24.3圆周角(2)
24.3_正多边形和圆(2课时)

A A A A A A A . A2 3 n A3 4 1 A4 5 2 A1 A2 n 1
先说A1
A
D
B
C
弦相等(多边形的边相等)
弧相等—
圆周角相等(多边形的角相等)
—多边形是正多边形
我们把一个正多边形的外接圆的圆心叫做 这个正多边形的中心.
外接圆的半径叫做正多边形的半径. 正多边形每一边所对的圆心角 叫做正多边形的中心角.
F E
若正多边形的周长为l, 边心距为r,则:
A
O
D
lr S=_________。 2
1
B
C
例 有一个亭子,它的地基半径为4m的正六 边形,求地基的周长和面积(精确到0.1m2).
360 解: 如图由于ABCDEF是正六边形,所以它的中心角等于 60, 6
△OBC是等边三角形,从而正六边形的边长等于它的半径.
B
D
小结:画正多边形的方法
1.用量角器等分圆 画正多边形的方法 2.尺规作图等分圆
A
如图:
已知点A、B、C、D、 E是⊙O 的5等分点, 画出⊙O的内接和外 切正五边形
B O C D
E
1、判断题。
①各边都相等的多边形是正多边形。( × ) ②一个圆有且只有一个内接正多边形.( ×) 2、证明题。
A
D.24m
B C
D
怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求作圆的 内接正三角形.
A
120 ° O C B
①用量角器度量,使 ∠AOB=∠BOC=∠C OA=120°. ②用量角器或30°角 的三角板度量,使 ∠BAO=∠CAO=30° .
你能用以上方法画出正四边形、正五边 形、正六边形吗?
9年级数学(第24章 圆)24.3 圆周角(沪科版 学习、上课课件)

知1-练
技巧提醒 圆周角定理可以将圆心角与圆周角进行转化,因
此求一个圆周角的度数时,我们可以求与之相等的 另一个圆周角的度数,也可以求同弧所对的圆心角 的度数.根据题目所给的条件选用其一进行求解即可.
感悟新知
解:如图24.3-3,连接OC. ∵ BC=BD, ∴∠ BOC= ∠ BOD=50°. ∴∠ A= 12∠ BOC= 12×50°=25°
定理解题. 特别提醒 1. 求圆中的某一个圆周角时,根据“圆内接四边形的
对角互补”,可以转化为求其所在的内接四边形的 对角的度数. 2. 圆内接四边形的一组对角其实是圆中一条弦所对的 两个圆周角,因此,在同圆或等圆中,相等的弦所 对的圆周角相等或互补.
感悟新知
解:∵四边形ABCD 内接于⊙ O, ∴∠ A+ ∠ C=180°, ∴∠ A=180°-∠ C=70°. 由圆周角定理得∠ BOD=2 ∠ A=140°. ∵ OB=OD,
的四边形都有外接圆,只有对角互补的四边形才有 外接圆.
感悟新知
知3-练
例 5 [中考·宜昌] 如图24.3-7, 四边形ABCD 内接于⊙ O, 连接OB,OD,BD,若∠ C=110°,则∠ OBD 的度 数是( ) A. 15° B. 20° C. 25° D. 30°
感悟新知
知3-练
解题秘方:紧扣圆内接四边形的性质和圆周角
顶点在圆心
顶点在圆上
在同圆中,一条弧所 在同圆中,一条弧所 对的圆心角唯一 对的圆周角有无数个
两边都与圆相交
感悟新知
知1-练
例 1 如图24.3-3,AB 是⊙ O 的直径, 弦BC=BD, 若 ∠ BOD=50°,求∠ A 的度数.
感悟新知
解题秘方:连接OC,将求B︵C 所对的圆周角转 ︵
沪科版数学九年级下册24.3《圆周角》教学设计

