电工学课件--第三章 正弦交流电路
合集下载
电工技术教学课件第三章正弦交流电路

平均功率: P=0
无功功率: Qc=-UI
Page 38
3.6.1
3.6.6 电阻、电感、电容的交流功率及物理意义
例
Page 39
3.6.7 功率因数与功率因数的提高
Page 40
3.6.2
3.6.7 功率因数与功率因数的提高
例
Page 41
3.7 交流电路的最大功率传输
Page 42
3.7 交流电路的最大功率传输
3.1.1 幅度、频率和初相位
Page 5
ωT=2π
3.1.2 正弦量相位差
相位差可用φ表示,规定|φ|≤180°。 显然同频正弦信号的相位差即它们的初相之差。综合相位 差的情况有以下几种: (1)φ=φu-φi>0,即φu>φi,表示u超前于i的度数为φ。 (2)φ=φu-φi<0,即φu<φi,表示u滞后于i的度数为φ。 (3)φ=φu-φi=0,表示u与i同相。 (4)φ=φu-φi=180°,表示u与i反相。 (5)φ=φu-φi=90°,表示u与i正交。
Page 46
Page 6
3.1.2 正弦量相位差
已知正弦信号u(t)=3cos (ωt+140°), i(t)=8cos (ωt-100°),求u与i的相位差。
Page 7
3.1.3 正弦量有效值
周期电流i流过电阻R在一个周期T内所做功与直流电流I流过 同样电阻R在同样时间T内所做功相等,称直流电流I为此周期性 电流i的有效值。
Page 17
Page 18
3.4 复阻抗和复导纳
• RC串联电路和复阻抗 • RC并联电路和复导纳 • 阻抗和导纳的串、并联电路
3.4.1 RC串联电路和复阻抗
无功功率: Qc=-UI
Page 38
3.6.1
3.6.6 电阻、电感、电容的交流功率及物理意义
例
Page 39
3.6.7 功率因数与功率因数的提高
Page 40
3.6.2
3.6.7 功率因数与功率因数的提高
例
Page 41
3.7 交流电路的最大功率传输
Page 42
3.7 交流电路的最大功率传输
3.1.1 幅度、频率和初相位
Page 5
ωT=2π
3.1.2 正弦量相位差
相位差可用φ表示,规定|φ|≤180°。 显然同频正弦信号的相位差即它们的初相之差。综合相位 差的情况有以下几种: (1)φ=φu-φi>0,即φu>φi,表示u超前于i的度数为φ。 (2)φ=φu-φi<0,即φu<φi,表示u滞后于i的度数为φ。 (3)φ=φu-φi=0,表示u与i同相。 (4)φ=φu-φi=180°,表示u与i反相。 (5)φ=φu-φi=90°,表示u与i正交。
Page 46
Page 6
3.1.2 正弦量相位差
已知正弦信号u(t)=3cos (ωt+140°), i(t)=8cos (ωt-100°),求u与i的相位差。
Page 7
3.1.3 正弦量有效值
周期电流i流过电阻R在一个周期T内所做功与直流电流I流过 同样电阻R在同样时间T内所做功相等,称直流电流I为此周期性 电流i的有效值。
Page 17
Page 18
3.4 复阻抗和复导纳
• RC串联电路和复阻抗 • RC并联电路和复导纳 • 阻抗和导纳的串、并联电路
3.4.1 RC串联电路和复阻抗
电工学课件第3章-正弦交流电路

udt L
udt
L
udt
0
i0
L
udt
0
式中 i为0 t=0时电流的初始值。如果 =i0 0则:
1t
i udt L0
电感元件的磁场能量
把式
u
eL
L
di dt
两边乘以 i并积分得:
t uidt
0
t 0
Lidi
1 2
Li2
因此电感元件中存储的磁场能量为:
1 2
Li2
3.3.3 电容元件
70.7 I2m
52
122.7
Im
+1
30
3.3 电阻元件、电感元件和电容元件
