2018-2019学年八年级数学下学期期中考试原创卷A卷河南答题卡
2018-2019学年人教新版河南省洛阳市洛龙区六校联考八年级第二学期期中数学试卷及答案 含解析

2018-2019学年河南省洛阳市洛龙区六校联考八年级第二学期期中数学试卷一、选择题(共10小题)1.若二次根式有意义,则()A.a>2B.a≥2C.a<2D.a≤22.=()A.5B.7C.﹣5D.﹣73.下面二次根式中,是最简二次根式的是()A.B.C.D.4.下列计算正确的是()A.2 =B.+=C.4﹣3=1D.3+2=5 5.由线段a,b,c组成的三角形不是直角三角形的是()A.a2﹣b2=c2B.a=C.a=2,b=,c=D.∠A:∠B:∠C=3:4:56.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b7.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A.28B.26C.24D.209.如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 10.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2值为()A.25B.9C.13D.169二、填空题(每小题3分,共15分)11.已知+|b﹣1|=0,则a+b=.12.已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为.13.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD 的周长是.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(共8个小题,满分75分)16.计算:(1)()﹣(3﹣4);(2)(2+5)(2﹣5)﹣()2.17.先化简,再求值:(+)÷,其中x=+2,y=﹣2.18.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.19.已知:如图,四边形ABCD中AB=BC=1,CD=,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)20.已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.21.已知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.22.如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E 是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=s时,CE⊥AD;②当t=s时,平行四边形CEDF的两条邻边相等.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)参考答案一、选择题(每小题3分,共30分)1.若二次根式有意义,则()A.a>2B.a≥2C.a<2D.a≤2【分析】根据二次根式有意义的条件可得4﹣2a≥0,再解不等式即可.解:由题意得:4﹣2a≥0,解得:a≤2,故选:D.2.=()A.5B.7C.﹣5D.﹣7【分析】直接利用二次根式的性质化简得出答案.解:原式=6﹣1=5.故选:A.3.下面二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念进行判断即可.解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.4.下列计算正确的是()A.2 =B.+=C.4﹣3=1D.3+2=5 【分析】根据二次根式的加法法则和二次根式的性质判断即可.解:A、2==,故本选项符合题意;B、和不能合并,不等于,故本选项不符合题意;C、4﹣3=,故本选项不符合题意;D、3+2不等于5,故本选项不符合题意;故选:A.5.由线段a,b,c组成的三角形不是直角三角形的是()A.a2﹣b2=c2B.a=C.a=2,b=,c=D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.解:A、∵a2﹣b2=c2,即a2+c2=b2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵()2+12=()2,即c2+b2=a2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;C、∵22+()2=()2,即a2+b2=c2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,即∠C=75°,∴三角形不是直角三角形,故本选项正确.故选:D.6.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b【分析】写出各个命题的逆命题判断正误即可.解:A、逆命题为:同旁内角相等,两直线平行,成立;B、逆命题为:若两个数相等,则这两个数的绝对值相等,成立;C、逆命题为:相等的角为对顶角,不成立;D、逆命题为:若a=b,那么a2=b2,成立,故选:C.7.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种【分析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A.28B.26C.24D.20【分析】根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE =CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.解:在平行四边形ABCD中,2(AD+CD)=36,∴AD+CD=18,易证△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴CF+CD+ED+EF=AE+ED+EF+CD=AD+CD+EF=18+6=24故选:C.9.如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 【分析】根据平行四边形的判定和题中选项,逐个进行判断即可.解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.10.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2值为()A.25B.9C.13D.169【分析】根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.解:如图,∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是(13﹣1)÷4=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故选:A.二、填空题(每小题3分,共15分)11.已知+|b﹣1|=0,则a+b=2.【分析】利用非负数的性质求出a与b的值,再将a与b的值代入计算即可求出值.解:∵+|b﹣1|=0,∴a﹣b=0,b﹣1=0,解得a=1,b=1,则原式=1+1=2.故答案为:2.12.已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为4或.【分析】此题要分两种情况:当3和5都是直角边时,当5是斜边长时,分别利用勾股定理计算出第三边长即可.解:当3和5都是直角边时,第三边长为:=,当5是斜边长时,第三边长为:=4,故答案为:4或.13.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD 的周长是20.【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为41.【分析】证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.解:在△ABN和△ADN中,,∴△ABN≌△ADN,∴AD=AB=10,BN=DN,∵M是△ABC的边BC的中点,BN=DN,∴CD=2MN=6,∴△ABC的周长=AB+BC+CA=41,故答案为:41.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.三、解答题(共8个小题,满分75分)16.计算:(1)()﹣(3﹣4);(2)(2+5)(2﹣5)﹣()2.【分析】(1)直接利用二次根式的性质分别化简二次根式进而计算得出答案;(2)直接利用乘法公式计算得出答案.解:(1)()﹣(3﹣4)=(2﹣)﹣(﹣2)=+;(2)(2+5)(2﹣5)﹣()2=20﹣50﹣(5+2﹣2)=﹣30﹣7+2=﹣37+2.17.先化简,再求值:(+)÷,其中x=+2,y=﹣2.【分析】先根据分式的混合运算顺序和法则化简原式,再将x、y的值代入求解可得.解:原式=[+]÷=•y(x+y)=,当x=+2,y=﹣2时,原式===.18.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.【分析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为a,b,高为a+b;(2)此题主要是利用梯形的面积和三角形的面积公式进行计算,根据图中可知,由此列出等式即可求出勾股定理.解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积和,即.两者列成等式化简即可得:a2+b2=c2;19.已知:如图,四边形ABCD中AB=BC=1,CD=,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)【分析】(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;(2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.解:(1)连接AC,∵AB=BC=1,∠B=90°∴AC=又∵AD=1,DC=∴()=12+()2即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××=+.20.已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.【分析】连接BD,交AC于点O,欲证明证明四边形ABCD是平行四边形,只需证得AO=CO,DO=BO.【解答】证明:如图,连接BD,交AC于点O.∵四边形DEBF是平行四边形,∴OD=OB,OE=OF.又∵AE=CF,∴AE+OE=CF+OF,即OA=OC,∴四边形ABCD是平行四边形21.已知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.【分析】(1)根据平行四边形的性质和全等三角形的判定,在△ABE和△CDF中,很容易确定SAS,即证结论;(2)在已知条件中求证全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得两对边分别对应相等,根据平行四边形的判定,即证.【解答】证明:(1)∵▱ABCD中,AB=CD,∠A=∠C,又∵AE=CF,∴△ABE≌△CDF;(2)四边形MFNE平行四边形.由(1)知△ABE≌△CDF,∴BE=DF,∠ABE=∠CDF,又∵ME=BM=BE,NF=DN=DF∴ME=NF=BM=DN,又∵∠ABC=∠CDA,∴∠MBF=∠NDE,又∵AD=BC,AE=CF,∴DE=BF,∴△MBF≌△NDE,∴MF=NE,∴四边形MFNE是平行四边形.22.