沪科版数学九年级下册24.3《圆周角》教学设计一. 教材分析《圆周角》是沪科版数学九年级下册第24章的教学内容,主要包括圆周角的定义、圆周角定理及其推论。
通过本节课的学习,学生能理解圆周角的定义,掌握圆周角定理及其推论,并能运用其解决一些几何问题。
二. 学情分析九年级的学生已经学习了圆的基础知识,具备一定的几何思维能力。
但是,对于圆周角的定义和定理的理解,以及如何运用定理解决实际问题,还需要进一步引导和培养。
三. 教学目标1.知识与技能:理解圆周角的定义,掌握圆周角定理及其推论,能运用定理解决一些几何问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的几何思维能力和解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:圆周角的定义,圆周角定理及其推论。
2.难点:圆周角定理的证明和运用。
五. 教学方法1.引导法:通过问题引导,让学生主动探索和发现圆周角的性质。
2.互动法:鼓励学生之间进行讨论和交流,培养团队合作意识。
3.实践法:让学生通过实际操作,加深对圆周角定理的理解。
六. 教学准备1.教具:黑板、粉笔、圆规、直尺、多媒体设备。
2.学具:学生用书、练习册、圆规、直尺。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基础知识,如圆的定义、圆心角等。
然后提出问题:“什么是圆周角?”,激发学生的思考和兴趣。
2.呈现(10分钟)教师通过多媒体展示圆周角的定义,并用动画演示圆周角的形成过程。
同时,引导学生观察和思考圆周角与圆心角的关系。
3.操练(10分钟)教师给出一些具体的圆周角例子,让学生用圆规和直尺进行测量和画图,加深对圆周角的理解。
4.巩固(10分钟)教师提出一些关于圆周角的问题,让学生进行小组讨论和交流,共同解决问题。
同时,教师进行巡视指导,帮助学生克服困难。
5.拓展(10分钟)教师引导学生思考圆周角定理的证明,并分组进行证明实验。
沪科版九年级下册24.3圆周角教学设计(共三课时)

沪科版初中数学九年级第24章圆教学设计 24.3圆周角(共三课时)第一课时圆周角与圆心角的关系一.教学背景(一)教材分析本课内容是在学生已经学习圆心角、弧、弦、弦心距之间的关系的基础上进行研究的。
通过本课的学习,一方面可以巩固圆心角与弧的关系定理,另一方面圆周角与圆心角的关系在圆的有关说理、作图、计算中应用比较广泛。
所以这一节课既是前面所学知识的继续又是后面研究圆与其它平面几何图形的桥梁和纽带.另外,通过对圆周角定理的探讨,培养学生严谨的思维品质,同时教会学生从特殊到一般和分类讨论的思维方法,因此,这节课无论在知识上,还是在方法上,都起着十分重要的作用。
(二)学情分析本课内容是在学生已经了解圆的基本性质,会判断圆心角,基本掌握了圆心角与弧、弦、弦心距之间的关系,熟练掌握了三角形的外角定理的基础上进行研究的。
初三的学生已具备一定的独立思考和探索能力,并能在探索过程中形成自己的观点,再通过合作交流逐步完善自己的想法,因此本节课设计成探究课,给学生提供探索与交流的空间,体现知识的形成过程。
二.教学目标1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2.经历探索圆周角的有关性质的过程,渗透由“特殊到一般”的数学思想方法.体会分类、转化等数学思想方法。
三.教学重难点教学重点:1.圆周角及圆周角定理2.探索圆周角与圆心角的关系是本课时的重点.教学难点:了解圆周角的分类,用化归思路合情推理验证“圆周角与圆心角的关系”及圆周角定理的简单应用。
四.教学方法分析及学习方法指导教学方法分析本课以教师为主导,学生为主体,知识为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主、启发式教学法、多媒体辅助教学等多种方法相结合,引导学生用数学的眼光思考问题、发现规律、验证猜想。
学习方法指导学生在动手实践、自主探索、合作交流活动中发现新知和发展能力,与此同时教师通过适时的精讲、点拨使观察、实验、猜想、验证、归纳、推理贯穿整个学习过程。
九年级数学人教版(上册)24.3正多边形和圆

侵权必究
当堂练习
✓ 当堂反馈 ✓ 即学即用
侵权必究
当堂练习
1. 填表
正多边 形边数
3 4 6
半径 边长 边心距 周长
2 23
22 22
1 23
1
8
3
12
面积
33
4Hale Waihona Puke 632. 若正多边形的边心距与半径的比为1:2,则这 个多边形的边数是 3 .
侵权必究
当堂练习
3.如图是一枚奥运会纪念币的图案,其形状近似 看作为正七边形,则一个内角为 128 4 ___度.
(1)求图①中∠MON=___1_2_0_°_;图②中∠MON= 90 °;
图③中∠MON= 72 °;
MON 360
(2)试探究∠MON的度数与正n边形的边数n的关系.
n
E
A
A
D
M .O
O M
A
D
O
M
B
NC B
图① 侵权必究
NC
图②
N
B
C
图③
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
正多边形 的对称性
侵权必究
新课导入
观察下列图形他们有什么特点?
侵权必究
讲授新课
✓ 典例精讲 ✓ 归纳总结
侵权必究
讲授新课
知识点 1 正多边形的概念
正三 角形
三条边相等, 三个角相等 (60度).
正方形
四条边相等, 四个角相等 (900).
侵权必究
讲授新课
定义 各边相等,各角也相等的多边形叫做正多边形. 如果一个正多边形有n条边,那么这个正多边 形叫做正n边形.
2020-2021学年沪科版九年级数学24.3圆周角-知识点+习题同步练习提升

