿真的方法:通过建立激光切割加工的数学模型,并借助仿真软件进行模拟,对不同参数组合下的切割效果进行评估。
通过分析仿真结果,优化参数组合,找到最佳的加工工艺。
3. 基于人工智能的方法:利用机器学习、深度学习等人工智能技术,对激光切割加工的数据进行分析和处理。
通过大量的数据训练和优化,实现对参数组合的智能优化,提高切割效率和质量。
三、激光切割加工中的参数优化与工艺分析案例1. 参数优化案例:以不锈钢材料为例,通过试验和经验的方法,确定合适的功率、扫描速度、焦点位置和气体流量等参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光切割的工艺过程及其参数分析
1激光设备激光设备采用Trumpf公司激光冲裁复合加工中心。
2激光束参数激光系统一般由激光器、激光传输系统、控制系统、运动系统、传感与检测系统组成,其核心为激光器。
激光器为CO2气体脉冲式激光器。
光束横截面上光强分布接近高斯分布.具有极好的光束质量,主要性能指标如下:激光波长:10.61xm脉冲功率:2.4kW;脉冲宽度;约l0ms功率密度:107W/cm2;激光发散角:1mrad激光功率稳定度:2%激光束焦点直径:Φ0.15-Φ0.30经
1激光设备
激光设备采用Trumpf公司激光冲裁复合加工中心。
2 激光束参数
激光系统一般由激光器、激光传输系统、控制系统、运动系统、传感与检测系统组成,其核心为激光器。
激光器为CO2气体脉冲式激光器。
光束横截面上光强分布接近高斯分布.具有极好的光束质量,主要性能指标如下:
激光波长:10.61xm
脉冲功率:2.4kW;脉冲宽度;约l0ms
功率密度:107W/cm2;激光发散角:1mrad
激光功率稳定度:2%
激光束焦点直径:Φ0.15-Φ0.30
经实践验证,激光冲裁复合加工中心CO2激光切割加工&de lt a;0.5mm-δ6mm板材的工艺特点及相关参数是:
图1 氧气切割碳钢切缝粗糙度与料厚的关系
(1)切口宽度窄(一般为0.15-0.30mm)、精度高(一般孔中心距误差为
0.01-0.05mm,轮廓尺寸误差为0.05-0.2mm)、切口表面粗糙度好(一般Rz为
1.6-6.41μm),切缝一般不需再加工即可焊接。
由图1可以看出切缝粗糙度与料厚成正比。
(2)采用2kW激光功率,6mm厚不锈钢的切割速度为1.2m/min;δ2mm厚不锈钢的切割速度为3.6m/min,热影响区微小,变形极小。
以上优点足以证明:CO2激光切割成为发展迅速的一种先进加工方法。
由图2可以看出材料的最大切割速度与料厚成反比。
图2 几种常见材料的最大切割速度与料厚的关系
3 工艺过程及工艺参数
3.1 数控编制切割工艺
用Trumpf公司激光冲裁复合加工中心附带的TOPS300工艺编程软件进行数控编程,同时完成材料的下料尺寸计算、排样、工艺参数设定。
过程如下:
(1)绘图及图形类型的转换(要求零件外轮廓闭合);
(2)确定材料、尺寸和零件排样;
(3)使用激光切割:圆角工艺(获得锐边倒钝)或回路工艺(获得锐角);自动载入气体类型、切割速度,并设置退料;
(4)加工顺序优化,生成数控加工程序,传输程序;
3.2 切割穿孔技术
对于δ0.5mm-δ6mm厚的板材.大多数热切割技术都必须在板上穿一小孔。
激光冲压复合机上是用冲头先冲出一孔。
然后再用激光从小孑L处开始切割。
对于没有冲压装置的激光切割机一般用脉冲穿孔的基本方法——脉冲穿孔:金属对10.6um激光束的起始吸收率只有0.5%~10%。