如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E 是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=4s时,CE⊥AD;②当t=2s时,平行四边形CEDF的两条邻边相等.【分析】(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,即可得出答案;②求出△CDE是等边三角形,推出CE=DE,即可得出答案.解:(1)四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,又∠CGF=∠EGD.G是CD的中点,CG=DG,在△FCG和△EDG中,∵,∴△CFG≌△EDG(ASA),∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①当t=4s时,CE⊥AD,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=4,∴BM=2,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=4,BC=AD=6,∵AE=4,∴DE=2=BM,在△MBA和△EDC中,∵,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,即CE⊥AD;②当t=2s时,平行四边形CEDF的两条邻边相等,理由是:∵AD=6,AE=2,∴DE=4,∵CD=4,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,即平行四边形CEDF的两条邻边相等.故答案为:4,2.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)【分析】根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.解:在Rt△ABC中,∠ACB=90°,AC=8米,BC=6米.由勾股定理有:AB=10米,应分以下三种情况.①如图1,当AB=AD=10米时,∵AC⊥BD,∴CD=CB=6米,∴△ABD的周长=10+10+2×6=32(米).②如图2,当AB=BD=10米时,∵BC=6米,∴CD=10﹣6=4,∴AD===,∴△ABD的周长=10+10+4=(20+)米.③如图3,当AB为底时,设AD=BD=x米,则CD=(x﹣6)米,由勾股定理得:AD===x,解得x=.∴△ABD的周长为:AD+BD+AB=++10=(米).④如图④,延长AC至D,使AC=CD,连接BD,∵AC=CD,∠ACB=∠BCD,BC=BC,∴△ABC≌△DBC(SAS)∴AB=BD=10,∴△ABD的周长=AB+BD+AD=36米综上所述,扩充后等腰三角形绿地的周长为32米或(20+)米或米或36米.。
漯河市郾城区2018-2019学年八年级下期中数学试卷含答案解析

2018-2019学年河南省漯河市郾城区八年级(下)期中数学试卷一、选择题1.下列式子一定是二次根式的是()A.B.C.D.2.在下列四组线段中,能组成直角三角形的是()A.a=32,b=42,c=52B.a=11,b=12,c=13C.a=9,b=40,c=41 D.a:b:c=1:1:23.下列二次根式中属于最简二次根式的是()A.B.C.D.4.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE、EC的长度分别为()A.1和4 B.4和1 C.2和3 D.3和25.顺次连结菱形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形6.小明的作业本上有以下四题:①②③;④.做错的题是()A.① B.② C.③ D.④7.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360 B.164 C.400 D.608.如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.AB=DC B.∠1=∠2 C.AB=AD D.∠D=∠B9.如图,在菱形ABCD中,M、N分别在AD、BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC的度数为()A.28° B.52° C.62° D.72°10.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=3二、填空题11.①=;②=.12.平行四边形的周长为24,相邻两边长的比为3:1,那么这个平行四边形两邻边长分别为.13.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.14.当x=﹣1时,代数式x2+2x+2的值是.15.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的周长为.16.实数a、b在数轴上对应点的位置如图所示:则3a﹣=.17.如图,正方形ABCD中,点F在边BC上,E在边BA的延长线上,△DCF按顺时针方向旋转后恰好与△DAE重合,若AE=3,BF=2,则四边形BFDE的面积是.18.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.三、解答题(本大题共7小题,满分56分)19.计算(1)(2).20.(1)已知a=,b=,求a2+b2﹣ab的值.(2)已知+=0,求(x+y)y的值.21.已知正方形ABCD的边长为4,E为AB的中点,F为AD上一点,且AF=AD,试判断△EFC的形状.22.如图,已知在四边形ABCD中,AE,BD于EE,CF,BD于F,AE=CF,BF=DE,求证:四边形ABCD 是平行四边形.23.已知,如图,折叠长方形的一边AD,使点D落在BC边上的点F处,如AB=8,BC=10.求EC的长.24.如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.25.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB﹣BD做匀速运动,动点Q从点D同时出发,沿着线路DC﹣CB﹣BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s.经过12秒后,P、Q分别到达M、N两点,试判断△AMN的形状,并说明理由,同时求出△AMN的面积;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF为直角三角形,试求a的值.2018-2019学年河南省漯河市郾城区八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知A、B、C中的被开方数都不会恒大于等于0,故错误;D、因为x2+2>0,所以一定是二次根式,故正确.故选:D.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.2.在下列四组线段中,能组成直角三角形的是()A.a=32,b=42,c=52B.a=11,b=12,c=13C.a=9,b=40,c=41 D.a:b:c=1:1:2【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵(32)2+(42)2≠(52)2,∴不能构成直角三角形,故本选项错误;B、∵112+122≠132,∴不能构成直角三角形,故本选项错误;C、∵92+402=412,∴能构成直角三角形,故本选项正确;D、∵12+12≠22,∴不能构成直角三角形,故本选项错误.故选C.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE、EC的长度分别为()A.1和4 B.4和1 C.2和3 D.3和2【考点】平行四边形的性质.【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2.故选D.【点评】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB 是解决问题的关键.5.顺次连结菱形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【考点】中点四边形.【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【解答】解:如图,四边形ABCD是菱形,且E、F、G、H分别是AB、BC、CD、AD的中点,则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故选:B.【点评】本题考查了中点四边形.能够根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.6.小明的作业本上有以下四题:①②③;④.做错的题是()A.① B.② C.③ D.④【考点】算术平方根.【分析】①②③④分别利用二次根式的性质及其运算法则计算即可判定.【解答】解:①和②是正确的;在③中,由式子可判断a>0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D.【点评】此题主要考查了二次根式的性质及其简单的计算,注意二次公式的性质:=|a|.同时二次根式的加减运算实质上是合并同类二次根式.7.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360 B.164 C.400 D.60【考点】勾股定理.【分析】要求正方形A的面积,则要知它的边长,而A正方形的边长是直角三角形的一直角边,利用另外两正方形的面积可求得该直角三角形的斜边和另一直角边,再用勾股定理可解.【解答】解:根据正方形的面积与边长的平方的关系得,图中直角三角形得A正方形的面积是1000﹣640=360,故选A.【点评】本题考查了直角三角形中勾股定理的运用,本题中根据勾股定理求斜边长的平方是解本题的关键.8.如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.AB=DC B.∠1=∠2 C.AB=AD D.∠D=∠B【考点】平行四边形的判定;平行线的判定与性质;三角形内角和定理;等腰梯形的性质.【分析】根据等腰梯形的定义判断A;根据平行线的性质可以判断B;根据平行四边形的判定可判断C;根据平行线的性质和三角形的内角和定理求出∠BAC=∠DCA,推出AB∥CD即可.【解答】解:A、符合条件AD∥BC,AB=DC,可能是等腰梯形,故A选项错误;B、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故B选项错误;C、根据AB=AD和AD∥BC不能推出平行四边形,故C选项错误;D、∵AD∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故D选项正确.故选:D.【点评】本题主要考查对平行四边形的判定,等腰梯形的性质,三角形的内角和定理,平行线的性质和判定等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.9.如图,在菱形ABCD中,M、N分别在AD、BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC的度数为()A.28° B.52° C.62° D.72°【考点】菱形的性质.【分析】首先由在菱形ABCD中,AM=CN,证得△AOM≌△CON(AAS),即可得O是对角线AC与BD的交点,继而求得答案.