2020版高考数学一轮复习课时跟踪检测五函数及其表示含
精选-江苏专版2020版高考数学一轮复习课时跟踪检测四函数及其表示理含解析

课时跟踪检测(四)函数及其表示一抓基础,多练小题做到眼疾手快.(·淮安调研)函数()=的定义域是.解析:由(-)≥,得-≥,即≤,解得-≤≤.∴函数()=的定义域是[-].答案:[-].(·苏州高三期中调研)函数=的定义域为.解析:由(\\(>,-,))解得>,且≠,所以函数的定义域为()∪(,+∞).答案:()∪(,+∞).已知=-,且()=,则=.解析:令=-,则=+,()=(+)-=-,则-=,解得=.答案:.已知()是一次函数,满足(+)=+,则()=.解析:设()=+(≠),则(+)=(+)+=++,依题设,++=+,∴(\\(=,+=,))∴(\\(=,=-(),))则()=-.答案:-.(·盐城模考)已知函数()=(\\(+-,≤,-,>,))若()=,则()=.解析:因为()=,所以-=,即=,所以()=()=.答案:.设函数()=(\\((),>,,--,≤,))则(())=,函数()的值域是.解析:因为()=,所以(())==-.当>时,()∈(),当≤时,()∈[-,+∞),所以()∈[-,+∞).答案:-[-,+∞)二保高考,全练题型做到高考达标.(·如东高级中学高三学情调研)设函数()=(\\(+-,<,-,≥,))则(-)+()=.解析:因为(-)=+=,()=-=,所以(-)+()=.答案:.(·苏州期末)函数()=(\\(,≤,,-+,>))的值域为.解析:画出()的图象如图所示,可看出函数的值域为(-∞,].答案:(-∞,].(·南京名校联考)()=错误!则错误!=.解析:因为==-,所以=(-)=-=.答案:.(·南通调研)函数()=+(+)的定义域是.解析:由题意得(\\(-≠,+>))⇒>-且≠,所以函数()的定义域是(-)∪(,+∞).答案:(-)∪(,+∞).(·启东中学检测)已知函数=(-)的定义域为[-,],则函数=()的定义域为.解析:因为=(-)的定义域为[-,],所以∈[-,],-∈[-],所以=()的定义域为[-,].答案:[-].已知具有性质:=-()的函数,我们称为满足“倒负”变换的函数,下列函数:①=-;②=+;③=(\\(,<<,,=,,-(),>.))其中满足“倒负”变换的函数的序号是.解析:对于①,()=-,=-=-(),满足;对于②,=+=(),不满足;对于③,=错误!即错误!=错误!故错误!=-(),满足.综上可知,满足“倒负”变换的函数是①③.答案:①③.(·扬州一模)若函数()=(\\(--,<,,>))为奇函数,则(())=.解析:因为函数()=(\\(--,<,,>))为奇函数,所以当>时,-<,则(-)=-=-(),所以()=-+,即()=-+.所以()=-+=-,(())=(-)=-=.答案:.已知函数()=(\\(-+,≤,-,>,))若()=,则()=.解析:由()=,可得=,所以()==.答案:.(·泰州一调)设函数()=(\\(-,≥,--,<,))若()>,则的取值范围是.解析:不等式()>可化为(\\(≥,->))或(\\(<,-->,))解得>或<-.答案:(-∞,-)∪.(·无锡一中月考) 已知函数()的图象如图所示,则函数()=()的定义域是.解析:要使函数()有意义,需()>,由()的图象可知,当∈(]时,()>.答案:(].(·南京金陵中学月考)二次函数()满足(+)-()=,且()=.()求()的解析式;()若在区间[-]上,函数=()的图象恒在直线=+的上方,试确定实数的取值范围.解:()由()=,可设()=++(≠),故(+)-()=(+)+(+)+-(++)=++,由题意得(\\(=,+=,))解得(\\(=,=-,))故()=-+.()由题意,得-+>+,即-+>,对∈[-]恒成立.令()=-+,则问题可转化为()>,又因为()在[-]上递减,所以()=()=-,故<-,即实数的取值范围为(-∞,-)..(·南京期末)已知二次函数()满足()=,(-)=,且图象过原点.()求二次函数()的解析式;()已知集合=[],=错误!,求∁.解:()设()=++(≠),因为()=,(-)=,且图象过原点,所以(\\(++=,-+=,=,))解得=,=-,所以()=-.()==-,当∈[]时,函数=-是增函数,当=时,取得最小值;当=时,取得最大值,所以=,又集合=[],故∁=.三上台阶,自主选做志在冲刺名校.已知实数≠,函数()=(\\(+,<,,--,≥,))若(-)=(+),则=.解析:当>时,-<+>.由(-)=(+)得-+=---,解得=-,不合题意;当<时,->+<,由(-)=(+)得-+-=++,解得=-,所以的值为-.答案:-.定义在上的函数()满足(+)=(),若当≤≤时,()=(-),则当-≤≤-时,()=.解析:由题意知(+)=(+)=(),当-≤≤-时,≤+≤,所以()=(+)=(+)[-(+)]=-(+)(+),所以当-≤≤-时,()=-(+)(+).答案:-(+)(+).行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离(米)与汽车的车速(千米时)满足下列关系:=++(,是常数).如图是根据多次实验数据绘制的刹车距离(米)与汽车的车速(千米时)的关系图.()求出关于的函数表达式;()如果要求刹车距离不超过米,求行驶的最大速度.解:()由题意及函数图象,得(\\(()++=,,()++=,))解得=,=,所以=+(≥).()令+≤,得-≤≤.因为≥,所以≤≤.故行驶的最大速度是千米时.。
高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
高考数学一轮复习全套课时作业5-5复数