当功率密度超过106W/cm2的聚焦激光束照射到金属表面时。
却能在微秒级的时间内很快使表面开始熔化。
常用空气或氮气作为辅助气体,每个脉冲激光只产生小的微粒喷射。
逐步深入,因此厚板穿孑L时间需要几秒钟。
一旦穿孔完成,立即将辅助气体换成氧气进行切割。
(注:产生高峰值功率脉冲激光的元气件电子管寿命约20000小时,价格昂贵,对δ≤3薄板最好采用预冲孔工艺,δ≥3的板料才采用脉冲穿孔工艺)。
3.3 喷嘴及气流控制
激光切割钢材时,氧气和聚焦的激光束是通过喷嘴射到被切材料处。
从而形成一个气流束。
对气流的基本要求是进入切口的气流量要大,速度要高,以便足够的氧化使切口材料充分进行放热反应,同时又有足够的动量将熔融材料喷射吹出。
目前激光切割用的喷嘴采用一锥形孔带端部小圆孔的结构.在使用时从喷嘴侧面通入一定压力。
材质为纯铜,体积较小,是易损零件。
3.4 激光切割的主要工艺
(1)升华切割
在高功率密度激光束的加热下。
δ0.5mm~δ6mm板材的表面温度会迅速升至沸点温度。
部分材料汽化成蒸汽消失,部分材料作为喷出物从切缝底部被辅助气流吹走。
切割气体一般用氮气或氩气。
(2)高压气聚焦熔化切割
当入射的激光束功率密度超过某一值后.光束照射点处材料内部开始蒸发,形成孔洞。
它将作为黑体吸收所有的入射光束能量。
小孔被熔化物质所包围。
然后.与光束同轴的辅助气流把孔洞周围的熔融材料带走。
随着工件移动,小孔按切割方向同步横移形成一条切缝。
切割气体一般用氮气。
表1 切割气体氧气和氮气的比较
(3)火焰氧化熔化切割
熔化切割一般使用惰性气体,如果代之以氧气或其它活性气体。
材料在激光束的照射下与氧气发生激烈的化学反应而产生另一热源,称为氧化熔化切割。
切割气体一般用氧气。
切割气体氧气和氮气的比较见表1。
3.5 激光切割气体的消耗
激光切割气体的消耗如图3和图4所示。
由图3可以看出,对于
δ0.5mm-δ6mm的同一种料厚的板料,单位时间内从喷嘴喷出氧气气体体积随着使用压力提高而提高,对于不同料厚的板料,在同一压力下单位时间内从喷嘴喷出气体体积增量与料厚增量的平方成正比。
图3 氧气消耗图
图4 氮气消耗图
由图4可以看出。
对于δ0.5mm-δ6mm的同一种料厚的板料,单位时间内从喷嘴喷出氮气气体体积随着使用压力的提高而提高,对于不同料厚的板料.在同一压力下单位时间内从喷嘴喷出气体体积增量与料厚增量的平方成正比。
由于氮气压力在6bar以上才对切割起到有效作用。
所以气体消耗量大。
3.6 常用工程材料的激光切割
(1)碳钢
切割碳钢使用纯氧作为辅助气体。
本激光加工中心可以切割碳钢板的最大厚度可达8mm,对厚板其切缝为0.3mm。
对薄板其切缝可窄至0.2mm左右。
(2)不锈钢
切割不锈钢使用高压氮气作为辅助气体。
本激光加工中心可以切割不锈钢板的最大厚度可达6mm,对利用不锈钢及S-06薄板作为主构件来说是个有效的加工工具。
切边热影响区很小,能有效保持此类材料的良好耐腐蚀性。
(3)铝及铝合金
切割铝使用高压氮气作为辅助气体。
铝切割属于熔化切割机制,由于铝对激光的反射率较高。
只可以对较薄的铝板材进行切割。
本激光加工中心所切割的铝合金厚度δ<4mm。
所用辅助气体主要用于从切割区吹走熔融产物。
通常可获得较好的切面质量。
(4)铜及铜合金
纯铜(紫铜)由于反射率太高,基本上不能用CO2激光束切割。
(5)镍基合金
镍基合金也称超级合金,品种很多。
其中对GHll3l、GHll40已做过工艺试验,成功实施激光切割而且断面质量良好。
(编辑:wander)。