【解答】解:连接OD,∵四边形ABCD是菱形,∴AB∥CD,∴∠OAM=∠OCN,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OA=OC,∴BD与AC相交于点O,∵∠ACD=∠BAC=28°,∴∠ODC=90°﹣∠ACD=62°.故选C.【点评】此题考查了菱形的性质以及全等三角形的判定与性质.注意证得BD与AC相交于点O是解此题的关键.10.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=3【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,则满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选B.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题11.①=0.3;②=.【考点】二次根式的性质与化简.【分析】①先对根式下的数进行变形,(﹣0.3)2=(0.3)2,直接开方即得;,所以开方后||=.【解答】解:①原式=0.3;②原式=||=.【点评】本题考查的是对二次根式的化简和求值.12.平行四边形的周长为24,相邻两边长的比为3:1,那么这个平行四边形两邻边长分别为3cm和9cm.【考点】平行四边形的性质.【分析】根据平行四边形中对边相等和已知条件即可求得边长.【解答】解:如图∵平行四边形的周长为24cm∴AB+BC=24÷2=12∵BC:AB=3:1∴AB=3cm∴BC=9cm,故答案为:3cm和9cm.【点评】本题利用了平行四边形的对边相等的性质,设适当的参数建立方程求解.13.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.14.当x=﹣1时,代数式x2+2x+2的值是24.【考点】二次根式的化简求值.【专题】计算题.【分析】先把已知条件变形得到x+1=,再两边平方整理得到x2+2x=22,然后利用整体代入的方法计算.【解答】解:∵x=﹣1,∴x+1=,∴(x+1)2=23,即x2+2x=22,∴x2+2x+2=22+2=24.故答案为24.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.15.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的周长为48.【考点】勾股定理.【分析】根据直角三角形两直角边的比为3:4,设直角三角形的两直角边分别是3x,4x,再根据勾股定理列出方程,求出x的值,然后根据三角形的周长公式求解即可.【解答】解:设直角三角形的两直角边分别是3x,4x,根据勾股定理得,9x2+16x2=400,解得,x=4或x=﹣4(舍去),所以此直角三角形的周长为:3x+4x+20=7x+20=7×4+20=48.故答案为48.【点评】本题考查的是勾股定理及一元二次方程在实际生活中的运用,属较简单题目.16.实数a、b在数轴上对应点的位置如图所示:则3a﹣=4a﹣b.【考点】实数与数轴.【分析】根据a、b两点在数轴上的位置判断出a﹣b的符号,再把原式进行化简,合并同类项即可.【解答】解:∵由图可知,a<0<b,∴a﹣b<0,∴原式=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故答案为:4a﹣b.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.17.如图,正方形ABCD中,点F在边BC上,E在边BA的延长线上,△DCF按顺时针方向旋转后恰好与△DAE重合,若AE=3,BF=2,则四边形BFDE的面积是25.【考点】旋转的性质;正方形的性质.【分析】由旋转得到△CDF≌△ADE即S△CDF=S△ADE,求正方形ABCD的面积即可.【解答】解:由旋转得,CD=AD,DF=DE,CF=AE,在△CDF和△ADE中,,∴△CDF≌△ADE,∴CF=AE=3,S△CDF=S△ADE,∴S四边形BFDE =S正方形ABCD=(CF+BF)2=(3+2)2=25.故答案为25.【点评】此题是旋转的性质题,主要考查了正方形的性质,三角形的全等的性质和判定,解本题的关键是面积的转化,S△CDF=S△ADE.18.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯2米.【考点】勾股定理的应用.【专题】几何图形问题;转化思想.【分析】根据题意,将梯子下滑的问题转化为直角三角形的问题解答.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.【点评】熟练运用勾股定理,注意梯子的长度不变.三、解答题(本大题共7小题,满分56分)19.计算(1)(2).【考点】二次根式的混合运算.【分析】(1)先进行二次根式的除法运算,然后合并;(2)先进行二次根式的乘法运算,然后合并求解.【解答】解:(1)原式=2+1﹣2=1;(2)原式=×﹣=3﹣.【点评】本题考查了二次根式的混合运算,涉及了二次根式的乘法运算和除法运算,掌握运算法则是解答本题的关键.20.(1)已知a=,b=,求a2+b2﹣ab的值.(2)已知+=0,求(x+y)y的值.【考点】二次根式的化简求值;非负数的性质:算术平方根.【专题】计算题.【分析】(1)先计算出a+b和ab的值,再把a2+b2﹣ab变形(a+b)2﹣3ab,然后利用整体代入的方法计算;(2)根据几个非负数的和的性质得到x+2y=0,3x+2y﹣8=0,解方程组得x=4,y=﹣2,然后利用负整数指数幂的意义计算(x+y)y.【解答】解:(1)∵a=,b=,∴a+b=2,ab=1,∴a2+b2﹣ab=(a+b)2﹣3ab=(2)2﹣3×1=9;(2)根据题意得x+2y=0,3x+2y﹣8=0,解得x=4,y=﹣2,所以(x+y)y=(4﹣2)﹣2=.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.21.已知正方形ABCD的边长为4,E为AB的中点,F为AD上一点,且AF=AD,试判断△EFC的形状.【考点】正方形的性质;勾股定理的逆定理.【分析】因为正方形ABCD的边长为4,易得AF=1,则FD=3,DC=BC=4,AE=EB=2;在Rt△AEF、Rt△DFC,Rt△EBC中,利用勾股定理求出EF、EC、FC的长,再根据勾股定理的逆定理解答.【解答】解:△EFC为直角三角形.∵正方形ABCD的边长为4,∴AF=1,FD=3,DC=BC=4,AE=EB=2;在Rt△AEF中,EF==;在Rt△DFC中,FC==5;在Rt△EBC中,EC==2.∴EC2+EF2=FC2,∴△EFC是直角三角形.【点评】本题考查了勾股定理和勾股定理的逆定理及正方形的性质,利用勾股定理求出三角形三边长,再利用勾股定理逆定理解答是解答此题的关键.22.如图,已知在四边形ABCD中,AE,BD于EE,CF,BD于F,AE=CF,BF=DE,求证:四边形ABCD 是平行四边形.【考点】平行四边形的判定.【专题】证明题.【分析】由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.23.已知,如图,折叠长方形的一边AD,使点D落在BC边上的点F处,如AB=8,BC=10.求EC的长.【考点】翻折变换(折叠问题).【分析】首先根据勾股定理求出BF的长,借助翻转变换的性质及勾股定理求出DE的长即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8;∠B=∠C=90°;由题意得:AF=AD=10,EF=DE=λ,EC=8﹣λ;由勾股定理得:BF2=102﹣82,∴BF=6,CF=10﹣6=4;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3.【点评】该题主要考查了翻折变换﹣折叠问题,勾股定理,解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答.24.如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.【考点】全等三角形的判定;平行四边形的性质;菱形的判定.【专题】证明题;压轴题;探究型.【分析】(1)根据题中已知条件不难得出,AD=BC,∠A=∠C,E、F分别为边AB、CD的中点,那么AE=CF,这样就具备了全等三角形判定中的SAS,由此可得出△AED≌△CFB.(2)直角三角形ADB中,DE是斜边上的中线,因此DE=BE,又由DE=BF,FD∥BE那么可得出四边形BFDE是个菱形.【解答】(1)证明:在平行四边形ABCD中,∠A=∠C,AD=BC,∵E、F分别为AB、CD的中点,∴AE=CF.在△ADE和△CBF中,∴△ADE≌△CBF(SAS);(2)解:若AD⊥BD,则四边形BFDE是菱形.证明:∵AD⊥BD,∴△ABD是直角三角形,且∠ADB=90°.∵E是AB的中点,∴DE=AB=BE.∵在▱ABCD中,E,F分别为边AB,CD的中点,∴EB∥DF且EB=DF,∴四边形BFDE是平行四边形.∴四边形BFDE是菱形.【点评】本题主要考查了全等三角形的判定,平行四边形的性质和菱形的判定等知识点.25.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB﹣BD做匀速运动,动点Q从点D同时出发,沿着线路DC﹣CB﹣BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s.经过12秒后,P、Q分别到达M、N两点,试判断△AMN的形状,并说明理由,同时求出△AMN的面积;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF为直角三角形,试求a的值.【考点】四边形综合题.【专题】综合题.【分析】(1)根据菱形的性质得AB=BC=CD=AD=48,加上∠A=60°,于是可判断△ABD是等边三角形,所以BD=AB=48;(2)如图1,根据速度公式得到12秒后点P走过的路程为96cm,则点P到达点D,即点M与D点重合,12秒后点Q走过的路程为120cm,而BC+CD=96,易得点Q到达AB的中点,即点N为AB的中点,根据等边三角形的性质得MN⊥AB,即△AMN为直角三角形,然后根据等边三角形面积可计算出S△AMN=288cm2;(3)由△ABD为等边三角形得∠ABD=60°,根据速度公式得经过3秒后点P运动的路程为24cm、点Q 运动的路程为3acm,所以BE=DE=24cm,然后分类讨论:当点Q运动到F点,且点F在NB上,如图1,则NF=3a,BF=BN﹣NF=24﹣3a,由于△BEF 为直角三角形,而∠FBE=60°,只能得到∠EFB=90°,所以∠FEB=30°,根据含30度的直角三角形三边的关系得24﹣3a=×24,解得a=4;当点Q运动到F点,且点F在BC上,如图2,则NF=3a,BF=BN﹣NF=3a ﹣24,由于△BEF为直角三角形,而∠FBE=60°,若∠EFB=90°,则∠FEB=30°,根据含30度的直角三角形三边的关系得3a﹣24=×24,解得a=12;若∠EFB=90°,易得此时点F在点C处,则3a=24+48,解得a=24.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD=48,∵∠A=60°,∴△ABD是等边三角形,∴BD=AB=48,即BD的长是48cm;(2)如图1,12秒后点P走过的路程为8×12=96,则12秒后点P到达点D,即点M与D点重合,12秒后点Q走过的路程为10×12=120,而BC+CD=96,所以点Q到B点的距离为120﹣96=24,则点Q到达AB的中点,即点N为AB的中点,∵△ABD是等边三角形,而MN为中线,∴MN⊥AB,∴△AMN为直角三角形,∴S△AMN=S△ABD=××482=288(cm2);(3)∵△ABD为等边三角形,∴∠ABD=60°,经过3秒后,点P运动的路程为24cm、点Q运动的路程为3acm,∵点P从点M开始运动,即DE=24cm,∴点E为DB的中点,即BE=DE=24cm,当点Q运动到F点,且点F在NB上,如图1,则NF=3a,∴BF=BN﹣NF=24﹣3a,∵△BEF为直角三角形,而∠FBE=60°,∴∠EFB=90°(∠FEB不能为90°,否则点F在点A的位置),∴∠FEB=30°,∴BF=BE,∴24﹣3a=×24,∴a=4;当点Q运动到F点,且点F在BC上,如图2,则NF=3a,∴BF=BN﹣NF=3a﹣24,∵△BEF为直角三角形,而∠FBE=60°,若∠EFB=90°,则∠FEB=30°,第21页(共21页)∴BF=BE ,∴3a ﹣24=×24,∴a=12;若∠EFB=90°,即FB ⊥BD ,而DE=BE ,∴点F 在BD 的垂直平分线上,∴此时点F 在点C 处,∴3a=24+48,∴a=24,综上所述,若△BEF 为直角三角形,a 的值为4或12或24.【点评】本题考查了圆的综合题:熟练掌握等边三角形的判定与性质、菱形的性质;会运用含30度的直角三角形三边的关系计算几何计算;能运用分类讨论的思想解决数学问题.。