电阻元件:消耗电能,转换为热能(电阻性) 电感元件:产生磁场,存储磁场能(电感性) 电容元件:产生电场,存储电场能(电容性)
在直流电路中(稳态),电感元件可视为短路, 电容元件(稳态)可视为开路。
在交流电路中,电感元件和电容元件中的电流均不 为零。
i
i Im sin t 2 O
ωt
则 u和 的i 相位差为:
t 1 t 2 1 2
当 1 时,2 比 u超前i 角,比 滞u后 角i。
同相反相的概念
同相:相位相同,相位差为零。
反相:相位相反,相位差为180°。
下面图中是三个正弦电流波形。 与i1 同i2 相, 与i1 反相i3 。
p
ui
U
m
Im
sin 2
t
U
mIm 2
1
cost
UI
1 cost
p≥0,总为正值,所以电阻元件消耗电能,转换为热能。
平均功率
平均功率是一个周期内瞬时功率的平均值:
电工学课件:第3章 正弦交流电路

(1) i1 5sin(314t 600 )
(2) i2 5sin(314t 600 )
I1 5 600 2.5 2600 2
I 2 5 600 2.5 2 600 2
(3) i3 5sin(314t 600 )
i3 5sin(314t 600 1800 ) = 5sin(314t 1200 )
振幅相量的关系:
Im
2 I
U m 2U
例:1、写出下列正弦电压的相量(用直角坐标式表示):
(1) u 10 2 sint V
2
解:(1)
U
j
10e 2V
10
V
2
(2) u 10 2 sint 3 V
4
(2)
U
j 3
10e 4 V
10
3
V
4
2.将下述正弦量用相量表示:
相量图: 相量也可以在复平面上用矢量表示。
图中相量Ė 的长度为E代表正弦量的有效值,与实
轴夹角 0 等于正弦量的初相位。
五、用相量法求同频率正弦量的代数和..
例3-1 已知 u1 (t) 20 2 sin( 100t 1200 ) V
u2 (t) 15 2 cos(100t 600 ) V
式中 U m U me ju U mu
称为u(t)的相量
同理,设i(t) Im sin( t i )
则 Im I me ji I m i 称为i(t)的相量
从式子: Um sin(t ) Im[U me j t ]
说明一个三角函数等于一个旋转向量在虚轴上的投 影。考虑正弦交流线性电路中,电压和电流的频率 是不会改变的,为化简计算,将旋转向量的投影中 的旋转因子去掉,剩下相量部分代表一个三角函数 。且为了与数学上的复数区别开来,将相量符号上 方加˙标号。即:
正弦交流电路PPT课件

电抗 X = XL—XC
阻抗 Z R2X2
阻抗角
arcU L t a U C narcX L t aX C n
U R
R
三、电路的电感性、电容性和电阻性
四、功率
视在功率——电压与电流有效值的乘积,用S 表示,单位为伏·安(VA)。
视在功率并不代表电路中消耗的功率,它常用 于表示电源设备的容量。
解题过程
常用电子仪器的使用
§3-2 正弦交流电的相量图表示法
旋转矢量与波形图的关系
有效值相量图
应用相量图时注意以下几点:
同一相量图中,各正弦交流电的频率应相同。 同一相量图中,相同单位的相量应按相同比
例画出。
一般取直角坐标轴的水平正方向为参考方向, 逆时针转动的角度为正,反之为负。
用相量表示正弦交流电后,它们的加、减运 算可按平行四边形法则进行。
视在功率S与有功功率P和无功功率Q的关系:
S P2 Q2
PSc os QSsin
cos P 称为功率因数。
S
五、电压三角形、阻抗三角形和功率三角形
阻抗三角形
电压相量图
电压三角形
功率三角形
§3-7 提高功率因数的意义和方法
计算电感性负载的有功功率,除考虑电压、
电流的大小外,还要考虑电压、电流之间的相位
