人教版2018-2019年高一下学期期末数学复习测试卷
2018-2019学年高一数学下学期期末考试试题(含解析)_14

2018-2019学年高一数学下学期期末考试试题(含解析)(满分150分考试时间120分钟)一、选择题(每小题5分,共60分)1.=()A. B. C. D.【答案】A【解析】【分析】利用诱导公式直接得到答案.【详解】故答案选A【点睛】本题考查了诱导公式,属于基础题型.2.已知,则()A. B. C. D.【答案】C【解析】【分析】根据得到,再根据得到答案.【详解】故答案选C【点睛】本题考查了同角三角函数关系,忽略掉其中一个答案是容易发生的错误.3.若函数和在区间D上都是增函数,则区间D可以是()A. B. C. D.【答案】D【解析】【分析】依次判断每个选项,排除错误选项得到答案.【详解】时,单调递减,A错误时,单调递减,B错误时,单调递减,C错误时,函数和都是增函数,D正确故答案选D【点睛】本题考查了三角函数的单调性,意在考查学生对于三角函数性质的理解应用,也可以通过图像得到答案.4.已知扇形圆心角为,面积为,则扇形的弧长等于()A. B. C. D.【答案】C【解析】【分析】根据扇形面积公式得到半径,再计算扇形弧长.【详解】扇形弧长故答案选C【点睛】本题考查了扇形的面积和弧长公式,解出扇形半径是解题的关键,意在考查学生的计算能力.5.已知正三角形ABC边长为2,D是BC的中点,点E满足,则()A. B. C. D. -1【答案】C【解析】【分析】化简,分别计算,,代入得到答案.【详解】正三角形ABC边长为2,D是BC的中点,点E满足故答案选C【点睛】本题考查了向量的计算,将是解题的关键,也可以建立直角坐标系解得答案.6.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.【答案】B【解析】【分析】利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选:B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.7.若,则t=()A. 32B. 23C. 14D. 13【答案】B【解析】【分析】先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.8.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A. 29B. 17C. 12D. 5【答案】B【解析】【分析】根据程序框图依次计算得到答案【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.9.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A. 这天中有天空气质量为一级B. 这天中日均值最高的是11月5日C. 从日到日,日均值逐渐降低D. 这天的日均值的中位数是【答案】D【解析】【分析】由折线图逐一判断各选项即可.【详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【点睛】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.10.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.【答案】A【解析】【分析】直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.11.过点的圆的切线方程是()A. B. 或C. 或D. 或【答案】D【解析】【分析】先由题意得到圆的圆心坐标,与半径,设所求直线方程为,根据直线与圆相切,结合点到直线距离公式,即可求出结果.【详解】因为圆的圆心为,半径为1,由题意,易知所求切线斜率存在,设过点与圆相切的直线方程为,即,所以有,整理得,解得,或;因此,所求直线方程分别为:或,整理得或.故选D【点睛】本题主要考查求过圆外一点的切线方程,根据直线与圆相切,结合点到直线距离公式即可求解,属于常考题型.12.函数的图像关于直线对称,则的最小值为()A. B. C. D. 1【答案】C【解析】【分析】的对称轴为,化简得到得到答案.【详解】对称轴为:当时,有最小值为故答案选C【点睛】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.二、填空题(每小题5分,共20分)13.函数可由y=sin2x向左平移___________个单位得到。
2018-2019学年高一数学下学期期末考试试题(含解析)_30

2018-2019学年高一数学下学期期末考试试题(含解析)一.填空题(本大题14题,每题3分,共42分)1.函数的最小正周期是________.【答案】【解析】【分析】根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为:【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.2.计算:________.【答案】3【解析】【分析】直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.3.设函数,则________.【答案】【解析】【分析】利用反三角函数的定义,解方程即可.【详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【点睛】本题考查了反三角函数的定义,属于基础题.4.已知数列是等差数列,若,,则公差________.【答案】2【解析】【分析】利用等差数列的通项公式即可得出.【详解】设等差数列公差为,∵,,∴,解得=2.故答案为:2.【点睛】本题考查了等差数列的通项公式,考查了计算能力,属于基础题.5.已知数列等比数列,若,,则公比________.【答案】【解析】【分析】利用等比数列的通项公式即可得出.【详解】∵数列是等比数列,若,,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.6.计算:________.【答案】【解析】【分析】由等比数列前n项和公式,得=[1﹣],从而求极限即可.【详解】∵==[1﹣],∴[1﹣]=.故答案为:【点睛】本题考查了等比数列前n项和公式的应用,以及数列极限的求法,属于基础题.7.方程的解集为________.【答案】【解析】【分析】由诱导公式可得,由余弦函数的周期性可得:.【详解】因为方程,由诱导公式得,所以,故答案为:.【点睛】本题考查解三角函数的方程,余弦函数的周期性和诱导公式的应用,属于基础题.8.已知数列是等差数列,记数列的前项和为,若,则________.【答案】3【解析】【分析】由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:3.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.9.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米【答案】2000【解析】【分析】由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.10.若,则的取值范围是________.【答案】【解析】【分析】利用反函数的运算法则,定义及其性质,求解即可.【详解】由,得所以,又因为,所以.故答案为:【点睛】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.11.若函数,的最大值为,则的值是________.【答案】【解析】【分析】利用两角差的正弦公式化简函数的解析式为,由的范围可得的范围,根据最大值可得的值.【详解】∵函数=2()=,∵,∴∈[,],又∵的最大值为,所以的最大值为,即=,解得.故答案为:【点睛】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题.12.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.【答案】5【解析】【详解】试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质13.已知数列满足,,,记数列的前项和为,则________.【答案】7500【解析】【分析】讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.14.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.【答案】32【解析】【分析】根据题意可分析第一组、第二组、第三组、…中数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×32=1984,∴当n=32时,第32组的最后一个数为2×32×33=2112,∴2018位于第32组.故答案为:32.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.二、选择题(本大题共4题,每题4分,共16分)15.