2018-2019学年人教新版河南省漯河市郾城区八年级第二学期期中数学试卷及答案

2018-2019学年八年级第二学期期中数学试卷一、选择题1.如果二次根式有意义,那么x的取值范围是()A.x≥0B.x≥3C.x≤3D.x≠32.下列二次根式中最简二次根式是()A.B.C.D.3.在△ABC中,AB=8,BC=15,AC=17,则下列结论正确的是()A.△ABC是直角三角形,且∠A=90°B.△ABC是直角三角形,且∠B=90°C.△ABC是直角三角形,且∠C=90°D.△ABC不是直角三角形4.下列计算正确的是()A.2+3=5B.÷=2C.5×5=5D.=25.矩形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线相等6.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m7.如图,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为()A.(﹣5,4)B.(﹣5,5)C.(﹣4,4)D.(﹣4,3)8.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 9.如图,▱ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是()A.65°B.55°C.70°D.75°10.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2B.C.3D.4二、填空題(每小题3分,共15分)11.已知x=﹣1,则x2+2x+2018=.12.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2=.13.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若BD=5,则四边形DOCE的周长为.14.如图,已知菱形ABCD的边长为2,∠CDA=120°,则对角线AC的长为.15.如图,在平面直角坐标系中,正方形OABC的边长为2,项点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为.三、解答题(共8个小题,满分75分)16.计算:(1)﹣4+(2)(+)2﹣(+2)(﹣2)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.18.如图,学校要把宣传标语掛到教学楼的顶部D处.已知楼顶D处离地面的距离DA为8m,云梯的长度为9m,为保证安全,梯子的底部和墙基的距离AB至少为3m,云梯的顶部能到达D处吗?为什么?19.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,则∠ABC=°.20.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算.21.如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.22.如图,在平行四边形ABCD中,AB=6,BC=10,AC⊥AB,点E、F分别是BC,AD 上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形时,请求出AE的长度;(3)若四边形AECF是矩形时,请直接写出BE的长度.23.如图1,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B 作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC',延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)求证:MQ=MB;(3)若AB=3,BP=2PC,求QM的长.参考答案一、选择题(毎小题3分,共30分,将正确答案填在答题框中)1.如果二次根式有意义,那么x的取值范围是()A.x≥0B.x≥3C.x≤3D.x≠3解:二次根式有意义,则3﹣x≥0,解得:x≤3.故选:C.2.下列二次根式中最简二次根式是()A.B.C.D.解:A、=2,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,故此选项正确;D、=|mn|,故此选项错误;故选:C.3.在△ABC中,AB=8,BC=15,AC=17,则下列结论正确的是()A.△ABC是直角三角形,且∠A=90°B.△ABC是直角三角形,且∠B=90°C.△ABC是直角三角形,且∠C=90°D.△ABC不是直角三角形解:∵△ABC中,AB=8,BC=15,AC=17,∴AB2+BC2=82+152=AC2=172,∴△ABC是直角三角形,∵AC为斜边,∠B=90°,故B正确;故选:B.4.下列计算正确的是()A.2+3=5B.÷=2C.5×5=5D.=2解:A、2与3不能合并,所以A选项错误;B、原式==2,所以B选项正确;C、原式=25=25,所以C选项错误;D、原式==,所以D选项错误.故选:B.5.矩形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线相等解:A、两组对边分别平行是平行四边形的性质,也是矩形的性质;B、两组对角分别相等是平行四边形的性质,也是矩形的性质;C、对角线互相平分是平行四边形的性质,也是矩形的性质;D,对角线相等是矩形的性质,平行四形不具有;故选:D.6.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选:B.7.如图,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为()A.(﹣5,4)B.(﹣5,5)C.(﹣4,4)D.(﹣4,3)解:∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形ABCD是菱形,∴BC=AD=AB=5,∴点C的坐标为(﹣5,4);故选:A.8.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE∥DF;C、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;D、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF.故选:B.9.如图,▱ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是()A.65°B.55°C.70°D.75°解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°﹣90°﹣15°=75°,∵∠B=180°﹣∠BAE﹣∠AEB=180°﹣40°﹣75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选:A.10.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2B.C.3D.4解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.二、填空題(每小题3分,共15分)11.已知x=﹣1,则x2+2x+2018=2019.解:∵x=﹣1,∴x2+2x+2018=(x+1)2+2017=(﹣1+1)2+2017=2+2017=2019,故答案为:2019.12.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2=100.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.13.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若BD=5,则四边形DOCE的周长为10.解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OC=OD=BD=,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×=10.故答案为:10.14.如图,已知菱形ABCD的边长为2,∠CDA=120°,则对角线AC的长为2.解:连接BD交AC于O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,AD=AB=2,∴∠CDA=120°,∴∠DAB=60°,∴△ADB为等边三角形,∴OA=AB=,∴AC=2OA=2.故答案为:2.15.如图,在平面直角坐标系中,正方形OABC的边长为2,项点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为(,).解:过Q作QD⊥OA于D,∵OQ=OC=2,∵四边形ABCD是正方形,∴∠BOA=45°,∴△ODQ是等腰直角三角形,∴OD=QD===,∴Q(,);故答案为:(,).三、解答题(共8个小题,满分75分)16.计算:(1)﹣4+(2)(+)2﹣(+2)(﹣2)解:(1)原式=3﹣2+=2;(2)原式=3+2+2﹣(5﹣4)=4+2.17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.解:(1)③(2)原式=2﹣=6﹣2=418.如图,学校要把宣传标语掛到教学楼的顶部D处.已知楼顶D处离地面的距离DA为8m,云梯的长度为9m,为保证安全,梯子的底部和墙基的距离AB至少为3m,云梯的顶部能到达D处吗?为什么?解:∵在Rt△ABD中,AD2+AB2=BD2,∴AB===,∵>3,∴梯的顶部能到达D处.19.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,则∠ABC=45°.解:(1)满足条件的正方形ABCD如图所示.(2)满足条件的△ABC如图所示.(3)如图3中,连接AC,BC,AB.∵AC=BC=,AB=,∴AC2+BC2=AB2,∴∠ACB=90°,∴△ACB是等腰直角三角形,∴∠ABC=45°.20.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:=1+﹣=1;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:计算.解:①猜想:=1+﹣=1;故答案为:1+﹣,1;②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:===1+﹣=1.21.如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.