QCUII2XCU XC 2
【例3-5 】 容量为40μF的电容接在的电源上,试求: (1)电容的容抗;(2)电流的有效值;(3)电流瞬时值 表达式;(4)电路的无功功率。
解题过程
§3-6 RLC串联电路
一、电容对交流电的阻碍作用
开关SA闭合后接交流 电压,灯泡微亮。再断开 SA,灯泡突然变亮。测量 R、L、C两端电压 UR 、UL、 UC ,发现:
阻抗 Z R2X2
阻抗角
arcU L t a U C narcX L t aX C n
U R
R
三、电路的电感性、电容性和电阻性
四、功率
视在功率——电压与电流有效值的乘积,用S 表示,单位为伏·安(VA)。
视在功率并不代表电路中消耗的功率,它常用 于表示电源设备的容量。
解题过程
常用电子仪器的使用
§3-2 正弦交流电的相量图表示法
旋转矢量与波形图的关系
有效值相量图
应用相量图时注意以下几点:
同一相量图中,各正弦交流电的频率应相同。 同一相量图中,相同单位的相量应按相同比
例画出。
一般取直角坐标轴的水平正方向为参考方向, 逆时针转动的角度为正,反之为负。
用相量表示正弦交流电后,它们的加、减运 算可按平行四边形法则进行。
视在功率S与有功功率P和无功功率Q的关系:
S P2 Q2
PSc os QSsin
cos P 称为功率因数。
S
五、电压三角形、阻抗三角形和功率三角形
阻抗三角形
电压相量图
电压三角形
功率三角形
§3-7 提高功率因数的意义和方法
计算电感性负载的有功功率,除考虑电压、
电流的大小外,还要考虑电压、电流之间的相位
QCUII2XCU XC 2
【例3-5 】 容量为40μF的电容接在的电源上,试求: (1)电容的容抗;(2)电流的有效值;(3)电流瞬时值 表达式;(4)电路的无功功率。
解题过程
§3-6 RLC串联电路
一、电容对交流电的阻碍作用
开关SA闭合后接交流 电压,灯泡微亮。再断开 SA,灯泡突然变亮。测量 R、L、C两端电压 UR 、UL、 UC ,发现:
第3章-正弦交流电路PPT课件

第3章 正弦交流电路
➢正弦交流电路分析? ➢正弦交流电路功率? ➢谐振及互感电路? ➢三相电路分析?
长江大学
返回主目录
1
电路 与模拟
3、1
正弦交流电的基本概念
电子
正弦交流电的基本概念
函数式与波形 正弦交流电的三要素
uUmsi nt()
振幅、频率、初相—振—幅正即初弦最相波大,的值正角三弦频要波率素的简起称点频率
A A1 2(B1B2)1.6 59.17(1 030217)0 1.6 59.17(8.66j51.97j0.34)7
1.6 59.171.192.671.9665
6
电路 与模拟
正弦量的相量表示法
电子
由欧拉公式 ejcosjsin 则
复数称为相量
cosReej[] sinIme[j]
u U m sit n) (IU m m e j( t [ )] uIm Um [ejejt]
相量不等于正电弦路量中电压电流符号的约定:
相量分为两种表u示, i形—式—
瞬时值或 时间函数表达式
最大值相量U,m,即Im相—量—的模最取大最值大;值,
有最效大值值相与UU量有,,I,效 即I—值—相—的—量关相的系有量模效。取值有;效值。
U mUm U U
正弦量与相量U的m互化2U
9
电路 与模拟
1arc1 s6i2 narc1 2 s in 302a
rc1s.1 4in 4 arc0.s7i0 n 4 75 20
u 1(t)1s2i3 n1 t(3 40 ) u2(t)2s0i3 n1 t(4 4)5
2、 12 3 0 4 5 15
3、 u 1 ( 0 .0 ) 1 1 s2 3 in 0 1 .0 ( 4 3 1 ) 0 6 V
➢正弦交流电路分析? ➢正弦交流电路功率? ➢谐振及互感电路? ➢三相电路分析?