“数列为等比数列”是“数列为等比数列”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件【答案】A【解析】【分析】数列是等比数列与命题是等比数列是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【详解】若数列是等比数列,则,∴,∴数列是等比数列,若数列是等比数列,则,∴,∴数列不是等比数列,∴数列是等比数列是数列是等比数列的充分非必要条件,故选:A.【点睛】本题主要考查充分不必要条件的判断,注意等比数列的性质的灵活运用,属于基础题.16.设,则()A. B. C. D.【答案】D【解析】【分析】由得,再计算即可.【详解】,,所以故选:D【点睛】本题考查了以数列的通项公式为载体求比值的问题,以及归纳推理的应用,属于基础题.17.已知等差数列公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【点睛】本题考查用定义判断数列单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.18.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A. ,B. ,C. ,D. ,【答案】C【解析】【分析】直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.三、解答题(本大题共4题,共42分)19.解关于的方程:【答案】【解析】【分析】根据方程解出或,利用三角函数的定义解出,再根据终边相同角的表示即可求出.【详解】由,得,所以或,所以或,所以的解集为:.【点睛】本题考查了三角方程的解法,终边相同角的表示,反三角函数的定义,考查计算能力,属于基础题.20.已知数列的前项和为,且,求数列的通项公式.【答案】【解析】【分析】当时,,当时,,即可得出.【详解】∵已知数列的前项和为,且,当时,,当时,,检验:当时,不符合上式,【点睛】本题考查了数列递推关系、数列的通项公式,考查了推理能力与计算能力,属于基础题.21.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题.22.已知数列满足,.(1)证明:数列是等差数列,并求数列的通项公式;(2)设,数列的前n项和为,求使不等式<对一切恒成立的实数的范围.【答案】(1)见解析,;(2)【解析】【分析】(1)对递推式两边取倒数化简,即可得出,利用等差数列的通项公式得出,再得出;(2)由(1)得,再使用裂项相消法求出,使用不等式得出的范围,从而得出的范围.【详解】(1)∵,两边取倒数,∴,即,又,∴数列是以1为首项,2为公差的等差数列,∴,∴.(2)由(1)得,∴=,要使不等式Sn<对一切恒成立,则.∴的范围为:.【点睛】本题考查了构造法求等差数列的通项公式,裂项相消法求数列的和,属于中档题.23.己知数列是等比数列,且公比为,记是数列的前项和.(1)若=1,>1,求的值;(2)若首项,,是正整数,满足不等式|﹣63|<62,且对于任意正整数都成立,问:这样的数列有几个?【答案】(1);(2)114【解析】【分析】(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.【详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,,,则;(2)满足不等式|﹣63|<62,.,,且,,得随着的增大而增大,得,又且对于任意正整数都成立,得,,且是正整数,满足的个数为:124﹣11+1=114个,即有114个,所以有114个数列.【点睛】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题.2018-2019学年高一数学下学期期末考试试题(含解析)一.填空题(本大题14题,每题3分,共42分)1.函数的最小正周期是________.【答案】【解析】【分析】根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为:【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.2.计算:________.【答案】3【解析】【分析】直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.3.设函数,则________.【答案】【解析】【分析】利用反三角函数的定义,解方程即可.【详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【点睛】本题考查了反三角函数的定义,属于基础题.4.已知数列是等差数列,若,,则公差________.【答案】2【解析】【分析】利用等差数列的通项公式即可得出.【详解】设等差数列公差为,∵,,∴,解得=2.故答案为:2.【点睛】本题考查了等差数列的通项公式,考查了计算能力,属于基础题.5.已知数列等比数列,若,,则公比________.【答案】【解析】【分析】利用等比数列的通项公式即可得出.【详解】∵数列是等比数列,若,,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.6.计算:________.【答案】【解析】【分析】由等比数列前n项和公式,得=[1﹣],从而求极限即可.【详解】∵==[1﹣],∴[1﹣]=.故答案为:【点睛】本题考查了等比数列前n项和公式的应用,以及数列极限的求法,属于基础题.7.方程的解集为________.【答案】【解析】【分析】由诱导公式可得,由余弦函数的周期性可得:.【详解】因为方程,由诱导公式得,所以,故答案为:.【点睛】本题考查解三角函数的方程,余弦函数的周期性和诱导公式的应用,属于基础题.8.已知数列是等差数列,记数列的前项和为,若,则________.【答案】3【解析】【分析】由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:3.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.9.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米【答案】2000【解析】【分析】由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.10.若,则的取值范围是________.【答案】【解析】【分析】利用反函数的运算法则,定义及其性质,求解即可.【详解】由,得所以,又因为,所以.故答案为:【点睛】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.11.若函数,的最大值为,则的值是________.【答案】【解析】【分析】利用两角差的正弦公式化简函数的解析式为,由的范围可得的范围,根据最大值可得的值.【详解】∵函数=2()=,∵,∴∈[,],又∵的最大值为,所以的最大值为,即=,解得.故答案为:【点睛】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题.12.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.【答案】5【解析】【详解】试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质13.已知数列满足,,,记数列的前项和为,则________.【答案】7500【解析】【分析】讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.14.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.【答案】32【解析】【分析】根据题意可分析第一组、第二组、第三组、…中数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×32=1984,∴当n=32时,第32组的最后一个数为2×32×33=2112,∴2018位于第32组.故答案为:32.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.二、选择题(本大题共4题,每题4分,共16分)15.“数列为等比数列”是“数列为等比数列”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件【答案】A【解析】【分析】数列是等比数列与命题是等比数列是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【详解】若数列是等比数列,则,∴,∴数列是等比数列,若数列是等比数列,则,∴,∴数列不是等比数列,∴数列是等比数列是数列是等比数列的充分非必要条件,故选:A.【点睛】本题主要考查充分不必要条件的判断,注意等比数列的性质的灵活运用,属于基础题.16.设,则()A. B. C. D.【答案】D【解析】【分析】由得,再计算即可.【详解】,,所以故选:D【点睛】本题考查了以数列的通项公式为载体求比值的问题,以及归纳推理的应用,属于基础题.17.已知等差数列公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【点睛】本题考查用定义判断数列单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.18.