题组层级快练 5.5复数一、单项选择题1.(2021·衡水中学调研卷)复数i1+2i(i 是虚数单位)的虚部是( )A.15B.25C.15iD.25i 2.(2019·课标全国Ⅱ)设z =i(2+i),则z -=( )A .1+2iB .-1+2iC .1-2iD .-1-2i 3.已知z-1+i=2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i 4.i 是虚数单位,若1+7i2-i=a +bi(a ,b ∈R ),则ab 的值是( )A .-15B .-3C .3D .15 5.(2020·揭阳一模)已知a ∈R ,i 是虚数单位,若z =3+ai ,|z -|=2,则a =( ) A.7或-7 B .1或-1 C .2 D .-26.(2021·江西名校高三质检)若在复平面内,复数z =3+mi 6-i (m ∈R )所对应的点落在直线y =x 上,则m =( )A.157B.715 C .-157 D .-7157.(2021·河北六校联考)已知复数z 1,z 2在复平面内对应的点分别为(2,-1),(0,-1),则z 1z 2+|z 2|=( )A .2+2iB .2-2iC .-2+iD .-2-i 8.(2020·唐山二模)若复数z =1+ia -i (i 是虚数单位,a ∈R )是纯虚数,则z 的虚部为( )A .1B .IC .2D .2i 9.(2021·江南十校联考)若复数z 满足z(1-i)=|1-i|+i ,则z 的实部为( ) A.2-12 B.2-1 C .1 D.2+1210.(2021·武汉市武昌区调考)设z 是复数,α(z)表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i)=( ) A .8 B .6 C .4 D .2 11.已知i 是虚数单位,且复数z 1=3-bi ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( )A .-6B .6C .0 D.1612.在复数集C 内分解因式2x 2-4x +5等于( )A .(x -1+3i)(x -1-3i)B .(2x -2+3i)(2x -2-3i)C .2(x -1+i)(x -1-i)D .2(x +1+i)(x +1-i)13.(2020·湖北黄冈期末)复数z 1,z 2在复平面内分别对应点A ,B ,z 1=3+4i ,将点A 绕原点O 逆时针旋转90°得到点B ,则z -2=( )A .3-4iB .-4-3iC .-4+3iD .-3-4i14.(2021·济南市质量评估)已知复数z 满足z +z·i =2(其中i 为虚数单位),则z -=( ) A .1+i B .1-i C .-1+i D .-1-i15.(2020·邯郸二模)复数z 在复平面内表示的点Z 如图所示,则使得z 2·z 1是纯虚数的一个z 1是( )A .3-4iB .4+3iC .3+4iD .4-3i 二、多项选择题16.设z 1,z 2是复数,则下列命题中的真命题是( )A .若|z 1-z 2|=0,则z -1=z -2B .若z 1=z -2,则z -1=z 2 C .若|z 1|=|z 2|,则z 1·z -1=z 2·z -2 D .若|z 1|=|z 2|,则z 12=z 22 17.下列命题正确的是( )A .若复数z 1,z 2的模相等,则z 1,z 2是共轭复数B .z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数C .复数z 是实数的充要条件是z =z -(z -是z 的共轭复数)D .已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i(i 是虚数单位),它们对应的点分别为A ,B ,C ,O 为坐标原点,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y =1 三、填空题与解答题18.(2020·西安模拟)若a +bii (a ,b ∈R )与(2-i)2互为共轭复数,则a =________,b =________.19.(2020·江苏阜宁中学调研)若复数z =i +i 2 020,则z -+10z的模等于________.20.计算:(1)(1+2i )2+3(1-i )2+i ; (2)1-i (1+i )2+1+i (1-i )2; (3)1-3i(3+i )2.5.5复数 参考答案1.答案 A 2.答案 D 3.答案 B解析 z -=(1+i)(2+i)=1+3i ,则z =1-3i. 4.答案 B 解析1+7i 2-i=(1+7i )(2+i )5=-1+3i ,故a =-1,b =3,故ab =-3.5.答案 B解析 z =3+ai ,z -=3-ai ,又|z -|=2,则3+(-a)2=4,解得a =±1,a 的值为1或-1.故选B. 6.答案 A解析 依题意,z =3+mi 6-i =(3+mi )(6+i )(6-i )(6+i )=18+3i +6mi -m 37=18-m 37+3+6m 37i ,则18-m =3+6m ,解得m =157,故选A.7.答案 A解析 由题意知z 1=2-i ,z 2=-i ,则z 1z 2=2-i -i =(2-i )i -i 2=1+2i ,|z 2|=1,故z 1z 2+|z 2|=2+2i ,故选A. 8.答案 A解析 设z =1+ia -i =bi(b ∈R 且b ≠0),则1+i =b +abi ,∴b =1.选A. 9.答案 A解析 由z(1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,故z 的实部为2-12,故选A. 10.答案 C解析 ∵α(z)表示满足z n =1的最小正整数n ,∴α(i)表示满足i n =1的最小正整数n.∵i 2=-1,∴i 4=1,∴α(i)=4. 11.答案 B解析 因为z 1z 2=3-bi 1-2i =3+2b 5+(6-b )i 5,z 1z 2是实数,所以6-b 5=0,所以b =6.故选B.12.答案 B解析 2x 2-4x +5=2(x -1)2+3=[2(x -1)]2-(3i)2=(2x -2+3i)(2x -2-3i). 13.答案 B解析 由题意知A(3,4),B(-4,3),即z 2=-4+3i ,z -2=-4-3i. 14.答案 A解析 方法一:由z +z·i =2,得z =21+i =2(1-i )(1+i )(1-i )=1-i ,所以z -=1+i.方法二:设z =a +bi(a ,b ∈R ),则a +bi +(a +bi)i =2,即a -b +(b +a)i =2,所以⎩⎪⎨⎪⎧a -b =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,所以z =1-i ,所以z -=1+i. 15.答案 D解析 由题意可得,z =-2+i ,令z 1=a +bi(a ,b ∈R ),则z 2·z 1=(-2+i)2(a +bi)=(3-4i)(a +bi)=(3a +4b)-(4a -3b)i.又z 2·z 1为纯虚数,则z 2·z 1的实部为0,即3a +4b =0,则z 1=4-3i ,故选D. 16.