【解答】(1)证明:在△ABF与△DEC中∵D是BC中点,∴BD=CD∵BE⊥AE,CF⊥AE∴∠BED=∠CFD=90°,在△ABF与△DEC中,∴△BED≌△CFD(AAS),∴ED=FD,∵BD=CD,∴四边形BFEC是平行四边形;(2)与△ABD和△ACD面积相等的三角形有△CEF、△BEF、△BEC、△BFC.理由:∵四边形BECF是平行四边形,∴S△BDF=S△BDE=S△CDE=S△CDF,∵AF=DF,∴S△ABF=S△BDF,S△ACF=S△CDF∴S△BDF=S△BDE=S△CDE=S△CDF=S△ABF=S△ACF,∴S△ABD=S△ACD=S△CEF=S△BEF=S△BEC=S△BFC.22.如图,在平行四边形ABCD中,AB=6,BC=10,AC⊥AB,点E、F分别是BC,AD 上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形时,请求出AE的长度;(3)若四边形AECF是矩形时,请直接写出BE的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)解:∵四边形AECF是菱形,∴AE=CE,∴∠EAC=∠ECA,∵AC⊥AB,∴∠BAC=90°,∴∠B+∠ECA=90°,∠BAE+∠EAC=90°,∴∠B=∠BAE,∴AE=BE,∴AE=BE=CE=BC=5;(3)解:∵AC⊥AB,∴AC===8,∵四边形AECF是矩形,∴∠AEC=90°,∴AE⊥BC,∴AE===4.8,∴BE===3.6.23.如图1,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B 作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC',延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)求证:MQ=MB;(3)若AB=3,BP=2PC,求QM的长.【解答】(1)解:结论:AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ.(2)证明:∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.(3)解:过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=3.∵BP=2PC,∴BP=2,PC=1,∴BQ=AP===,∴BH===2=2.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA,由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中,根据勾股定理可得x2=(x﹣2)2+32,解得x=.∴QM的长为。
安阳XX中学2018-2019学年八年级下期中数学试卷含答案解析

2018-2019学年河南省安阳XX中学八年级(下)期中数学试卷一、选择题:1.下列根式不是最简二次根式的是()A.B.C. D.2.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°3.计算的结果是()A.2 B.±2 C.﹣2或0 D.04.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,E是BC中点E,AD=6cm,则OE 的长为()A.6cm B.4cm C.3cm D.2cm5.给出下列几组数:①6,7,8;②8,15,6;③n2﹣1,2n,n2+1;④+1,﹣1,.其中能组成直角三角形的三条边长是()A.①③B.②④C.①②D.③④6.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC 于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④7.如图,数轴上的点A所表示的数为x,则x2﹣10的立方根为()A.﹣10 B.﹣﹣10 C.2 D.﹣28.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°二、填空题9.若代数式有意义,则实数x的取值范围是.10.菱形两条对角线长为8cm和6cm,则菱形面积为cm2.11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.12.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于.13.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则△DOE的周长为.14.已知Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是.15.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE 的最小值是.三、解答题(共70分)16.计算:(1)(3+﹣4);(2)﹣()﹣1+()﹣30﹣||.17.已知a、b、c满足(a﹣12)2++|c﹣13|=0.(1)求a、b、c的值;(2)以a、b、c为三边能否构成直角三角形?说明理由.18.某养鸡专业户计划用一段长为35米的竹篱笆围成一个一边靠墙的矩形养鸡场地,如图,墙长20米,BC边有一个宽为1米的木门(木门用其它材料做不点用竹篱笆).设养鸡场AB边的长为x米,BC边的长为y米,BC的长度不小于10米且不超过墙长.求y关于x的函数解析式及x的取值范围.19.已知如图,在▱ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.20.如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=6,求四边形AEDF的周长.21.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.22.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.23.如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t >0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.2018-2019学年河南省安阳XX中学八年级(下)期中数学试卷参考答案与试题解析一、选择题:1.下列根式不是最简二次根式的是()A.B.C. D.【考点】最简二次根式.【专题】计算题.【分析】根据最简二次根式的判断标准即可得到正确的选项.【解答】解:=.故选D【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.3.计算的结果是()A.2 B.±2 C.﹣2或0 D.0【考点】实数的运算.【专题】计算题.【分析】原式第一项利用二次根式的化简公式计算,第二先利用立方根定义化简,计算即可得到结果.【解答】解:原式=4﹣2=2.故选A【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,E是BC中点E,AD=6cm,则OE 的长为()A.6cm B.4cm C.3cm D.2cm【考点】菱形的性质.【分析】首先根据菱形的性质可得BC=AD=6cm,AC⊥BD,再根据直角三角形斜边上的中线等于斜边的一半,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴BC=AD=6cm,AC⊥BD,∵E为CB的中点,∴OE是直角△OBC的斜边上的中线,∴OE=BC=3cm.故选:C.【点评】此题考查菱形的性质,掌握菱形的每一条边都相等,对角线互相垂直,直角三角形斜边上的中线等于斜边的一半是解决问题的关键.5.给出下列几组数:①6,7,8;②8,15,6;③n2﹣1,2n,n2+1;④+1,﹣1,.其中能组成直角三角形的三条边长是()A.①③B.②④C.①②D.③④【考点】勾股定理的逆定理.【分析】判定是否为直角三角形,这里给出三边的长,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:①62+72≠82,故不是直角三角形,故错误;②62+82≠152,故不是直角三角形,故错误;③(n2﹣1)2+(2n)2=(n2+1)2,故是直角三角形,故正确;④(﹣1)2+(+1)2=62,故是直角三角形,故正确.正确的是③④.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC 于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.【专题】压轴题.【分析】①根据平行四边形的对边相等的性质即可求得AO≠BO,即可求得①错误;②易证△AOE≌△COF,即可求得EO=FO;③根据相似三角形的判定即可求得△EAM∽△EBN;④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误.【解答】解:①平行四边形中邻边垂直则该平行四边形为矩形,故本题中AC≠BD,即AO≠BO,故①错误;②∵AB∥CD,∴∠E=∠F,又∵∠EOA=∠FOC,AO=CO∴△AOE≌△COF,∴OE=OF,故②正确;③∵AD∥BC,∴△EAM∽△EBN,故③正确;④∵△AOE≌△COF,且△FCO和△CNO不全等,故△EAO和△CNO不相似,故④错误,即②③正确.故选B.【点评】本题考查了相似三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE≌△COF是解题的关键.7.如图,数轴上的点A所表示的数为x,则x2﹣10的立方根为()A.﹣10 B.﹣﹣10 C.2 D.﹣2【考点】实数与数轴.【分析】先根据数轴可得x的值,进而可得则x2﹣10的值,再根据立方根的定义即可求得其立方根.【解答】解:读图可得:点A表示的数为﹣,即x=﹣;则x2﹣10=2﹣10=﹣8,则它的立方根为﹣2;故选D.【点评】本题考查实数与数轴上的点的对应关系,应注意数形结合,来判断A点表示的实数.8.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°【考点】正方形的性质;等腰三角形的性质.【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(45°+x°)=45°.答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.二、填空题9.若代数式有意义,则实数x的取值范围是x≥0且x≠1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】利用二次根式有意义的条件以及分式有意义的条件得出即可.【解答】解:∵有意义,∴x≥0,x﹣1≠0,∴实数x的取值范围是:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义以及分式有意义的条件,正确把握定义是解题关键.10.菱形两条对角线长为8cm和6cm,则菱形面积为24cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半求其面积即可长.【解答】解:菱形面积是6×8÷2=24cm2;故答案为24.【点评】本题考查了菱形的性质,主要利用菱形的面积的求法.11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【考点】平行四边形的性质.【专题】压轴题.【分析】由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.