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A. ,B. ,C. ,D. ,【答案】C【解析】【分析】直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.三、解答题(本大题共4题,共42分)19.解关于的方程:【答案】【解析】【分析】根据方程解出或,利用三角函数的定义解出,再根据终边相同角的表示即可求出.【详解】由,得,所以或,所以或,所以的解集为:.【点睛】本题考查了三角方程的解法,终边相同角的表示,反三角函数的定义,考查计算能力,属于基础题.20.已知数列的前项和为,且,求数列的通项公式.【答案】【解析】【分析】当时,,当时,,即可得出.【详解】∵已知数列的前项和为,且,当时,,当时,,检验:当时,不符合上式,【点睛】本题考查了数列递推关系、数列的通项公式,考查了推理能力与计算能力,属于基础题.21.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题.22.已知数列满足,.(1)证明:数列是等差数列,并求数列的通项公式;(2)设,数列的前n项和为,求使不等式<对一切恒成立的实数的范围.【答案】(1)见解析,;(2)【解析】【分析】(1)对递推式两边取倒数化简,即可得出,利用等差数列的通项公式得出,再得出;(2)由(1)得,再使用裂项相消法求出,使用不等式得出的范围,从而得出的范围.【详解】(1)∵,两边取倒数,∴,即,又,∴数列是以1为首项,2为公差的等差数列,∴,∴.(2)由(1)得,∴=,要使不等式Sn<对一切恒成立,则.∴的范围为:.【点睛】本题考查了构造法求等差数列的通项公式,裂项相消法求数列的和,属于中档题.23.己知数列是等比数列,且公比为,记是数列的前项和.(1)若=1,>1,求的值;(2)若首项,,是正整数,满足不等式|﹣63|<62,且对于任意正整数都成立,问:这样的数列有几个?【答案】(1);(2)114【解析】【分析】(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.【详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,,,则;(2)满足不等式|﹣63|<62,.,,且,,得随着的增大而增大,得,又且对于任意正整数都成立,得,,且是正整数,满足的个数为:124﹣11+1=114个,即有114个,所以有114个数列.【点睛】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题.。
2018-2019学年高一数学下学期期末考试试题(含解析)_31

2018-2019学年高一数学下学期期末考试试题(含解析)一、填空题(本大题共10小题,每小题3分,共30分)1.函数的值域是______.【答案】【解析】【分析】根据反正弦函数定义得结果【详解】由反正弦函数定义得函数的值域是【点睛】本题考查反正弦函数定义,考查基本分析求解能力,属基础题2.在等差数列中,,当最大时,的值是________.【答案】6或7【解析】分析】利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【点睛】本题考查了等差数列前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.3.若,则______.【答案】,【解析】【分析】根据特殊角的三角函数值求解三角方程【详解】因为【点睛】本题考查解简单三角方程,考查基本分析求解能力,属基础题4.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.【答案】1【解析】【分析】根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题5.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).【答案】464【解析】【分析】根据等比数列求和公式求解【详解】由题意得从2019年到2022年各年产值构成以100 为首项,1.1为公比的等比数列,其和为【点睛】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题6.设数列是等差数列,,,则此数列前20项和等于______.【答案】180【解析】【分析】根据条件解得公差与首项,再代入等差数列求和公式得结果【详解】因为,,所以,【点睛】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题7.在中,角,,所对的边分别为,,,若,则角最大值为______.【答案】【解析】【分析】根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题8.(理)已知函数,若对恒成立,则的取值范围为.【答案】【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.9.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是__________.【答案】100【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,,所以,,当且仅当时等号成立,因此的最大值为100.点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解.10.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________ .【答案】【解析】试题分析:根据正余弦函数定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.二、选择题(本大题共4小题,每小题3分,共12分.在毎小题给出的四个选项中,只有一项是符合题目要求的)11.“”是“”成立的()A. 充分非必要条件.B. 必要非充分条件.C. 充要条件.D. 既非充分又非必要条件.【答案】A【解析】【分析】依次分析充分性与必要性是否成立.【详解】时,而时不一定成立,所以“”是“”成立的充分非必要条件,选A.【点睛】本题考查充要关系判定,考查基本分析判断能力,属基础题12.公比为2的等比数列的各项都是正数,且,则()A. 8B. 2C. 4D. 1【答案】D【解析】【分析】根据条件解得首项,再求【详解】因为,所以,选D.【点睛】本题考查等比数列通项公式中基本量,考查基本分析求解能力,属基础题13.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.【答案】C【解析】【分析】比较与时不等式左边的项,即可得到结果【详解】因此不等式左边为,选C.【点睛】本题考查数学归纳法,考查基本分析判断能力,属基础题14.如图,函数的图像是()A. B.C. D.【答案】C【解析】【分析】取特殊值,即可进行比较判断选择【详解】因为,所以舍去D; 因为,所以舍去A; 因为,所以舍去B;选C.【点睛】本题考查图象识别,考查基本分析判断能力,属基础题三、解答题(本大题共6个题,满分58分.解答应写出文字说明、证明过程或演算步骤)15.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)【答案】【解析】【分析】过作的垂线,垂足为,再利用直角三角形与正弦定理求解【详解】解:设人的位置为,塔底为,塔顶为,过作的垂线,垂足为,则,,,,所以,答:电视塔的高为约.【点睛】本题考查利用正弦定理测量高度,考查基本分析求解能力,属基础题16.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.【答案】(1)(2)只有一项【解析】【分析】(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【点睛】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题17.已知函数(其中,)的最小正周期为.(1)求的值;(2)如果,且,求的值.【答案】(1)(2)【解析】分析】(1)先根据二倍角余弦公式化简,再根据余弦函数性质求解(2)先求得,再根据两角差余弦公式求解【详解】解:(1)因为.所以,因为,所以.(2)由(1)可知,所以,因为,所以,所以.因为.所以.【点睛】本题考查二倍角余弦公式、两角差余弦公式以及余弦函数性质,考查基本分析求解能力,属基础题18.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.【答案】(1),,(2)猜想:,证明见解析【解析】【分析】(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题19.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.【答案】(1);(2).【解析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解.试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式.20.