长江大学
返回主目录
1
电路 与模拟
3、1
正弦交流电的基本概念
电子
正弦交流电的基本概念
函数式与波形 正弦交流电的三要素
uUmsi nt()
振幅、频率、初相—振—幅正即初弦最相波大,的值正角三弦频要波率素的简起称点频率
A A1 2(B1B2)1.6 59.17(1 030217)0 1.6 59.17(8.66j51.97j0.34)7
1.6 59.171.192.671.9665
6
电路 与模拟
正弦量的相量表示法
电子
由欧拉公式 ejcosjsin 则
复数称为相量
cosReej[] sinIme[j]
u U m sit n) (IU m m e j( t [ )] uIm Um [ejejt]
相量不等于正电弦路量中电压电流符号的约定:
相量分为两种表u示, i形—式—
瞬时值或 时间函数表达式
最大值相量U,m,即Im相—量—的模最取大最值大;值,
有最效大值值相与UU量有,,I,效 即I—值—相—的—量关相的系有量模效。取值有;效值。
U mUm U U
正弦量与相量U的m互化2U
9
电路 与模拟
1arc1 s6i2 narc1 2 s in 302a
rc1s.1 4in 4 arc0.s7i0 n 4 75 20
u 1(t)1s2i3 n1 t(3 40 ) u2(t)2s0i3 n1 t(4 4)5
2、 12 3 0 4 5 15
3、 u 1 ( 0 .0 ) 1 1 s2 3 in 0 1 .0 ( 4 3 1 ) 0 6 V
《电工电子技术基础教学资料》第3章 正弦交流电路ppt课件

.
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
1.电感元件上的电压与电流瞬时值的关系 如图3-11所示为一个线性电感元件的交流电路图,电 压与电流的参考方向如图3-11a所示。 为分析的方便,假设 那么电感元件上的电压电流瞬时值关系为
显然φu=φi+90°,电感元件上的电压超前电流90°,或称电流滞后电压90°。 电感上的电压与电流是同频率的正弦量,电压与电流的波形如图3-11b所示。
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
4.纯电阻元件的功率
.
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
.
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
3.3.2 纯电感电路
电感器是用漆包线、纱包线或塑皮线等在绝 缘骨架或磁心、铁心上绕制成的一组串联的 同轴线匝,它在电路中用字母“L〞表示。 电感元件是一个二端元件,假设电感的大小 只与线圈的构造、外形有关,与经过线圈的 电流大小无关,即L为常量,那么称为线性 电感元件,在本书中只讨论线性电感元件。
.
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
2.感抗 根据电感元件上的电压电流瞬时值关系得两者振幅之间的关系为
式中的XL=ωL=2πfL具有电阻的量纲,称为感抗。当L的单位为H,ω的 单位为rad/s时,XL的单位为Ω。感抗与L和ω成正比,对于一定的电感L, 当频率越高时,其所呈现的感抗越大,反之越小。换句话说,对于一 定的电感L,它对高频呈现的妨碍大,对低频呈现的妨碍小。在直流电 路中,XL=0,即电感对直流视为短路。
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
1.电感元件上的电压与电流瞬时值的关系 如图3-11所示为一个线性电感元件的交流电路图,电 压与电流的参考方向如图3-11a所示。 为分析的方便,假设 那么电感元件上的电压电流瞬时值关系为
显然φu=φi+90°,电感元件上的电压超前电流90°,或称电流滞后电压90°。 电感上的电压与电流是同频率的正弦量,电压与电流的波形如图3-11b所示。
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
4.纯电阻元件的功率
.
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
.
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
3.3.2 纯电感电路
电感器是用漆包线、纱包线或塑皮线等在绝 缘骨架或磁心、铁心上绕制成的一组串联的 同轴线匝,它在电路中用字母“L〞表示。 电感元件是一个二端元件,假设电感的大小 只与线圈的构造、外形有关,与经过线圈的 电流大小无关,即L为常量,那么称为线性 电感元件,在本书中只讨论线性电感元件。
.