答案 ABC解析 对于A ,若|z 1-z 2|=0,则z 1-z 2=0,z 1=z 2,所以z -1=z -2为真; 对于B ,若z 1=z -2,则z 1和z 2互为共轭复数,所以z -1=z 2为真;对于C ,设z 1=a 1+b 1i ,z 2=a 2+b 2i ,若|z 1|=|z 2|,则a 12+b 12=a 22+b 22,即a 12+b 12=a 22+b 22,所以z 1·z-1=a 12+b 12=a 22+b 22=z 2·z -2,所以z 1·z -1=z 2·z -2为真;对于D ,若z 1=1,z 2=i ,则|z 1|=|z 2|,而z 12=1,z 22=-1,所以z 12=z 22为假,故选ABC. 17.答案 BC解析 对于A ,z 1和z 2可能是相等的复数,错误;对于B ,若z 1和z 2是共轭复数,则相加为实数,不会为虚数,正确;对于C ,由a +bi =a -bi ,得b =0,正确;对于D ,由题可知,A(-1,2),B(1,-1),C(3,-2),建立等式(3,-2)=(-x +y ,2x -y),即⎩⎪⎨⎪⎧-x +y =3,2x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =4,错误.故选BC. 18.答案 -4 3解析 因为a +bi i =(a +bi )(-i )-i 2=b -ai(a ,b ∈R ),(2-i)2=4-4i -1=3-4i ,由题意得b =3,a =-4.19.答案 6 2解析 z =i +i 2 020=i +1,z -+10z =1-i +101+i =6-6i ,其模为6 2.20.答案 (1)15+25i (2)-1 (3)-14-34i解析 (1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i=i (2-i )5=15+25i.(2)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1.(3)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4=-14-34i.。
2020年浙江高考数学一轮复习:函数及其表示

••>必过数材美函数映射两集合A,B设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A TB 如果按照某种确定的对应关系f,使对于集合A中的任意一个数X,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A T B为从集合A到集合B的一个函数称对应f:A T B为从集合A到集合B的一个映射记法y= f(x),x€ A对应f:A T B是一个映射2. 函数的有关概念(1) 函数的定义域、值域:在函数y= f(x), x€ A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x € A}叫做函数的值域.显然,值域是集合B的子集.(2) 函数的三要素:定义域、值域和对应关系.(3) 相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4) 函数的表示法表示函数的常用方法有:解析法、图象法、列表________3. 分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1. (2018台州模拟)下列四组函数中,表示相等函数的是()A. f(x)= x2,g(x)= x2B. f(x)=子,g(x)= :2函数及其表示C. f(x)= 1, g(x)= (x — 1)2x — 9D. f(x)= "x+J , g (x)=x— 3解析:选B 选项A 中,f(x) = x 2与g(x)= x 2的定义域相同,但对应关系不同;选项B中,二者的定义域都为 {x|x >0},对应关系也相同;选项 C 中,f(x)= 1的定义域为R , g(x) 0 x 2— 9=(x — 1)0的定义域为{x|x M 1};选项 D 中,f(x)= 的定义域为{x|x M — 3}, g(x)= x — 3 x + 3的定义域为R.2.若函数 y = f(x)的定义域为{x| — 3w x < 8, x M 5},值域为{y| — K y w 2, y M 0},贝y y =f(x)的图象可能是(解析:选B 根据函数的概念,任意一个 x 只能有唯一的 由定义域为{x|— 3< x w 8, X M 5}排除A 、D 两项,故选 B.___ 13.函数f(x)= 2x- 1+口的定义域为解析:由题意得I2 — 1> 0, 解得x > 0且X M 2.lx — 2M 0,答案:[0,2) U (2,+^ )4.若函数 f(x) = ex —IT 贝 “(2))=5 — x , x > 1 , 解析:由题意知,f(2) = 5— 4 = 1, f ⑴=e 0= 1,答案:15•已知函数f(x)= ax 3 — 2x 的图象过点(一1,4),贝V f(2)= 解析:T 函数f(x) = ax 3— 2x 的图象过点(—1,4),4= — a + 2,.°. a = — 2,即卩 f(x) = — 2x — 2x , ••• f(2) = — 2X 23— 2X 2=— 20. 答案:—20••I 必过易措关1•求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义 域.y 值和它对2•分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成” •求分段函数的函数值,如果自变量的范围不确定,要分类讨论.=2的解为解析: Wg)卜"。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
江苏专版2020版高考数学一轮复习课时跟踪检测五函数的单调性与最值理含解析