已知数列前项和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.【答案】(1)(2)(3)见解析【解析】【分析】(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【详解】(1),所以,由得时,,两式相减得,,,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3)①,,其中,所以,当时,②②式两边同时乘以得,③①式减去③得,,所以,因为,所以数列是以为首项,公差为的等差数列.【点睛】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题2018-2019学年高一数学下学期期末考试试题(含解析)一、填空题(本大题共10小题,每小题3分,共30分)1.函数的值域是______.【答案】【解析】【分析】根据反正弦函数定义得结果【详解】由反正弦函数定义得函数的值域是【点睛】本题考查反正弦函数定义,考查基本分析求解能力,属基础题2.在等差数列中,,当最大时,的值是________.【答案】6或7分析】利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【点睛】本题考查了等差数列前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.3.若,则______.【答案】,【解析】【分析】根据特殊角的三角函数值求解三角方程【详解】因为【点睛】本题考查解简单三角方程,考查基本分析求解能力,属基础题4.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.【答案】1【解析】根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题5.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).【答案】464【解析】【分析】根据等比数列求和公式求解【详解】由题意得从2019年到2022年各年产值构成以100 为首项,1.1为公比的等比数列,其和为【点睛】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题6.设数列是等差数列,,,则此数列前20项和等于______.【答案】180【解析】【分析】根据条件解得公差与首项,再代入等差数列求和公式得结果【详解】因为,,所以,【点睛】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题7.在中,角,,所对的边分别为,,,若,则角最大值为______.【答案】【分析】根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题8.(理)已知函数,若对恒成立,则的取值范围为.【答案】【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.9.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是__________.【答案】100【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,,所以,,当且仅当时等号成立,因此的最大值为100.点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解.10.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________ .【答案】【解析】试题分析:根据正余弦函数定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.二、选择题(本大题共4小题,每小题3分,共12分.在毎小题给出的四个选项中,只有一项是符合题目要求的)11.“”是“”成立的()A. 充分非必要条件.B. 必要非充分条件.C. 充要条件.D. 既非充分又非必要条件.【答案】A【解析】【分析】依次分析充分性与必要性是否成立.【详解】时,而时不一定成立,所以“”是“”成立的充分非必要条件,选A.【点睛】本题考查充要关系判定,考查基本分析判断能力,属基础题12.公比为2的等比数列的各项都是正数,且,则()A. 8B. 2C. 4D. 1【答案】D【解析】【分析】根据条件解得首项,再求【详解】因为,所以,选D.【点睛】本题考查等比数列通项公式中基本量,考查基本分析求解能力,属基础题13.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.【答案】C【解析】【分析】比较与时不等式左边的项,即可得到结果【详解】因此不等式左边为,选C.【点睛】本题考查数学归纳法,考查基本分析判断能力,属基础题14.如图,函数的图像是()A. B.C. D.【答案】C【解析】【分析】取特殊值,即可进行比较判断选择【详解】因为,所以舍去D; 因为,所以舍去A; 因为,所以舍去B;选C.【点睛】本题考查图象识别,考查基本分析判断能力,属基础题三、解答题(本大题共6个题,满分58分.解答应写出文字说明、证明过程或演算步骤)15.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)【答案】【解析】【分析】过作的垂线,垂足为,再利用直角三角形与正弦定理求解【详解】解:设人的位置为,塔底为,塔顶为,过作的垂线,垂足为,则,,,,所以,答:电视塔的高为约.【点睛】本题考查利用正弦定理测量高度,考查基本分析求解能力,属基础题16.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.【答案】(1)(2)只有一项【解析】【分析】(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【点睛】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题17.已知函数(其中,)的最小正周期为.(1)求的值;(2)如果,且,求的值.【答案】(1)(2)【解析】分析】(1)先根据二倍角余弦公式化简,再根据余弦函数性质求解(2)先求得,再根据两角差余弦公式求解【详解】解:(1)因为.所以,因为,所以.(2)由(1)可知,所以,因为,所以,所以.因为.所以.【点睛】本题考查二倍角余弦公式、两角差余弦公式以及余弦函数性质,考查基本分析求解能力,属基础题18.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.【答案】(1),,(2)猜想:,证明见解析【解析】【分析】(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题19.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.【答案】(1);(2).【解析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解.试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式.20.已知数列前项和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.【答案】(1)(2)(3)见解析【解析】【分析】(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【详解】(1),所以,由得时,,两式相减得,,,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3)①,,其中,所以,当时,②②式两边同时乘以得,③①式减去③得,,所以,因为,所以数列是以为首项,公差为的等差数列.【点睛】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题。
2018-2019学年高一数学下学期期末考试试题(含解析)_1