第3章 正弦交流电路
3.3 电阻、电感或电容元件单独作用的正弦交流电路
2.感抗 根据电感元件上的电压电流瞬时值关系得两者振幅之间的关系为
式中的XL=ωL=2πfL具有电阻的量纲,称为感抗。当L的单位为H,ω的 单位为rad/s时,XL的单位为Ω。感抗与L和ω成正比,对于一定的电感L, 当频率越高时,其所呈现的感抗越大,反之越小。换句话说,对于一 定的电感L,它对高频呈现的妨碍大,对低频呈现的妨碍小。在直流电 路中,XL=0,即电感对直流视为短路。
电工与电子技术基础3三相正弦交流电路课件

3.3.2三相不对称负载的星形连接
1. 三相四线制
A
IA
+
U A
N
-
U B
B+
C
IN
-
U C +
ZC
IB
IC
ZA
ZB
三相四线制三相电路
不对称负载:
ZA ZB ZC ZA RA jXA ZA A
ZB RB jXB ZB B
ZC RC jXC ZC C
Z
A
RA2
X
2 A
A
arctg
ZA=11, ZB=ZC=22 ,它们的额定电压为220V。若电源的线
电压为Ul=380V,试求各负载两端的电压,并说明各相白炽灯能
否正常工作。
IA
解: UA UA U NN
1650 V
UB UB U N N 220 252 131 V
2200 550 120 550 UC
+ C
IB
IC
ZA
ZB
IC
UC ZC
220120 20 120
11240 11 120A
IN IA IB IC 110 22―180 11―120 11 3―150A
【例】电路如图所示,电源线电压Ul =380V,三相负载
Z电A流=20IA、,IBZ和B
10
IC
j10 3()
中线电流
1 3
U
AB
30
2200 V
U A
N-
U AB
C
B IB-
3U0A-
Z
Z
U N Z A
IB
I IC A
U IA
第3章 正弦交流电路.ppt

在坐标原点右侧,则初相 为负。
综上所述,如果知道一个正弦量的振幅、角频率(频率)和初 相位,就可以完全确定该正弦量,即可以用数学表达式或波 形图将它表示出来。
上一页 下一页 返回
3.1 正弦交流电的基本概念
3. 1. 2正弦量的相位差
对于两个同频率的正弦量而言,虽然都随时间按正弦规律变 化,但是它们随时间变化的进程可能不同,为了描述同频率 正弦量随时间变化进程的先后,引入了相位差。
3.1.1正弦量的三要素
凡随时间作正弦规律变化的物理量,无论电压、电流还是别 的电量统称为正弦量。正弦量可以用正弦函数表示,也可以 用余弦函数表示。本书用正弦函数表示正弦量。
正弦电流、电压的大小和方向是随时间变化的,其在任意时 刻的数值称为瞬时值,用小写字母i和u表示。
下一页 返回
3.1 正弦交流电的基本概念
前”前者(u),或称前者(u)“滞后”后者(i),如图3-7(c)
所示;
当 示;
时,则称两正弦量“反相”,如图3-7(d)所
当 示;
时,则称两正弦量“正交”,如图3-7(e)所
必须强调,比较正弦量之间的相位差时要注意三个条件(即 “三同”)。
(1)同频率。只有同频率的正弦量才有确定的相位关系,它 们的相位差才有意义。
(2)同函数。正弦和余弦函数表示的交流电都是正弦交流电, 当要比较相位差时要化成同一函数来表达才能用式(3-6)进 行计算。
上一页 下一页 返回
3.1 正弦交流电的基本概念
(3)同符号。用式(3-6)计算两正弦量的相位差时,两正弦 量的数学表达式前面的符号应该相同。
3. 1. 3正弦量的有效值
例如,有两个同频率的电压和电流,分别为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U • o I= U =U 0 ∠ R
• •
u =Um sinω t u Um i = = sinω = Im sinω t t R R
U =I R
U =I R
•
•
可见: 可见:电压与电流同相位 ui
i
u
•
IU
•
I
•
U
+−
2.功率关系
ui
i
⑴ 瞬时功率
•
u
IU
p=ui=UmImsin2ωt =UI(1-cos2ωt)
角频率ω: 单位时间里正弦量变化的角度 称为角频率。单位是弧度/秒 (rad/s). ω=2π/T=2πf 周期,频率,角频率从不同角度描 述了正弦量变化的快慢。三者只要知 道其中之一便可以求出另外两时值, 瞬时值中最大的称为最大值。Im、 U m 、E m 分别表示电流、电压和电动 势的最大值. 表示交流电的大小常用有效值的概 念。