课时跟踪检测(五) 函数的单调性与最值一抓基础,多练小题做到眼疾手快1.(2019·如皋中学月考)函数f (x )=|x 2-2x +2|的增区间是________. 解析:因为函数f (x )=|x 2-2x +2|=|(x -1)2+1|=(x -1)2+1, 所以函数f (x )=|x 2-2x +2|的增区间是[1,+∞). 答案:[1,+∞)2.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14.答案:143.(2018·徐州质检)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.解析:因为y =⎝ ⎛⎭⎪⎫13 x 和y =-log 2(x +2)都是[-1,1]上的减函数,所以y =⎝ ⎛⎭⎪⎫13 x-log 2(x +2)是在区间[-1,1]上的减函数,所以最大值为f (-1)=3.答案:34.已知偶函数f (x )在区间[0,+∞)上单调递减,则满足f (2x -1)<f (5)的x 的取值范围是________. 解析:因为偶函数f (x )在区间[0,+∞)上单调递减,且f (2x -1)<f (5),所以|2x -1|>5,即x <-2或x >3.答案:(-∞,-2)∪(3,+∞)5.若函数f (x )=-x 2+2ax 与g (x )=(a +1)1-x在区间[1,2]上都是减函数,则a 的取值范围是________.解析:因为f (x )=-x 2+2ax =-(x -a )2+a 2在[1,2]上是减函数,所以a ≤1. 又g (x )=(a +1)1-x在[1,2]上是减函数.所以a +1>1,所以a >0.综上可知0<a ≤1. 答案:(0,1]6.(2019·海门中学高三检测)已知函数f (x )=⎩⎪⎨⎪⎧-a x +1,x <1,a x,x ≥1,满足对任意x 1<x 2,都有f (x 1)<f (x 2)成立,那么实数a 的取值范围是________.解析:∵函数f (x )满足对任意x 1<x 2,都有f (x 1)<f (x 2)成立, ∴函数f (x )在定义域上是增函数,则满足⎩⎪⎨⎪⎧2-a >0,a >1,2-a +1≤a ,即⎩⎪⎨⎪⎧a <2,a >1,a ≥32,解得32≤a <2.答案:⎣⎢⎡⎭⎪⎫32,2 二保高考,全练题型做到高考达标 1.设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,则a 的取值范围是________. 解析:f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,因为函数f (x )在区间(-2,+∞)上是增函数.所以⎩⎪⎨⎪⎧2a 2-1>0,-2a ≤-2,解得a ≥1.答案:[1,+∞)2.(2019·江阴高三检测)设a >0且a ≠1,函数f (x )=log a |ax 2-x |在[3,5]上是单调增函数,则实数a 的取值范围为______________.解析:∵a >0且a ≠1,函数f (x )=log a |ax 2-x |=log a |x ·(ax -1)|在[3,5]上是单调增函数, ∴当a >1时,y =x ·(ax -1)在[3,5]上是单调增函数,且y >0,满足f (x )是增函数;当0<a <1时,要使f (x )在[3,5]上是单调增函数,只需⎩⎪⎨⎪⎧0<a <1,3≥12a ,5<1a ,解得16≤a <15.综上可得,a >1或16≤a <15.答案:⎣⎢⎡⎭⎪⎫16,15∪(1,+∞)3.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=-x +3是减函数,所以h (x )在x =2时,取得最大值h (2)=1.答案:14.(2018·徐州一模)已知函数y =f (x )和y =g (x )的图象关于y 轴对称,当函数y =f (x )和y =g (x )在区间[a ,b ]上同时递增或者同时递减时,把区间[a ,b ]叫做函数y =f (x )的“不动区间”,若区间[1,2]为函数f (x )=|2x -t |的“不动区间”,则实数t 的取值范围是________.解析:因为函数y =f (x )与y =g (x )的图象关于y 轴对称,所以g (x )=f (-x )=|2-x-t |. 因为区间[1,2]为函数f (x )=|2x-t |的“不动区间”,所以函数f (x )=|2x -t |和函数g (x )=|2-x-t |在[1,2]上单调性相同, 因为y =2x -t 和函数y =2-x-t 的单调性相反, 所以(2x-t )(2-x-t )≤0在[1,2]上恒成立, 即2-x ≤t ≤2x在[1,2]上恒成立,解得12≤t ≤2.答案:⎣⎢⎡⎦⎥⎤12,2 5.(2018·金陵中学月考)定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________.解析:函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,所以函数在[-2,2]上单调递增,所以⎩⎪⎨⎪⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a .所以⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,所以0≤a <1.答案:[0,1)6.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π), f (-3)的大小关系为____________(用“<”表示).解析:因为f (x )是偶函数, 所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数,所以f (π)>f (3)>f (2),所以f (-2)<f (-3)<f (π). 答案:f (-2)<f (-3)<f (π)7.(2018·苏州高三暑假测试)已知函数f (x )=x +ax(a >0),当x ∈[1,3]时,函数f (x )的值域为A ,若A ⊆[8,16],则a 的值等于________.解析:因为A ⊆[8,16],所以8≤f (x )≤16对任意的x ∈[1,3]恒成立,所以⎩⎪⎨⎪⎧a ≤16x -x 2,a ≥8x -x 2对任意的x ∈[1,3]恒成立,当x ∈[1,3]时,函数y =16x -x 2在[1,3]上单调递增,所以16x -x 2∈[15,39],函数y =8x -x 2在[1,3]上也单调递增,所以8x -x 2∈[7,15],所以⎩⎪⎨⎪⎧a ≤15,a ≥15,即a 的值等于15.答案:158.若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.解析:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫a -1x 2-⎝ ⎛⎭⎪⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x )在(0,+∞)上是增函数. (2)由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2,h (x 1)-h (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫2-1x 1x 2.