2018-2019学年高一数学下学期期末考试试题(含解析)一、填空题1.函数的最小正周期______.【答案】π【解析】函数y=3sin(2x+)的最小正周期是=π,故答案为:π.2.若扇形圆心角为,扇形面积为,则扇形半径为__________.【答案】2【解析】【分析】先将角度转化为弧度,然后利用扇形面积公式列方程,由此求得扇形的半径.【详解】依题意可知,圆心角的弧度数为,设扇形半径为,则.【点睛】本小题主要考查角度制和弧度制的转化,考查扇形面积公式,属于基础题.3.在等差数列中,已知,,则________.【答案】-16【解析】【分析】设等差数列的公差为,利用通项公式求出即可.【详解】设等差数列的公差为,得,则.故答案为:【点睛】本题考查了等差数列通项公式的应用,属于基础题.4.若数列满足:,,则前8项的和_________.【答案】255【解析】【分析】根据已知判断数列为等比数列,由此求得其前项和.【详解】由于,故数列是首项为,公比为的等比数列,故.【点睛】本小题主要考查等比数列的定义,考查等比数列前项和公式,属于基础题.5.已知,则_________.【答案】【解析】【分析】根据诱导公式求得的值,根据同角三角函数的基本关系式求得的值,根据二倍角公式求得的值.【详解】依题意,由于,所以,所以.【点睛】本小题主要考查诱导公式、同角三角函数基本关系式,二倍角公式,属于基础题.6.函数,为偶函数,则_______.【答案】【解析】【分析】根据诱导公式以及的取值范围,求得的值.【详解】根据诱导公式可知,是的奇数倍,而,所以.【点睛】本小题主要考查诱导公式,考查三角函数奇偶性,属于基础题.7.在中,,其面积,则长为________.【答案】49【解析】【分析】根据三角形面积公式求得,然后根据余弦定理求得.【详解】由三角形面积公式得,解得,由余弦定理得.【点睛】本小题主要考查三角形的面积公式,考查利用余弦定理解三角形,属于基础题.8.设表示等比数列的前项和,已知,则______.【答案】7【解析】【分析】根据等比数列的前项和公式化简已知条件,求得的值,由此求得所求表达式的值.【详解】由于数列为等比数列,故..【点睛】本小题主要考查数列的前项和公式,考查运算求解能力,属于基础题.9.数列中,则通项____________.【答案】【解析】因为数列的首项为1,递推关系式两边加1,得到等比数列,其公比为3,首项为2,因此可知。
2018-2019学年高一数学下学期期末考试试题(含解析)_44

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知三个内角、、的对边分别是,若,则等于( )A. B. C. D.【答案】A【解析】【分析】根据直角三角形中角所对的直角边等于斜边的一半求解【详解】由条件可知,故选.【点睛】本题考查解三角形,属于基础题.2.已知三个内角、、的对边分别是,若则的面积等于( )A. B. C. D.【答案】B【解析】根据三角的面积公式求解.详解】,故选.【点睛】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.3.从总数为的一批零件中随机抽取一个容量为的样本,若每个零件被抽中的可能性为,则为( )A. B. C. D.【答案】C【解析】【分析】根据古典概型的概率公式求解.【详解】由,得.故选.【点睛】本题考查古典概型的概率,属于基础题.4.在等比数列中,若,则的值为()A. B. C. D.【答案】B【分析】根据等比数列的性质:若,则.【详解】等比数列中,,,故选B.【点睛】本题考查等比数列的通项公式和性质,此题也可用通项公式求解.5.已知三个内角、、的对边分别是,若,则等于( )A. B. C. D.【答案】D【解析】【分析】根据正弦定理把边化为对角的正弦求解.【详解】【点睛】本题考查正弦定理,边角互换是正弦定理的重要应用,注意增根的排除.6.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是( )A. B.C. D.【答案】B【解析】【分析】先求出直线的倾斜角,进而得出所求直线的倾斜角和斜率,再根据点斜式写直线的方程.【详解】已知直线的斜率为,则倾斜角为,故所求直线的倾斜角为,斜率为,由直线的点斜式得,即。
故选B.【点睛】本题考查直线的性质与方程,属于基础题.7.已知,若,则下列不等式成立的是 ( )A. B. C. D.【答案】C【解析】【分析】根据不等式的性质对每一个选项进行证明,或找反例进行排除.【详解】解:选项A:取,此时满足条件,则,显然,所以选项A错误;选项B:取,此时满足条件,则,显然,所以选项B错误;选项C:因为,所以,因为,所以,选项C正确;选项D:取,当,则,所以,所以选项D错误;故本题选C.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.8.已知函数,则不等式的解集为( )A. B. C. D.【答案】B【解析】【分析】先判断函数的单调性,把转化为自变量的不等式求解.【详解】可知函数为减函数,由,可得,整理得,解得,所以不等式的解集为.故选B.【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.9.在长方体中,,,,则异面直线与所成角的大小为( )A. B. C. D. 或【答案】C【解析】【分析】平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【点睛】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.10.不等式的解集是( )A. B.C. D.【答案】D【解析】试题分析:且且,化简得解集为考点:分式不等式解法11.点关于直线的对称点的坐标为()A. B. C. D.【答案】D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.12.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯。
2018-2019学年高一数学下学期期末考试试题(含解析)_41

2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角为()A. B. C. D.【答案】B【解析】【分析】根据直线方程求得直线的斜率,由此求得直线倾斜角.【详解】依题意可知直线的斜率为,故倾斜角为,故选B.【点睛】本小题主要考查直线斜率与倾斜角,属于基础题.2.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A. 高一学生被抽到的可能性最大B. 高二学生被抽到的可能性最大C. 高三学生被抽到的可能性最大D. 每位学生被抽到的可能性相等【答案】D【解析】【分析】根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.3.如图,正方体的棱长为,那么四棱锥的体积是()A.B.C.D.【答案】B【解析】【分析】根据锥体体积公式,求得四棱锥的体积.【详解】根据正方体的几何性质可知平面,所以,故选B.【点睛】本小题主要考查四棱锥体积的计算,属于基础题.4.已知向量,,若与平行,则实数的值为()A. B. C. D.【答案】D【解析】分析】先求得与,然后根据两个向量平行的条件列方程,解方程求得的值.【详解】依题意与,由于与平行,所以,,解得,故选D.【点睛】本小题主要考查平面向量坐标的线性运算,考查两个向量平行的条件,属于基础题.5.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.【答案】D【解析】【分析】先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【点睛】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.6.在△中,若,则△为()A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形【答案】A【解析】【分析】利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.7.若直线过圆的圆心,则的值为()A. B. C. D.【答案】A【解析】【分析】求得圆的圆心,代入直线方程,由此求得的值.【详解】依题意可知,圆的圆心为,代入直线方程得,解得,故选A.【点睛】本小题主要考查由圆的一般方程求圆心坐标,考查方程的思想,属于基础题.8.如图,向量,,,则向量可以表示为()A.B.C.D.【答案】C【解析】【分析】利用平面向量加法和减法的运算,求得的线性表示.【详解】依题意,即,故选C.【点睛】本小题主要考查平面向量加法和减法的运算,属于基础题.9.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D 选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【点睛】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.在△中,,,,则_________.【答案】【解析】【分析】利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.12.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:则该小区已安装宽带的居民估计有______户.【答案】【解析】【分析】计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.13.已知点,,则向量______,与向量同向的单位向量为_______.【答案】 (1). (2).【解析】【分析】先求得,通过求得同方向的单位向量.【详解】依题意,故同方向的单位向量为.【点睛】本小题主要考查向量减法的坐标运算,考查向量同方向的单位向量的求法.14.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.【答案】【解析】【分析】联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【点睛】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.15.