单位是乏尔(Var) 单位是乏尔(Var)
第四节 RLC串联交流电路 串联交流电路 一.电压与电流关系
i R u L C
uR uL
u =uR +uL +uC
U =UR+UL+UC
• • • •
uC
以电流为参考相量, 以电流为参考相量, 相量图为: 相量图为:
•
UL UL+UC
φ
• • • •
•
U I
•
U
φ UR
UL-UC
UR
UC
2 可见: 可见: U = UR +(UL −UC)2
U L −UC X L − XC = arctg = arctg UR R
U =UR+UL+UC
• • •
•
•
•
•
= I R+ jXL I− jXC I = I[R+ j(XL − XC)]
•
. . U=IZ Z为复阻抗 Z=R+j(XL-XC)=z φ 2 2 z = R +(XL-XC) φ = arctg(XL-XC)/R
V A
两者的相位差为: 两者的相位差为 >0
ϕ =ϕu −ϕi
电压超前电流φ角
(或电流滞后电压φ角)
若 :φ
=0 <0
电压与电流同相位 电流超前电压φ角
= ±π 电流与电压反向
u.i
i u φ φ>0
ωt
u.i
i u
ωt
φ=0
u.i
i u
ωt
φ
φ<0
u.i
i
u
ωt
+ φ= -π
已知: i=10sin(314 π/6 A,试 10sin(314t 例 : 已知 : i=10sin(314t-π/6) A, 试 指出它的角频率、 周期、 幅值、 指出它的角频率 、 周期 、 幅值 、 有效 值和初相, 值和初相,并画出波形图。
ωt
平均功率(有功功率) (2)平均功率(有功功率) 1 T P = ∫ p t =0 d T 0 电容是储能元件,不消耗电能。 电容是储能元件,不消耗电能。 (3)无功功率
无功功率反映的是电容与电源间 能量互相交换的规模。 能量互相交换的规模。 2 U 2 Q =U = I Xc = I c Xc
U U I
.
I 电感中的电流滞后电压90O
(电压超前电流90O)。
。
. . U .
因此:U
.
I =
.
= U ∠ 90
I∠ 0
0
0
I
U
U 0 ∠ 90 = jX L . = I I U = jXL I
. .
相量表达式为: 相量表达式为
2.功率关系 . (1)瞬时功率
cos t .sin t p = u i =U mI m ω ω ω =UI sin2 t
二. 相量表示(复数表示)
我们知道一个有向线段可以用复数表示, 我们知道一个有向线段可以用复数表示, 而正弦量又可以用有向线段表示, 而正弦量又可以用有向线段表示,因此正 弦量可以用复数表示。 弦量可以用复数表示。 表示正弦量的复数称为相量 1。复数知识 2。正弦量的相量表示
复数表示法: ⑴。复数表示法: j A 根据欧拉公式: 根据欧拉公式: A=a+jb 代数式 b r ejφ=cosφ+jsinφ A=r(cosψ+jsinψ) A=r ejψ 指数式 三角式 A=r∠ψ 极坐式 a +1 其中
du i =c =ω m cosω cU t dt o
Um C = Im ω
1 U = Im m ω C
1 Xc = ω C
•
容抗
I
Um = XcIm U = XcI
电容中的电流超前电压 90
o
• ° •
•
U
U =U 0 I = I∠ ° ∠ 90
•
U U • = ∠−90 = −jXC • I I
i = 22.36 2sin ω +33.4 )A ( t
o
相量图为: 相量图为
•
I1
正弦量用复数表示 后,正弦量的计算 都用复数计算。 都用复数计算。
•
I2
第三节 单一理想元件的交流电路
• • • 一、电阻电路 二、电感电路 三、电容电路
一、电阻电路
i
1、电压与电流关系 、 设
u
•
U
U 0 = ∠ °=R • I I
r = a +b
2
2
ψ=arctg(b/a)
⑵
有关复数的计算
加减运算用代数式, 实部与实部, 加减运算用代数式 实部与实部 虚部与虚部分别相加减。 虚部与虚部分别相加减。 乘除运算用指数式或极坐标式, 乘除运算用指数式或极坐标式, 模相乘或相除,幅角相加或减。 模相乘或相除,幅角相加或减
2. 正弦量的相量表示 一个复数的幅角等于正弦量的 初相角, 初相角, 复数的模等于正弦量的最 大值或有效值, 大值或有效值,该复数称为正弦量 的相量, 的相量,相量的写法用大写字母上 边打一“ 边打一“.”