因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1,所以2-1x 1x 2>0,所以h (x 1)<h (x 2),所以h (x )在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3,所以实数a 的取值范围是(-∞,3]. 10.(2019·江阴期中)设函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫13=310.(1)求函数f (x )的解析式;(2)用单调性定义证明f (x )在(-1,1)上是增函数;(3)解不等式f (|t |-1)+f (t 2)<f (0). 解:(1)因为f (x )=ax +b1+x2是定义在(-1,1)上的奇函数, 所以f (0)=b =0,所以f (x )=ax1+x 2,而f ⎝ ⎛⎭⎪⎫13=13a 1+19=310, 解得a =1,所以f (x )=x1+x 2,x ∈(-1,1).(2)证明:任取x 1,x 2∈(-1,1)且x 1<x 2, 则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1-x 2-x 1x 2+x 21+x 22. 因为x 1<x 2,所以x 1-x 2<0,又因为x 1,x 2∈(-1,1),所以1-x 1x 2>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在(-1,1)上是增函数.(3)由题意,不等式f (|t |-1)+f (t 2)<f (0)可化为f (|t |-1)+f (t 2)<0,即f (t 2)<-f (|t |-1), 因为f (x )是定义在(-1,1)上的奇函数, 所以f (t 2)<f (1-|t |), 所以⎩⎪⎨⎪⎧-1<t 2<1,-1<1-|t |<1,t 2<1-|t |,解得1-52<t <5-12且t ≠0,所以该不等式的解集为⎝⎛⎭⎪⎫1-52,0∪⎝⎛⎭⎪⎫0,5-12.三上台阶,自主选做志在冲刺名校1.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是____________.解析:因为f (9)=f (3)+f (3)=2,所以由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.答案:(8,9]2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)证明:f (x )为单调递减函数;(2)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (2)因为f (x )在(0,+∞)上是单调递减函数, 所以f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1, 所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.。
2020高考数学(文)一轮复习课时检测函数的图象及其应用

课时跟踪检测(十一) 函数的图象及其应用[A级保分题准做快做达标]1.若函数y= f(x)的图象如图所示,则函数y=—f(x + 1)的图象大致为()要想由y= f(x)的图象得到y=—f(x+ 1)的图象,需要先将y= f(x)的图象y=- f(x)的图象,然后向左平移1个单位长度得到y= —f(x+ 1)的图象,中山一中统测)如图所示的函数图象对应的函数可能是()解析:选C 关于x轴对称得到根据上述步骤可知C正确.2. (2018全国卷n )函数e x—e—xf(x) = x2 的图象大致为(解析:选 B ••• y= e x—e八A2 e —ey= x 是偶函数,••• f(x)=是奇函数,图象关于原点对称, 排除A选项.当x= 1时,1 f(1)= e- e>0,排除D选项.又1e—e>1,排除C选项.故选B.3. (20佃—x是奇函数,2x sin xB y= 7TTC. y= (x2—2x)e xxD. y=i7^解析:选C A选项中,当x =—1时,y= 2x—x2—1 = 1—1—1=—3<0,不符题意;Bn . |X . 2 —2X sin —2 sin x 2 选项中,当x=—孑时,y= x+ 4 =2 4+14—2+1n2 —2一—<0,不符题意;4 — 2+ 1D选项中,当x<0时,y=^无意义,不符题意.故选C.4. (2019辽宁重点高中协作校阶段考试)已知f(x) = :;[—1 ,则下列选项错误的是(②是f(—X)的图象B.A .①是f(x—1)的图象f(|x|)的图象解析:选D作出函数C .③是④是|f(x)|的图象f(x)的图象,如图所示.f(x—1)的图象是由函数f(x)的图象向右平移一个单位长度得到的,A正确;f( —x)的图象与函数f(x)的图象关于y轴对称,B正确;对于f(|x|)的图象,当x>0时,与f(x)的图象相同,当xvO时,与f(x)在[0,1]上的图象关于y轴对称,C正确;因为JiH o\' i ■-•f(x)>0,所以|f(x)|的图象与函数f(x)的图象相同,所以D不正确.故选D.(2019山西四校联考)已知函数f(x)=|x2—1|,若Ovavb且f(a) = f(b),贝V b的取值范5.围是((0, )(1, 2) D. (1,2)解析:选C 作出函数f(x)= |x2—1|在区间(0, +8)上的图象如图所示,作出直线y= 1,交f(x)的图象于B点,由x2—1= 1可得xB=2, 结合函数图象可得b的取值范围是(1, 2),故选C.6. (2019汉中模拟)函数f(x)=B. (1 ,+^ )yL1N .7......V . rJ 2 x—1 I •in x的图象大致为7. (2019西安第一中学期中)设函数f(x)= "i3x + 4, x<0,X 2, X 3,满足 f(X 1)= f(X 2)= f(X 3),贝V X 1+ X 2+ X 3 的取值范围是(A. 131, 6不妨设x 1<x 2<x 3,贝y X 2, x 3关于直线x = 3对称,故x 2+ x 3= 6,且X p 满足—7<x 1<0 ,7 11 则一3+ 6<X 1 + X 2 + X 3<0 + 6, 即卩 X 1+ X 2+ X 3 3 ,8. (2019昆明检测)已知定义在 R 上的函数f(x)是奇函数,且f(x)在(一R, 0)上是减函 数,f(2) = 0, g(x)= f(x + 2),则不等式 xg(x )w 0 的解集是 _______________________ .解析:如图所示,虚线部分为f(x)的草图,实线部分为g(x )的草图,解析:选Af(2)=sin x = f(x), •••函数f(x)为偶函数,故排除 —1 ;sin 2v 0,故排除 B ,选 A.C 、D ;当 x = 2 时,-2x — 6x + 6, x >0,解析:选D 函数f(x)=*i3x + 4, x<0x 2— 6x + 6, x 》0,的图象如图,若互不相等的实数X i ,311 6 .故选D.x > 0,则 xg(x) w 0?Ig (x 尸 0或 X "0,gx >0,由图可得xg(x)< 0的解集为(一a,— 4] U [-2 ,+s ). 答案:(一a, — 4] U [ — 2,+a )9. (2019合肥质检)对函数f(x),如果存在0,使得f(x °)=— f(— x o ),则称(x o , f(x 。