【点评】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.12.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于.【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解答】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x﹣y)2,解得x=y,∴MD=MB=2x﹣y=y,∴==.故答案是:.【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.13.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则△DOE的周长为14.【考点】平行四边形的性质;三角形中位线定理.【分析】由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四边形ABCD的周长为36,∴BC+CD=18,∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=14;故答案为:14.【点评】本题考查了平行四边形的性质、三角形中位线定理、三角形周长的计算;熟练掌握平行四边形的性质,证明三角形中位线是解决问题的关键.14.已知Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是24.【考点】勾股定理.【分析】根据已知及勾股定理可求得直角三角形两边的长,再根据面积公式即可求得其面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14,c=10∴由题意得,把c=10代入其他两方程得:,由①得:a=14﹣b,代入②得:(14﹣b)2+b2=100,即b2﹣14b+48=0因式分解得:(b﹣6)(b﹣8)=0,解得b=6或b=8,把b=6代入①得a=8;把b=8代入①得a=6,∴方程组的解为:或不论a,b取哪一组数据,Rt△ABC的面积均是S△ABC=×6×8=24.【点评】本题较简单,需同学们熟练掌握勾股定理的运用.15.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE 的最小值是10.【考点】轴对称-最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC 于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.三、解答题(共70分)16.计算:(1)(3+﹣4);(2)﹣()﹣1+()﹣30﹣||.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(2)根据零指数幂和负整数指数幂的意义得到原式=4﹣+3﹣﹣1+﹣2,然后合并即可.【解答】解:(1)原式=(6+﹣2)÷4=5÷4=;(2)原式=4﹣+3﹣﹣1+﹣2=3.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.17.已知a、b、c满足(a﹣12)2++|c﹣13|=0.(1)求a、b、c的值;(2)以a、b、c为三边能否构成直角三角形?说明理由.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质可得a﹣12=0,b﹣5=0,c﹣13=0,进而可得答案;(2)根据勾股定逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可得答案.【解答】解:(1)∵(a﹣12)2++|c﹣13|=0,∴a﹣12=0,b﹣5=0,c﹣13=0,解得:a=12,b=5,c=13;(2)能.∵122+52=132,∴a2+b2=c2,∴能构成直角三角形.【点评】此题主要考查了非负数的性质,以及勾股定逆定理,关键是掌握绝对值、偶次幂、算术平方根都具有非负性.18.某养鸡专业户计划用一段长为35米的竹篱笆围成一个一边靠墙的矩形养鸡场地,如图,墙长20米,BC边有一个宽为1米的木门(木门用其它材料做不点用竹篱笆).设养鸡场AB边的长为x 米,BC边的长为y米,BC的长度不小于10米且不超过墙长.求y关于x的函数解析式及x的取值范围.【考点】一次函数的应用;一元一次不等式组的应用.【专题】几何图形问题.【分析】根据题意可得BC﹣1=35﹣AB﹣CD,将AB=x,BC=y代入可得到y关于x的函数解析式,再根据BC的长度不小于10米且不超过墙长列出不等式组,解不等式组即可求出x的取值范围.【解答】解:根据题意可得y﹣1=35﹣2x,即y关于x的函数解析式为y=36﹣2x.由,解得8≤x≤13.即x的取值范围是8≤x≤13.【点评】本题考查了一次函数与一元一次不等式组的应用,解题关键是根据题意找到关键描述语,得到等量关系及不等关系.19.已知如图,在▱ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.【考点】平行四边形的判定与性质.【分析】要说明线段AC与EF互相平分,可以把这两条线段作为一个四边形的对角线,然后说明这个四边形是平行四边形即可.【解答】解:线段AC与EF互相平分.理由是:连接CE,AF.∵四边形ABCD是平行四边形.∴AB∥CD,即AE∥CF,AB=CD∵BE=DF,∴AB+BE=CD+DF,∴AE=CF,∴四边形AECF是平行四边形,∴AC与EF互相平分.【点评】本题主要考查平行四边形的判定问题,应熟练掌握.20.如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=6,求四边形AEDF的周长.【考点】菱形的判定与性质;三角形中位线定理.【分析】(1)首先根据三角形中位线定理可得DE∥AC,DF∥AB,ED=AC,DF=AB,进而可判定四边形AEDF是平行四边形,然后证明ED=DF即可;(2)过E作EM⊥BD,根据题意可得BD长,然后再根据等腰三角形的性质可得BM=BD=1.5,然后再利用勾股定理可得ED长,进而可得菱形周长.【解答】(1)证明:∵E,D,F分别是边AB,BC,AC的中点,∴DE∥AC,DF∥AB,ED=AC,DF=AB,∴四边形AEDF是平行四边形,∵AB=AC,∴ED=DF,∴四边形AEDF是菱形;(2)解:过E作EM⊥BD,∵E为AB中点,∴AE=EB,∵四边形AEDF是菱形,∴AE=ED=EB,∵BC=6,D是BC中点,∴DB=3,∵EM⊥BD,∴BM=BD=1.5,∵∠B=30°,∴EM=BE,∵EM2+MB2=EB2,∴(EB)2+MB2=EB2,∴BE=,∴ED=,∴四边形AEDF的周长为4.【点评】此题主要考查了菱形的判定和性质,关键是掌握邻边相等的平行四边形是菱形,菱形四边相等.21.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.【考点】翻折变换(折叠问题);矩形的性质.【专题】几何综合题.【分析】(1)根据AD∥BC,∠1与∠2是内错角,因而就可以求得∠2,根据图形的折叠的定义,可以得到∠4=∠2,进而可以求得∠3的度数;(2)已知AE=1,在Rt△ABE中,根据三角函数就可以求出AB、BE的长,BE=DE,则可以求出AD的长,就可以得到矩形的面积.【解答】解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=2,∴AB==;∴AD=AE+DE=AE+BE=1+2=3,∴长方形纸片ABCD的面积S为:AB•AD=×3=3.【点评】此题考查了矩形的性质,折叠的性质以及直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.22.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.【考点】菱形的判定;平行四边形的性质;正方形的判定.【专题】证明题.【分析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得△AOE≌△COE,∴∠AOE=∠COE=90°,∴BE⊥AC,∴四边形ABCD是菱形;(2)根据有一个角是90°的菱形是正方形.由题意易得∠ADO=∠DAE+∠DEA=15°+30°=45°,∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴四边形ABCD是正方形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC(三线合一),即AC⊥BD,∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO平分∠AEC(三线合一),∴∠AED=∠AEC=×60°=30°,又∵∠AED=2∠EAD∴∠EAD=15°,∴∠ADO=∠DAE+∠DEA=15°+30°=45°(三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴平行四边形ABCD是正方形.【点评】此题主要考查菱形和正方形的判定,要灵活应用判定定理及等腰三角形的性质、外角的性质定理.23.如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t >0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.【考点】菱形的性质;含30度角的直角三角形;勾股定理.【专题】动点型.【分析】(1)在△DFC中,∠DFC=90°,∠C=30°,根据在直角三角形中,30°角所对的直角边等于斜边的一半,即可证明AE=DF;(2)首先证明四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件求为邻边相等即AE=AD,即可求出相应的t值.【解答】(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF;(2)解:能,理由如下:∵AE⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形,∵AB=BC•tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使▱AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.即当t=时,四边形AEFD为菱形.【点评】本题考查了菱形的性质和菱形的判定定理,以及含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,难度适宜.。
河南省郑州市2018--2019学年下期期中考试卷 八年级数学(PDF版)