第三章
• 第一节 • 第二节 • 第三节 • 第四节 • 第五节 • 第六节 • 第七节
正弦交流电路
正弦交流电的基本概念 正弦交流电的相量表示法 单一理想元件的交流电路 RLC串联交流电路 串联交流电路 阻抗串联与并联的交流电路 功率因数的提高 电路的谐振
第一节 正弦交流电的基本概念
• 一 正弦量 • 二 正弦量的三要素
如图: 如图:
ω
Im φ
i
该有相线段某一 t=0时1时 在纵轴上 t=t 在纵轴上 时刻在纵轴上的投影 的投影为: 的投影为: : 的投影为: 的投影为 刚好等于正弦量
IImsinψ 1+ψ) msin(ωt
的瞬时值
t1
ωt
ψ
因此该有相线段就表示了这个正弦量。 因此该有相线段就表示了这个正弦量。 一般我们研究的是同频率的正弦 量,所以频率可以不做考虑。 所以频率可以不做考虑。 用一根有向线段可以表示一个正 弦量,该有向线段的长度等于正弦量的 弦量 该有向线段的长度等于正弦量的 最大值( 或有效值) 最大值 ( 或有效值 ) , 该有向线段与 X 轴之间的夹角为正弦量的初相角, 轴之间的夹角为正弦量的初相角, 即为正弦量的相量图表示。 即为正弦量的相量图表示。 相量的写法为大写字母的上方打个“ 相量的写法为大写字母的上方打个“.”
例: 用相量图来表示下列正弦量
V u1 = U m sin ω t o u 2 = U m sin( ω t − 120 ) V o u 3 = U m sin( ω t + 120 ) V
•
解:
U3
•
120
•
U1
U2
注意
①只有正弦量才能用相量表示;
②几个同频率正弦量可以画在 同一相量图上; ③ 任意两个同频率正弦量的和 或差可用平行四边形法则求。
二 正弦量的三要素
1.周期T 频率f和角频率ω .周期T 频率f和角频率ω 2.最大值和有效值 最大值和有效值 3.相位、初相、 3.相位、初相、相位差 相位
周期T: 正弦量变化一次所需要的时间 称为周期。单位是秒 ( s )。 频率f: 1秒钟正弦量变化的次数称为频 率。单位是赫兹( HZ )。 显然:f =1/T 或 T =1/f 互为倒数
•
•
•
I = I1+I2 = 20∠ +10∠−30 60 o o = 20 (cos 60 + j sin 60 ) o o + 10[cos( − 30 ) j sin( − 30 )] +
o o
•
•
•
=10+j17.39+8.66-j5 =18.66+j12.32 =22.36∠33.4。(A)
把两个等值电阻分别通一交流电流 i和直流电流I。如果在相同的时间 T内所产生的热量相等,那么我们把 这个直流电流I定义为交流电流的有 效值。
∫
1 T 2 2 2 i R = I R 即 I = T ∫ i dt dt T 0 0
T
所以交流电的有效值是瞬时值 的方均根值。
将电流的三角式带入上式中有: :
二、功率关系
1、有功功率
串联电路中, 在RLC串联电路中,只有电阻消耗功率 串联电路中
所以电路的有功功率为:
P=URI=I2R=UR2/R 由电压三角形知: 由电压三角形知:UR=Ucosφ ∴P=UIcosφ
电感是储能元件,不消耗电能。 电感是储能元件,不消耗电能。
⑶无功功率