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)______【答案】①④⑤【解析】为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1 作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l (即 AC1)的垂面.对比图①,由MN∥BA l,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BA l D相交,知l不垂直于MN,故l 不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1 D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.综合得本题的答案为①④⑤.解法2 如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面 MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面 MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面 MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P 在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.三、解答题共5小题,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【点睛】本小题主要考查向量数量积运算,考查向量夹角计算,考查向量模的求法,属于基础题.17.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用正弦定理化简已知条件,由此求得的大小.(II)利用余弦定理求得的值,再根据三角形面积公式求得三角形面积.【详解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面积.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查三角形的面积公式,属于基础题.18.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】【分析】(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数.(Ⅲ)平均年龄为【点睛】本小题主要考查频率分布直方图的识别与应用,考查频率分布直方图估计中位数和平均数,考查运算求解能力,属于中档题.19.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;(Ⅲ)求证:平面.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】【分析】(I)通过证明平面来证得平面平面.(II)取中点,连接,通过证明四边形为平行四边形,证得,由此证得∥平面.(III)通过证明平面证得,通过计算证明证得,由此证得平面.【详解】证明:(Ⅰ)因为平面,所以.因为,,所以平面因为平面,所以平面平面.(Ⅱ)取中点,连结,因为为的中点所以,且.因为为的中点,底面为正方形,所以,且.所以,且.所以四边形为平行四边形.所以.因为平面且平面,所以平面.(Ⅲ)在正方形中,,因为平面,所以.因为,所以平面.所以在△中,设交于.因为,且分别为的中点,所以.所以.设,由已知,所以.所以.所以.所以,且为公共角,所以△∽△.所以.所以.因为,所以平面.【点睛】本小题主要考查线面垂直、面面垂直的证明,考查线面平行的证明,考查空间想象能力和逻辑推理能力,属于中档题.20.已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.(1)求圆的标准方程:(2)设过点的直线与圆交于不同的两点,,以,为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程:如果不存在,请说明理由.【答案】(1) .(2) 不存在这样的直线.【解析】试题分析:(I)用待定系数法即可求得圆C的标准方程;(Ⅱ)首先考虑斜率不存在的情况.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2).l与圆C相交于不同的两点,那么Δ>0.由题设及韦达定理可得k与x1、x2之间关系式,进而求出k的值.若k的值满足Δ>0,则存在;若k的值不满足Δ>0,则不存在.试题解析:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知解得a=1或a=, 3分又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=4. 6分(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立消去y得:(1+k2)x2+(6k-2)x+6=0, 9分∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,解得或.x1+x2=,y1+ y2=k(x1+x2)+6=,,,假设∥,则,∴,解得,假设不成立.∴不存在这样的直线l. 13分考点:1、圆的方程;2、直线与圆的位置关系.2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角为()A. B. C. D.【答案】B【解析】【分析】根据直线方程求得直线的斜率,由此求得直线倾斜角.【详解】依题意可知直线的斜率为,故倾斜角为,故选B.【点睛】本小题主要考查直线斜率与倾斜角,属于基础题.2.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A. 高一学生被抽到的可能性最大B. 高二学生被抽到的可能性最大C. 高三学生被抽到的可能性最大D. 每位学生被抽到的可能性相等【答案】D【解析】【分析】根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.3.如图,正方体的棱长为,那么四棱锥的体积是()A.B.C.D.【答案】B【解析】【分析】根据锥体体积公式,求得四棱锥的体积.【详解】根据正方体的几何性质可知平面,所以,故选B.【点睛】本小题主要考查四棱锥体积的计算,属于基础题.4.已知向量,,若与平行,则实数的值为()A. B. C. D.【答案】D【解析】分析】先求得与,然后根据两个向量平行的条件列方程,解方程求得的值.【详解】依题意与,由于与平行,所以,,解得,故选D.【点睛】本小题主要考查平面向量坐标的线性运算,考查两个向量平行的条件,属于基础题.5.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.【答案】D【解析】【分析】先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【点睛】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.6.在△中,若,则△为()A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形【答案】A【解析】【分析】利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.7.若直线过圆的圆心,则的值为()A. B. C. D.【答案】A【解析】【分析】求得圆的圆心,代入直线方程,由此求得的值.【详解】依题意可知,圆的圆心为,代入直线方程得,解得,故选A.【点睛】本小题主要考查由圆的一般方程求圆心坐标,考查方程的思想,属于基础题.8.如图,向量,,,则向量可以表示为()A.B.C.D.【答案】C【解析】【分析】利用平面向量加法和减法的运算,求得的线性表示.【详解】依题意,即,故选C.【点睛】本小题主要考查平面向量加法和减法的运算,属于基础题.9.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【点睛】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.在△中,,,,则_________.【答案】【解析】【分析】利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.12.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:则该小区已安装宽带的居民估计有______户.【答案】【解析】【分析】计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.13.已知点,,则向量______,与向量同向的单位向量为_______.【答案】 (1). (2).【解析】【分析】先求得,通过求得同方向的单位向量.【详解】依题意,故同方向的单位向量为.【点睛】本小题主要考查向量减法的坐标运算,考查向量同方向的单位向量的求法.14.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.