八年级㊀数学注意事项:1.本试卷共4页ꎬ三个大题ꎬ满分120分ꎬ考试时间100分钟ꎮ2.本试卷上不要答题ꎬ请按答题卡上注意事项的要求ꎬ直接把答案填写在答题卡上ꎮ答在试卷上的答案无效ꎮ一㊁选择题(每小题3分ꎬ共30分)在每小题给出的四个选项中ꎬ只有一项是符合题目要求的.1.下列四幅图片ꎬ是中心对称图形的是ABCD2.下列各式是一元一次不等式的是A.2x>1B.-2x<0C.2xʂ1D.x+2yɤ03.将点A(-2ꎬ3)沿x轴向左平移3个单位长度ꎬ再沿y轴向上平移4个单位长度后得到的点Aᶄ的坐标为A.(1ꎬ7)B.(1ꎬ-1)C.(-5ꎬ-1)D.(-5ꎬ7)4.如果a>bꎬ那么下列不等式中一定成立的是A.1-12a>1-12bB.ac2>bc2C.a2>b2D.a(c2+1)>b(c2+1)5.下列命题中是真命题的是A.有一个角为60ʎ的三角形是等边三角形B.三角形中30ʎ角所对的边是长边的一半C.平移不改变图形的形状和大小D.不等式的两边同时乘以(或除以)同一个不为0的数ꎬ不等式依然成立6.如图是 一带一路 示意图ꎬ若记北京为A地ꎬ莫斯科为B地ꎬ雅典为C地ꎬ分别连接ABꎬACꎬBCꎬ形成一个三角形ꎬ若想建立一个货物中转仓ꎬ使其到AꎬBꎬC三地的距离相等ꎬ则中转仓的位置应选在B.әABC三边的垂直平分线的交点处C.әABC三条角平分线的交点处D.әABC三条高所在直线的交点处7.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的位置如图所示ꎬ则关于x的不等式k1x+b>k2x的解集为A.x>-1B.x<-1C.x>-2D.x<-2第7题图㊀㊀㊀㊀㊀㊀㊀㊀第8题图8.如图ꎬ在әABC中ꎬøBAC=116ʎꎬ分别以点AꎬB为圆心ꎬ大于12AB的长为半径画弧ꎬ两弧相交于点DꎬEꎬ作直线DEꎬ交BC于点Mꎻ分别以点AꎬC为圆心ꎬ大于12AC的长为半径画弧ꎬ两弧相交于点PꎬQꎬ作直线PQꎬ交BC于点Nꎻ连接AM㊁AN.则øMAN的度数为A.52ʎB.50ʎC.58ʎD.64ʎ9.用反证法证明 一个三角形中最多有一个角是直角或钝角 时应假设A.三角形中最少有一个角是直角或钝角B.三角形中有两个角是直角或钝角C.三角形中最少有两个角是直角或钝角D.三角形中最多有两个角是直角或钝角10.数学兴趣小组在 中学生学习报 中了解到 直角三角形斜边上的中线等于斜边的一半 ꎬ用含30ʎ角的直角三角板做实验ꎬ如图ꎬøACB=90ʎꎬBC=6cmꎬMꎬN分别是ABꎬBC的中点ꎬ标记点N的位置后ꎬ将三角板绕点C逆时针旋转ꎬ点M旋转到点Mᶄꎬ在旋转过程中ꎬ线段NMᶄ的最大值是A.7cmB.8cmC.9cmD.10cm二㊁填空题(每题3分ꎬ共15分)11. a与3的和是非负数 ꎬ用不等式可表示为.12.如图ꎬ将әABC沿直线AB向右平移后到达әBDE的位置.若øCAB=50ʎꎬøABC=100ʎꎬ则øCBE的度数是.13.如图ꎬ在等腰三角形ABC中ꎬBE平分øABCꎬDEʅAB于点Dꎬ腰AB的长比底BC多3ꎬәABC的周长和面积都是24ꎬ则DE=㊀㊀㊀㊀.第12题图㊀㊀㊀㊀㊀第13题图㊀㊀㊀㊀㊀第15题图14.如果不等式组x+52>32(x+1)ꎬxȡmìîíïïï恰好有3个整数解ꎬ则m的取值范围是.15.如图ꎬ直线aꎬb相交于点Oꎬø1=50ʎꎬ点A是直线a上的一个定点ꎬ点B在直线b上运动ꎬ若以点OꎬAꎬB为顶点的三角形是等腰三角形ꎬ则øOAB的度数是.三㊁计算题(本大题共8个小题ꎬ共75分)16.(12分)解下列不等式组.(1)x+3ȡ5ꎬ3x-1<8.{(2)x2+1<2(x-1)ꎬx3>x+25.ìîíïïïï17.(8分)若三角形的三边长分别是2ꎬxꎬ10ꎬ且x是不等式x+14<1-1-x5的正偶数解ꎬ试求第三边的长x.18.(8分)某学校为了迎接 中招考试理化生实验 ꎬ需购进AꎬB两种实验标本共75个.经调查ꎬA种标本的单价为20元ꎬB种标本的单价为12元ꎬ若总费用不超过1180元ꎬ那么最多可以购买多少个A种标本?(列不等式解决)19.(9分)如图ꎬ在平面直角坐标系中ꎬ每个小方格都是边长为1的正方形ꎬәABC的顶点均在格点上ꎬ点A的坐标是(-2ꎬ3).(1)将әABC先向右平移2个单位长度ꎬ再向下平移4个单位长度ꎬ在图中画出第二次平移后的图形әA1B1C1ꎻ(2)如果将әA1B1C1看成是由әABC经过一次平移得到的ꎬ则这一次平移的方向为ꎬ平移的距离为.(3)请画出әABC关于坐标原点O的中心对称图形әA2B2C2.(1)求证:әCEF是等腰三角形ꎻ(2)点E满足时ꎬ点D是线段BF的三等分点ꎻ并计算此时әCEF的面积.21.(9分)已知线段a.(保留作图痕迹ꎬ不必写作法)(1)求作等腰直角三角形ABCꎬ使其斜边BC的长等于线段a的长ꎻ(2)作øB的平分线BDꎬøC的平分线CEꎬBDꎬCE相交于点Oꎻ(3)请直接写出øBOC的度数.22.(10分)为深入学习新时代中国特色社会主义思想ꎬ中宣部推出 学习强国 学习平台ꎬ学习积分可兑换礼品.某品牌的圆珠笔每支需要40积分ꎬ笔芯每支需要10积分.现积分超市推出以下两种活动ꎬ活动一:按照购买金额打八折扣积分ꎻ活动二:买一支圆珠笔送两支笔芯.王叔叔有1000积分ꎬ想兑换这种圆珠笔10支ꎬ笔芯x支(xȡ20).若只能选择一种兑换活动ꎬ请你帮助王叔叔判断选择哪种活动更优惠?23.(10分)(1)发现:如图1ꎬ点B是线段AD上的一点ꎬ分别以ABꎬBD为边向外作等边三角形ABC和等边三角形BDEꎬ连接AEꎬCDꎬ相交于点O.①线段AE与CD的数量关系为:ꎻøAOC的度数为.②әCBD可看作әABE经过怎样的变换得到的?. (2)应用:如图2ꎬ若点AꎬBꎬD不在一条直线上ꎬ(1)中的结论①还成立吗?请说明理由ꎻ(3)拓展:在四边形ABCD中ꎬAB=ACꎬøBAC=90ʎꎬøADC=45ʎꎬ若AD=8ꎬCD=6ꎬ请直接写出BꎬD两点之间的距离.。
2018-2019学年河南省洛阳市洛龙区六校联考八年级(下)期中数学试卷(解析版)

2018-2019学年河南省洛阳市洛龙区六校联考八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.若二次根式√4−2a有意义,则()A. a>2B. a≥2C. a<2D. a ≤22.√(−6)2−1=()A. 5B. 7C. −5D. −73.下面二次根式中,是最简二次根式的是()A. √24B. √0.5C. √a2+4D. √ab4.下列计算正确的是()A. 2 √12=√2 B. √2+√3=√5 C. 4√3−3√3=1 D. 3+2√2=5√2 5.由线段a,b,c组成的三角形不是直角三角形的是()A. a2−b2=c2B. a=54,b=1,c=34C. a=2,b=√3,c=√7D. ∠A:∠B:∠C=3:4:56.下列各命题的逆命题不成立的是()A. 两直线平行,同旁内角互补B. 若两个数的绝对值相等,则这两个数也相等C. 对顶角相等D. 如果a2=b2,那么a=b7.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A. 3种B. 4种C. 5种D. 6种8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A. 28B. 26C. 24D. 209.如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. OE=OFB. DE=BFC. ∠ADE=∠CBFD. ∠ABE=∠CDF10.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2值为()A. 25B. 9C. 13D. 169二、填空题(本大题共5小题,共15.0分)11.已知√a−b+|b-1|=0,则a+b=______.12.已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为______.13.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是______.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为______.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE 的长为______.三、计算题(本大题共1小题,共10.0分)16.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)四、解答题(本大题共7小题,共65.0分)17.计算:(1)(√12−4√18)-(3√13-4√0.5);(2)(2√5+5√2)(2√5-5√2)-(√5−√2)2.18.先化简,再求值:(1x+y +1x−y)÷1xy+y2,其中x=√5+2,y=√5-2.19.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.20.已知:如图,四边形ABCD中AB=BC=1,CD=√3,AD=1,且∠B=90°.试求:(1)∠BAD的度数.(2)四边形ABCD的面积(结果保留根号)21.已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.22.已知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.23.如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E运动时间为t.(1)求证:无论t为何值,四边形CEDF都是平行四边形;(2)①当t=______s时,CE⊥AD;②当t=______s时,平行四边形CEDF的两条邻边相等.答案和解析1.【答案】D【解析】解:由题意得:4-2a≥0,解得:a≤2,故选:D.根据二次根式有意义的条件可得4-2a≥0,再解不等式即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.【答案】A【解析】解:原式=6-1=5.故选:A.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.3.【答案】C【解析】解:A 、不是最简二次根式,错误;B 、不是最简二次根式,错误;C 、是最简二次根式,正确;D 、不是最简二次根式,错误;故选:C.根据最简二次根式的概念进行判断即可.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.【答案】A【解析】解:A、2==,故本选项符合题意;B 、和不能合并,不等于,故本选项不符合题意;C、4-3=,故本选项不符合题意;D、3+2不等于5,故本选项不符合题意;故选:A.根据二次根式的加法法则和二次根式的性质判断即可.本题考查了二次根式的加法法则和二次根式的性质,注意二次根式的加法就是合并同类二次根式.5.【答案】D【解析】解:A、∵a2-b2=c2,即a2+c2=b2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵()2+12=()2,即c2+b2=a2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;C、∵22+()2=()2,即a2+b2=c2,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,即∠C=75°,∴三角形不是直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理及勾股定理的逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.【答案】C【解析】解:A、逆命题为:同旁内角相等,两直线平行,成立;B、逆命题为:若两个数相等,则这两个数的绝对值相等,成立;C、逆命题为:相等的角为对顶角,不成立;D、逆命题为:若a=b,那么a2=b2,成立,故选:C.写出各个命题的逆命题判断正误即可.本题考查了命题与定理的知识,解题的关键是正确的写出各个命题的逆命题,难度不大.7.【答案】B【解析】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3种来判定.8.【答案】C【解析】解:在平行四边形ABCD中,2(AD+CD)=36,∴AD+CD=18,易证△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴CF+CD+ED+EF=AE+ED+EF+CD=AD+CD+EF=18+6=24故选:C.根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE=CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.本题考查平行四边形的性质,解题的关键是熟练运用平行四边形的性质,本题属于中等题型.9.