2020年高考数学一轮复习(新课改)课时跟踪检测(五)函数及其表示

课时跟踪检测(五) 函数及其表示[A级基础题一一基稳才能楼高]1. (2019重庆五校联考)下列函数中,与y= x相同的函数是()A. y= x2B. y= lg 10x2C . y=牛D . y= ( ,x- 1)2+1解析:选B 选项A, y= x2= |x|与y= x的对应法则和值域不同,不是相同函数;选2x项B, y= lg 10x= x,是相同函数;选项C, y= — = x(x丰0)与y= x的定义域不同;选项 D , 函数的定义域不相同,不是相同函数•故选 B.e'-1, x w 1, nt2. (2019 山西名校联考)若函数f(x)i 2 d 则f(f(2))=( )5 -x , x>1,A. 1B. 4C. 0D. 5 - e2解析:选 A 由题意知,f(2) = 5 —4= 1, f(1) = e°= 1,所以f(f(2)) = 1.3. (2019马鞍山质量检测)已知函数f(x)= c 1, x为有理数,c 田務则f(1)+f(U2)+f(°)+ 0, x为无理数,+ f^/2120)=( )A. 44 B.45C. 1 009 D.2 018解析:选A 由442= 1 936,452= 2 025可得1, 2, 3,…,2 020中的有理数共有44个,其余均为无理数,所以f(1) + f( .2)+ f( 3) +…+ f( 2 020) = 44.4. (2019邯郸调研)函数y= ——2的定义域为()A.(―汽1]B. [ —1,1]C. -1,- 2 -1,1O 匚1,-扣•— 2,"I厂 21-x >0,解析:选C 要使函数有意义,需。
22x2—3x —2 丰 0,1<x<1所以函数y2x2- 3x- 2*| —1VXV —2或-1<x<1 .的定义域为了=_护*4皐解不等式组得,x A 2a ,•••函数f(x)=lx<b.厂 x —1 e , x<2, lo93 x — 1 , x > 2,B . 5x — 2a + ln(b — x)的定义域为[2,4),•2a = 2,b = 4, a = 1,b = 4, •••a + b = 1 + 4= 5.故选 B. A . (1,2) B.C. 1, 4解析:选 A 当 x<2 时,不等式 f(x)>1 即 e x 1>1x — 1>0 , • x>1 ,则 1<x<2 ;当 x > 2D . [2,+^ )1 4 时,不等式f(x)>1即—log j (x — 1)>1 ,••• 0<x — 1<3, • 1<x<3,此时不等式无解.综上可得, 3 3 不等式的解集为(1,2).故选A. 准做快做达标] 1. [B 级保分题 (2019玉溪模拟)与函数y = 10lg(x — °的图象相同的函数是( ) y = x — 1 y = B . y = |x — 1|x 2— 1D . y=不 解析:选C 函数y = 10lg(x —1)的定义域为{x|x>1} . y = x — 1与y = |x — 1|的定义域都为R , 故排除A , B ; y = £二」的定义域为{X |X M — 1},故排除D ; y = x +1 的定义域为{x|x>1}, 解析式可化简为y = x — 1,因此正确,故选 C. 2. (2019全国名校联考)设函数f(x) = 3a x , x w 1, log a 2x +4 , x>1,且 f(1) = 6 则 f(2)=() C . 3 D . 6 解析:选 C 由题意,得 f(1) = 3a = 6,解得 a = 2,所以 f(2) = log 2(2 x 2 + 4) = log ?8= 3, 故选C. 3. (2019 •西名校联考)若函数f(x)满足f(3x + 2) = 9x + 8,则f(x)的解析式是( ) A. f(x)= 9x + 8 B. f(x)= 3x + 2 C. f(x)=— 3x — 4解析:选B 要使函数有意义,则x — 2a > 0, 6. (2019乌鲁木齐一诊)函数f(x)= c则不等式f(x)>1的解集为D . f(x)= 3x + 2 或 f(x) = — 3x — 4t — 2 t — 2解析:选 B 令 t = 3x + 2,则 x =匚-,所以 f(t)= 9X 二-+ 8 = 3t + 2.所以 f(x)= 3x + 2,3 3 故选B.B . 3 D . 301 — x 2解析:选C 由于f(1 — 2x)= 才(x 工0),则当1 —15.故选C.log 2X + a , x>0, 亠5. (2019福州检测)已知函数f(x)=x —,门 右f(a)= 3,则f(a — 2)=( )|4— 1, x W 0,C . - 63或3解析:选 A 若 a>0 ,则 f(a)= log 2a + a = 3,解得 a = 2,贝U f(a — 2) = f(0) = 4—2 — 1=—15;若a w 0,则4 2 — 1 = 3,解得a = 3,不合题意.综上f(a — 2)=—池.故选A.6. (2019邵阳检测 股函数f(x) = log 2(x — 1) + 2 — x ,则函数 诗 的定义域为( )A . [1,2]B . (2,4]C . [1,2)D . [2,4)解析:选 B •••函数 f(x)= log 2(x — 1) +72— x 有意义,•••「解得 1<x w 2,12 — x > 0,•函数的f(x)定义域为(1,2], • 1<2 < 2,解得x € (2,4],则函数f 亍的定义域为(2,4].故 选B.—x ?+ 4x , x W 4,7.设函数f(x)=若函数f(x)在区间(a , a + 1)上单调递增,贝U 实数alog 2x , x>4.的取值范围是()B . [1,4]D . (— a, 1] U [4,+^ )解析:选D 作出函数f(x)的图象如图所示,4.