【答案】【解析】【分析】联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【点睛】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.15.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)______【答案】①④⑤【解析】为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1 作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l (即 AC1)的垂面.对比图①,由MN∥BA l,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BA l D相交,知l不垂直于MN,故l不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1 D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.综合得本题的答案为①④⑤.解法2 如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面 MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面 MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面 MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.三、解答题共5小题,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【点睛】本小题主要考查向量数量积运算,考查向量夹角计算,考查向量模的求法,属于基础题.17.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用正弦定理化简已知条件,由此求得的大小.(II)利用余弦定理求得的值,再根据三角形面积公式求得三角形面积.【详解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面积.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查三角形的面积公式,属于基础题.18.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】【分析】(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数.(Ⅲ)平均年龄为【点睛】本小题主要考查频率分布直方图的识别与应用,考查频率分布直方图估计中位数和平均数,考查运算求解能力,属于中档题.19.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;。
2018-2019学年高一数学下学期期末考试试题(含解析)_40

2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.某学校A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A. 2B. 4C. 5D. 6【答案】B【解析】分析】分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。
【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。
故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。
2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得。
【详解】,可知,即,故选:B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目。
3.在△中,已知,,,则△的面积等于( )A. 6B. 12C.D.【答案】C【解析】【分析】通过A角的面积公式,代入数据易得面积。
【详解】故选:C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目。
4.以点为圆心,且经过点的圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆的标准方程,代入点即可。
【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:。
故选:B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目。
5.在区间随机取一个实数,则的概率为( )A. B. C. D.【答案】C【解析】【分析】利用几何概型的定义区间长度之比可得答案,在区间的占比为,所以概率为。
【详解】因为的长度为3,在区间的长度为9,所以概率为。
故选:C【点睛】此题考查几何概型,概率即是在部分占总体的占比,属于简单题目。
2018-2019学年高一数学下学期期末考试试题(含解析)_32

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项符合题意的)1.直线在轴上的截距为,在轴上的截距为,则()A. B. C. D.【答案】B【解析】【分析】令求,利用求。
【详解】令,由得:,所以令,由得:,所以,故选B。
【点睛】本题考查了直线的截距问题,直线方程,令解出,得到直线的纵截距。
令解出,得到直线的横截距。
2.已知是两条异面直线,,那么与位置关系()A. 一定是异面B. 一定是相交C. 不可能平行D. 不可能垂直【答案】C【解析】【分析】由平行公理,若,因为,所以,与、是两条异面直线矛盾,异面和相交均有可能.【详解】、是两条异面直线,,那么与异面和相交均有可能,但不会平行.因为若,因为,由平行公理得,与、是两条异面直线矛盾.故选C.【点睛】本题主要考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力,属于基础题.3.过点A(3,3)且垂直于直线的直线方程为A. B. C. D.【答案】D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为:D.4.设变量满足约束条件,则目标函数的最大值是()A. 7B. 5C. 3D. 2【答案】B【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.平面与平面平行的条件可以是()A. 内有无穷多条直线都与平行B. 直线∥,∥,且直线不在平面内,也不在平面内C. 直线,直线,且∥,∥D. 内的任何直线都与平行【答案】D【解析】【分析】对每一个选项逐一分析得解.【详解】对于选项A,内有无穷多条直线都与平行,则可能与平行或相交,所以该选项错误;对于选项B, 直线∥,∥,且直线不在平面内,也不在平面内, 则可能与平行或相交,所以该选项错误;对于选项C, 直线,直线,且∥,∥,则可能与平行或相交,所以该选项错误;对于选项D, 内任何直线都与平行,所以,所以该选项正确.故选:D【点睛】本题主要考查面面平行的判断证明,意在考查学生对这些知识的理解掌握水平和分析推理空间想象能力.6.若满足,且的最小值为,则实数的值为()A. B. C. D.【答案】B【解析】【分析】首先画出满足条件的平面区域,然后根据目标函数取最小值找出最优解,把最优解点代入目标函数即可求出的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一期末复习测试卷
(必修2 第二章 点、直线、平面之间的位置关系)
(时间:120分钟 满分:150分)
_______班 姓名 _______ 得分_______
一、选择题(共12小题,每小题 5分,共60分)
1.关于空间中点、线、面之间的关系描述正确的是( )
A .若直线a 在平面α外,则α//a
B .若点A 在直线a 上,则a A ∈
C .若直线a 与b 不相交,则b a //
D .若b a ⊥,则a 与b 必相交 2.已知直线a 、b ,且a ∥α,b ⊂α,则( )
A .a ∥b
B .a 与b 相交
C .a 与b 异面
D .a 与b 平行或异面
3.在正方体1111D C B A ABCD -中,与对角线1BD 异面的棱有( )条 A . 3 B . 4 C . 6 D . 8 4.直线⊥a 平面α,直线a b ⊥,则b 和α的位置关系是( )
A .α⊥b
B .b ∥α
C .α⊂b
D .b ∥α或α⊂b 5.已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是( ) A .βαβα⊂⊂n m ,,//n m //⇒ B .αα//,//n m n m //⇒ C .n m m =⊂βαβα ,,//n m //⇒ D .αα⊂n m ,//n m //⇒
6.三棱锥A —BCD 的棱长全相等, E 是AD 中点, 则直线CE 与直线BD 所成角的余弦值为( )
A .