【答案】B【解析】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴DE=BF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.根据平行四边形的判定和题中选项,逐个进行判断即可.本题需注意当大的平行四边形利用了对角线互相平分时,那么对角线是原平行四边形的一部分的四边形要想判断是平行四边形一般应用对角线互相平分的四边形是平行四边形进行证明.10.【答案】A【解析】解:如图,∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是(13-1)÷4=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故选:A.根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.本题考查了勾股定理以及完全平方公式.注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.11.【答案】2【解析】解:∵+|b-1|=0,∴a-b=0,b-1=0,解得a=1,b=1,则原式=1+1=2.故答案为:2.利用非负数的性质求出a与b的值,再将a与b的值代入计算即可求出值.此题考查了非负数的性质,利用非负数的性质求出a与b的值是解本题的关键.12.【答案】4或√34【解析】解:当3和5都是直角边时,第三边长为:=,当5是斜边长时,第三边长为:=4,故答案为:4或.此题要分两种情况:当3和5都是直角边时,当5是斜边长时,分别利用勾股定理计算出第三边长即可.此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13.【答案】20【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.14.【答案】41【解析】解:在△ABN和△ADN中,,∴△ABN≌△ADN,∴AD=AB=10,BN=DN,∵M是△ABC的边BC的中点,BN=DN,∴CD=2MN=6,∴△ABC的周长=AB+BC+CA=41,故答案为:41.证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【答案】32或3【解析】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.16.【答案】解:在Rt△ABC中,∠ACB=90°,AC=8米,BC=6米.由勾股定理有:AB=10米,应分以下四种情况.①如图1,当AB=AD=10米时,∵AC⊥BD,∴CD=CB=6米,∴△ABD的周长=10+10+2×6=32(米).②如图2,当AB=BD=10米时,∵BC=6米,∴CD=10-6=4,∴AD=√AC2+CD2=√82+42=4√5,∴△ABD的周长=10+10+4√5=(20+4√5)米.③如图3,当AB为底时,设AD=BD=x米,则CD=(x-6)米,由勾股定理得:AD=√AC2+CD2=√82+(x−6)2=x,解得,x=253.∴△ABD的周长为:AD+BD+AB=253+253+10=803(米).④如图4,延长AC至点D,使CD=8,连接BD.则BD=AB=10,AD=AC+CD=16,∴△ABD的周长为:AD+BD+AB=16+10+10=36.综上所述,扩充后等腰三角形绿地的周长为32米或(20+4√5)米或803米或36米.【解析】根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分四种情况讨论,不要漏解.17.【答案】解:(1)(√12−4√18)-(3√13-4√0.5)=(2√3-√2)-(√3-2√2)=√3+√2;(2)(2√5+5√2)(2√5-5√2)-(√5−√2)2=20-50-(5+2-2√10)=-30-7+2√10=-37+2√10.【解析】(1)直接利用二次根式的性质分别化简二次根式进而计算得出答案;(2)直接利用乘法公式计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【答案】解:原式=[x−y(x+y)(x−y)+x+y(x+y)(x−y)]÷1y(x+y)=2x(x+y)(x−y)•y(x+y)=2xyx−y,当x=√5+2,y=√5-2时,原式=2(√5+2)(√5−2)√5+2−√5+2=24=12.【解析】先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得. 本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.【答案】解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=12(a +b)(a −b). 从上图我们还发现梯形的面积=三个三角形的面积,即12ab +12ab +12c 2. 两者列成等式化简即可得:a 2+b 2=c 2; 【解析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为a ,b ,高为a+b ; (2)此题主要是利用梯形的面积和三角形的面积公式进行计算,根据图中可知,由此列出等式即可求出勾股定理.此题考查勾股定理的证明,此题的关键是找等量关系,由等量关系求证勾股定理. 20.【答案】解:(1)连接AC ,∵AB =BC =1,∠B =90°∴AC =√12+12=√2 又∵AD =1,DC =√3 ∴(√3)=12+(√2)2 即CD 2=AD 2+AC 2∴∠DAC =90°∵AB =BC =1∴∠BAC =∠BCA =45°∴∠BAD =135°;(2)由(1)可知△ABC 和△ADC 是Rt △, ∴S 四边形ABCD =S △ABC +S △ADC =1×1×12+1×√2×12 =12+√22.【解析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论. 本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.【答案】证明:如图,连接BD ,交AC 于点O .∵四边形DEBF 是平行四边形, ∴OD =OB ,OE =OF . 又∵AE =CF ,∴AE +OE =CF +OF ,即OA =OC , ∴四边形ABCD 是平行四边形 【解析】连接BD ,交AC 于点O ,欲证明证明四边形ABCD 是平行四边形,只需证得AO=CO ,DO=BO . 本题考查了平行四边的判定与性质,解题的关键是学会添加常用辅助线,熟练掌握平行四边形的判定方法,属于中考常考题型.22.【答案】证明:(1)∵▱ABCD 中,AB =CD ,∠A =∠C ,又∵AE =CF ,∴△ABE ≌△CDF ;(2)四边形MFNE 平行四边形. 由(1)知△ABE ≌△CDF , ∴BE =DF ,∠ABE =∠CDF , 又∵ME =BM =12BE ,NF =DN =12DF ∴ME =NF =BM =DN , 又∵∠ABC =∠CDA , ∴∠MBF =∠NDE , 又∵AD =BC , AE =CF , ∴DE =BF ,∴△MBF ≌△NDE , ∴MF =NE ,∴四边形MFNE 是平行四边形. 【解析】(1)根据平行四边形的性质和全等三角形的判定,在△ABE 和△CDF 中,很容易确定SAS ,即证结论;(2)在已知条件中求证全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得两对边分别对应相等,根据平行四边形的判定,即证.此题考查了平行四边形的判定和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.23.【答案】3.5 2【解析】解:(1)四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,又∠CGF=∠EGD.G是CD的中点,CG=DG,在△FCG和△EDG中,∵,∴△CFG≌△EDG(ASA),∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①当t=3.5s时,CE⊥AD,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,∵,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,即CE⊥AD;②当t=2s时,平行四边形CEDF的两条邻边相等,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,即平行四边形CEDF的两条邻边相等(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,即可得出答案;②求出△CDE是等边三角形,推出CE=DE,即可得出答案.本题考查了平行四边形的性质和判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形.。
河南省实验中学2018-2019学年下学期八年级数学月考1答题卡

一、选择题(每题3分,共30分) 11、 12、 13、14、 15、 二、填空题(每题3分,共15分) 三、解答题(共75分,解答应写出文字说明,证明过程或演算步骤)16.(本题8分)解不等式组,并把解集在数轴上表示出来.请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在答题区域内作答,超出黑色矩形边框限定区域的答案无效17.(本题9分)18.(本题8分)(1)(2)(3) 19.(本题9分)河南省实验中学2018-2019下期八年级 月考 数学 答题卡班级:______姓名: 考场: _____ 正确 错误 缺考 填涂 填涂 标记特别注意:作答时请勿超出实线答题区;考生请勿填涂缺考标记。
√×准 考 证 号0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7777777777 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 920.(本题10分)1 A B C D 2A B C D 3A B C D 4 A B C D 5 A B C D 6A B C D 7 A B C D 8A B C D 9A B C D 10A B C D请在答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效22.(本题10分)21.(本题10分)23.(本题11分)。
2018-2019学年河南省信阳市固始县八年级下学期期中考试数学试卷及答案解析

2018-2019学年河南省信阳市固始县八年级下学期期中考试
数学试卷
一、选择题(3×10=30分)
1.(3分)下列各式中,一定能成立的是()
A .
B .
C .
D .
2.(3分)+化简结果为2x﹣3,则x的取值范围是()A.x≤1B.x≥2C.x≥1D.x≥0
3.(3分)若与|x﹣y﹣3|互为相反数,则x+y的值为()
A.3B.9C.12D.27
4.(3分)下列各组数是勾股数的是()
A.2,3,4B.4,5,6C.3.6,4,8.6D.9,40,41 5.(3分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()
A.8cm B.5cm C.5.5cm D.1cm
6.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()
A.2πB.3πC.4πD.8π
7.(3分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()
第1页(共21页)。