(2019郑州外国语学校月考)若函数f(1 — 2x) =2'(X 丰 0)」f 1=()15 15 16B . 3—坐或 16A .(―汽 1] C . [4 ,+s )1 1 2x= 1时,x = 4,所以由图象可知,若f(x)在(a, a+ 1)上单调递增,需满足a》4或a + 1w 2,即a< 1或a>4,故选D.8. (2019山东省实验中学段考)已知函数f(x)的定义域为(0,+^ ),则函数y =的定义域是_________ .—x1 2—3x+ 4解析:•••函数f(x)的定义域为(0, + ),••• f(x+ 1)的定义域为(一1,+ ),要使函数y = f(x有意义,则—x2—3x+ 4>0,•—4<x<1,•函数y= 的定义—x2—3x+ 4 —x2—3x+ 4域为(—1,1).答案:(一1,1)9. 若函数f(x)在闭区间[—1,2]上的图象如图所示,则此函数的解析式为________ .1解析:由题图可知,当一1 < x<0时,f(x)= x+ 1 ;当0W x< 2时,f(x)= —^x,x+ 1,—1 < x<0,所以f(x)= I1—2x, 0 W x< 2. L 2"x+ 1, —1 W x<0 ,答案:f(x)=(1—2x, 0 W x< 2 L 2f2x + 2ax, x> 2, 210.已知函数f(x) =1 x若f(f(1))>3a2,则a的取值范围是___________ .I2x+ 1, x<2,解析:由题知,f(1) = 2+ 1 = 3, f(f(1)) = f(3) = 32+ 6a,若f(f(1))>3a2,则9 + 6a>3a2, 即a?—2a —3<0 ,解得—1<a<3.答案:(一1,3)ax+ b , x<0 ,1 求f(x)的解析式;2 画出f(x)的图象.了=_护*4皐11•设函数f(x)= 2x x》0且f(—2)= 3 , f( —1) = f(1).I- I h I _ I b I I I铲.■严呻..^4 ・・■$■・h-i-—-4—i—i—iF -I F I I |i I P P -I P I I F I F(2)f(x)的图象如图:f(X + 3), x— 1, 12•设函数 f(x)= 2x+ 2,— 1<x<1,已知 f(a)>1 , _^1一一1, x > 1, x求a 的取值范围.解:法一:(数形结合)画出f(x)的图象,如图所示,作出直线y = 1,由图可见,符合 f(a)>1的a 的取值范围为(一R,— 2)U — 1, 1 .法二:(分类讨论)①当 a < — 1 时,由(a + 1)4>1,得 a + 1>1 或 a + 1< — 1,得 a>0 或 a< — 2, 又 a < — 1,.・.a< — 2;1②当一1<a<1 时,由 2a + 2>1,得 a>— , 1又•••— 1vav1,「.— 2<a<1 ;3 1 ③当a > 1时,由丄一1>1,得Ovav 1, a 2 又••• a > 1,「.此时a 不存在.解:⑴由f —2尸3,f -1 尸 K 1 > —2a + b = 3, —a + b = 2, 解得F_— 1b = 1,所以f(x)才—x + 1, x<02x , x > 0.综上可知,a的取值范围为(一R,—2)U —1,1 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(五) 函数及其表示1.(2019·重庆调研)函数y =log 2(2x -4)+1x -3的定义域是( ) A .(2,3) B .(2,+∞) C .(3,+∞)D .(2,3)∪(3,+∞)解析:选D 由题意,得⎩⎪⎨⎪⎧2x -4>0,x -3≠0,解得x >2且x ≠3,所以函数y =log 2(2x -4)+1x -3的定义域为(2,3)∪(3,+∞),故选D.2.(2018·合肥质量检测)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11解析:选C ∵f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4.故选C.3.已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R).若f (g (1))=1,则a =( ) A .1 B .2 C .3D .-1解析:选A 由已知条件可知f (g (1))=f (a -1)=5|a -1|=1,∴|a -1|=0,得a =1.故选A.4.(2018·荆州联考)若函数f (x )的定义域是[1,2 019],则函数g (x )=f x +x -1的定义域是( )A .[0,2 018]B .[0,1)∪(1,2 018]C .(1,2 019]D .[-1,1)∪(1,2 018]解析:选B 由题知,1≤x +1≤2 019,解得0≤x ≤2 018,又x ≠1,所以函数g (x )=f x +x -1的定义域是[0,1)∪(1,2 018].5.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,故f (x )=4x -1,则f (a )=4a -1=6,解得a =74.6.(2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝ ⎛⎭⎪⎫12x+1,x ≤0,则f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9, f (f (-3))=f (9)=log 39=2.7.(2018·福州二模)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,舍去.于是,可得a =2.故f (a-2)=f (0)=4-2-1=-1516.故选A.8.(2019·合肥质检)已知函数f (x )满足f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,则f (3)=( )A.98B.94C.92D .9解析:选C ∵f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,∴f (3)=2f ⎝ ⎛⎭⎪⎫32=2×⎝ ⎛⎭⎪⎫322=92.9.(2019·合肥模拟)已知f (x )的定义域为{x |x ≠0},且3f (x )+5f ⎝ ⎛⎭⎪⎫1x=3x+1,则函数f (x )的解析式为________________________.解析:用1x代替3f (x )+5f ⎝ ⎛⎭⎪⎫1x =3x +1中的x ,得3f ⎝ ⎛⎭⎪⎫1x +5f (x )=3x +1,∴⎩⎪⎨⎪⎧3f x +5f ⎝ ⎛⎭⎪⎫1x =3x +1, ①3f ⎝ ⎛⎭⎪⎫1x +5f x =3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).