63 B .23 C .633
D .21
7.如果正四棱锥的侧面积等于底面积的2倍,则侧面与底面所成的角等于( ) A .30°
B .45°
C .60°
D .75°
8.如下图,⊥PD 矩形ABCD 所在的平面,图中相互垂直的平面有( )对
A .2
B .3
C .4
D .5
9.下列推断错误..的是( ) A .一条直线与两个平行平面所成的角相等 B .两个平行平面与第三个平面所成的角相等 C .两条平行直线与同一个平面所成的角相等
D .两条直线与一个平面所成的角相等,则这两条直线平行 10.如图为一正方体的平面展开图,在这个正方体中:
①BM ∥平面DE ②CN ∥AF
③ED 与AF 成的角为
60 ④平面BMD ∥平面AFN 其中正确的序号是( )
A .①④
B .①②④
C .①③④
D .①②③④ 11.已知直线⊥l 平面α,直线⊂m 平面β,在下列命题中正确的是( )
①m l ⊥⇒βα// ②m l //⇒⊥βα ③βα⊥⇒m l // ④
βα//⇒⊥m l
A .①②
B .③④
C .②④
D .①③
12.在空间四边形ABCD 中,CD AB =,且异面直线AB 与
D A
B
E
F
G
D
A
B
C
P
CD 所成的角为
60,E 、F 分别为边BC 和AD 的中点, 则异面直线EF 和AB 所成的角为 ( )
A .
30 B . 45 C . 60 D . 30或
60
二、填空题(共4小题,每小题5分,共20分)
13.如图长方体中,32==AD AB ,21=CC , 则二面角C BD C --1的大小为 .
14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:
①n m ⊥ ②βα⊥ ③β⊥m ④α⊥n . 以其中三个作为条件,余下一个作为结论,
请写出正确的一个命题:______________________________. 15.如图,在四棱锥P ABCD -中,底面为直角梯形,AD ∥BC , 90BAD ∠=︒,PA ⊥底面ABCD ,且AB AD PA ==,M 、 N 分别为PC 、PB 的中点,则直线BD 与平面ADMN 所成的 角为_______.
16.以下是关于直线、平面的平行与垂直关系推断:
①若b a ⊥,且c a //,则c b ⊥ ②若b a ⊥,且b c ⊥,则c a // ③若βα⊥,且βγ⊥,则γα// ④若α⊥a ,且β⊂a ,则βα⊥ 其中不对..
的有 .(只填序号) 三、解答题(共6小题,其中第17小题10分,其他各题12分,共70分)
17.( 10分) 在正方体1111D C B A ABCD -中,且O 为底面正方形1111D C B A 的中心. (1)求证:⊥C A 1平面BD C 1;
(2 ) 求证:AO ∥平面BD C 1.
1
D 1
C 1
B 1
A D
C
B
A
o
A
1
A 1D C
1
C B
D 1
B
N
M P
D
C
B A
18.(12分) 已知P 是平行四边形ABCD 所在平面外一点,E 是PC 的中点,在DE 上任取一点F ,
过点F 和AP 作平面交平面BDE 于FG , 求证:GF AP //.
19.(12分) 如图,PA ⊥矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点.
(1)求证://MN 平面PAD ; (2)求证:MN CD ⊥;
(3)若
45=∠PDA ,求证:MN ⊥平面PCD .
20.( 12分) 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且 DC AB EA 2==,F 是BE 的中点.
(1)求证://FD 平面ABC ; (2)求证:⊥AF 平面EDB .
21.(12分)如图,O 是正方形ABCD 的中心,⊥PO 底面ABCD ,E 是PC 的中点, 且2=
PO ,2=AB .
(1)求证:平面⊥PAC 平面BDE ; (2)求二面角A BD E --的大小.
22.(12分)如图,在矩形ABCD 中,33=AB ,3=BC ,沿对角线BD 将BCD ∆折起,使点C
移到P 点,且P 在平面ABD 上的射影O 恰好落在AB 上. (1)求证:⊥PB 平面PAD ; (2)求证:平面PAD ⊥平面PBD ; (3)求点A 到平面PBD 的距离;
(4)求直线AB 与平面PBD 所成角的正弦值.
B
()
P C D
O
A
B C
D。