答案:f (x )=1516x -916x +18(x ≠0)10.设函数f (x )=⎩⎪⎨⎪⎧-x ,x <0,-ln x ,x >0,若f (m )>f (-m ),则实数m 的取值范围是________.解析:函数f (x )=⎩⎪⎨⎪⎧-x ,x <0,-ln x ,x >0,当m >0时,f (m )>f (-m ),即-ln m >ln m ,即ln m <0,解得0<m <1;当m <0时,f (m )>f (-m ), 即ln(-m )>-ln(-m ), 即ln(-m )>0,解得m <-1. 综上可得,m <-1或0<m <1. 答案:(-∞,-1)∪(0,1)二、专项培优练(一)易错专练——不丢怨枉分1.若函数y =f (x +1)的值域为[-1,1],则函数y =f (3x +2)的值域为( ) A .[-1,1] B .[-1,0] C .[0,1]D .[2,8]解析:选A 函数y =f (x +1)的值域为[-1,1],由于函数中的自变量取定义域内的任意数时,函数的值域都为[-1,1],故函数y =f (3x +2)的值域为[-1,1].故选A.2.(2018·山西名校联考)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A .(-9,+∞)B .(-9,1)C .[-9,+∞)D .[-9,1)解析:选B f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],其定义域为⎩⎪⎨⎪⎧1-x >0,1--x 的解集,解得-9<x <1,所以f [f (x )]的定义域为(-9,1).故选B.3.(2018·安阳三校联考)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4]解析:选D 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,m 2-4m ≤0,解得0<m ≤4.综上可得,0≤m ≤4.4.(2019·珠海质检)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是( ) A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12C.⎣⎢⎡⎭⎪⎫-1,12D.⎝ ⎛⎭⎪⎫0,12解析:选C 由题意知y =ln x (x ≥1)的值域为[0,+∞),故要使f (x )的值域为R ,则必有y =(1-2a )x +3a 为增函数,且1-2a +3a ≥0,所以1-2a >0,且a ≥-1,解得-1≤a <12.5.(2018·合肥质检)已知函数f (x )=mx 2+m -x +1的值域是[0,+∞),则实数m 的取值范围是________.解析:当m =0时,函数f (x )=-3x +1的值域是[0,+∞),显然成立;当m >0时,Δ=(m -3)2-4m ≥0,解得0<m ≤1或m ≥9.显然m <0时不合题意.综上可知,实数m 的取值范围是[0,1]∪[9,+∞).答案:[0,1]∪[9,+∞) (二)技法专练——活用快得分6.[排除法]设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D 当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A 、B 、C ,故选D.7.[特殊值法]函数y =a -a x (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a485=( )A .1B .2C .3D .4解析:选C 当x =1时,y =0,则函数y =a -a x在[0,1]上为减函数,故a >1.∴当x =0时,y =1,则a -1=1,∴a =2.∴log 256+log 2485=log 2⎝ ⎛⎭⎪⎫56×485=log 28=3.8.[数形结合法]设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f (x -1)>1的x 的取值范围是________.解析:画出函数f (x )的大致图象如图,易知函数f (x )在(-∞,+∞)上单调递增.又因为x >x -1,且x -(x -1)=1,f (0)=1,所以要使f (x )+f (x -1)>1成立,则结合函数f (x )的图象知只需x -1>-1,解得x >0.故所求x 的取值范围是(0,+∞).答案:(0,+∞)(三)素养专练——学会更学通9.[逻辑推理]具有性质f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,给出下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( )A .①③B .②③C .①②③D .①②解析:选A 对于①,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝ ⎛⎭⎪⎫1x=1x+x =f (x ),不满足题意;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.故选A.10.[数学运算]已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -1,x >0,g (x )=2x -1,则f (g (2))=__________,f (g (x ))的值域为________.解析:g (2)=22-1=3,∴f (g (2))=f (3)=2.易得g (x )的值域为(-1,+∞),∴若-1<g (x )≤0,f (g (x ))=[g (x )]2-1∈[-1,0);若g (x )>0,f (g (x ))=g (x )-1∈(-1,+∞),∴f (g (x ))的值域是[-1,+∞).答案:2 [-1,+∞)11.[数学抽象]设函数f :R→R,满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 018)=________.解析:令x =y =0,则f (1)=f (0)·f (0)-f (0)-0+2=1×1-1-0+2=2.令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 018)=2 019.答案:2 019。