圆周角记忆导图 ⎪⎩⎪⎨⎧圆内接四边形性质定义圆周角 考点1 圆周角1、圆周角的定义:顶点在圆上,并且两边都与圆还有另一个公共点的角叫做圆周角。
2、圆周角的性质定理:一条弧所对的圆周角等于它所对圆心角的一半。
推论1:在同圆或等圆中,①同弧或等弧所对的圆周角相等;②相等的圆周角所对的弧也相等。
推论2:①半圆或直径所对的圆周角是直角;②90°的圆周角所对的弦是直径。
3、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
(经过圆内一点引两条线,各弦被这点所分成的两段的积相等)几何语言:若弦AB 、CD 交于点P ,则PA ·PB=PC ·PD 。
考点2 圆的内接四边形1、圆的内接多边形的定义:一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆的内接多边形,这个圆叫做这个多边形的外接圆。
2、性质:定理:圆内接四边形的对角互补,且任何一个外角都等于它的内对角。
推论:如果一个四边形的对角互补,则这个四边形的四个顶点共圆。
【同步练习巩固】知识点1圆周角概念、定理及推论1.如图,图中的圆周角有__∠ADB ,∠CAD ,∠CBD ,∠ACB__,CD ︵所对的圆周角有__∠CAD ,∠CBD__.2.(教材P29,练习,T2改编)(安徽模拟)如图,点A ,B ,C 都在⊙O 上,∠C +∠O =63°,则∠O 的度数是( D )A .21°B .27°C .30°D .42°3.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为88°,30°,则∠ACB 的大小为( C )A .15°B .28°C .29°D .34°4.(江苏无锡中考)如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在劣弧BC 上,且OA =AB ,则∠ABC =__15°__.5.(江苏南京鼓楼区期末)如图,⊙O 的两条弦AB 和CD 相交于点P ,若AC ︵、BD ︵的度数分别为60°,40°,则∠APC 的度数为__50°__.6.(广西柳州中考)如图,A ,B ,C ,D 是⊙O 上的点,则图中与∠A 相等的角是( D )A .∠B B .∠C C .∠DEBD .∠D7.(江苏南京秦淮区二模)如图,AB 是⊙O 的直径,点C ,D 在半圆AB 上,且AC ︵=CD ︵=DB ︵,连接AC ,AD ,则∠CAD 的度数是__30__°.8.(四川自贡中考)如图,⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD ,BC. 求证:(1)AD ︵=BC ︵; (2)AE =CE.证明:(1)∵AB =CD ,∴AB ︵=CD ︵,即AD ︵+AC ︵=BC ︵+AC ︵, ∴AD ︵=BC ︵.(2)∵AD ︵=BC ︵,∴AD =BC. 由同弧所对的圆周角相等, 得∠ADE =∠CBE ,∠DAE =∠BCE , ∴△ADE ≌△CBE(ASA), ∴AE =CE.9.如图,以等腰三角形ABC 的腰AB 为直径作圆,交底边于点D ,连接AD ,那么∠1与∠2的关系是( C )A .∠1+∠2=90°B .∠1>∠2C .∠1=∠2D .∠1<∠210.(安徽芜湖南陵一模)如图,已知AB 是⊙O 的直径,弦CD 与AB 相交,若∠BCD =24°,则∠ABD 为__66__度.11.如图,在△ABC 中,∠A =60°,以BC 为直径作⊙O 分别交AB ,AC 于点D ,E. (1)求证:AB =2AE ; (2)若AE =2,CE =1,求BC.解:(1)证明:如图,连接BE.∵BC 是⊙O 的直径,∴∠BEC =90°,即∠AEB =90°.∵∠A =60°, ∴∠ABE =30°,∴AB =2AE. (2)∵AE =2,∴AB =2AE =4, ∴BE =AB 2-AE 2=23.∵CE =1,∴BC =BE 2+CE 2=13.知识点2圆的内接四边形12.(教材P31,练习,T1改编)(陕西西安工大附中三模)如图,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则∠BAD 的度数为( C )A .30°B .45°C .60°D .120°13.(浙江杭州滨江区期末)已知圆内接四边形ABCD 中,∠A ∶∠B ∶∠C =1∶2∶3,则∠D 的大小是( C ) A .45° B .60° C .90° D .135°14.(安徽池州青阳六校联考)如图,点A ,B ,C ,D ,E 在⊙O 上,AE ︵的度数为40°,则∠B +∠D 的度数是__160°__.15.(黑龙江哈尔滨南岗区一模)如图,正方形ABCD 的四个顶点分别在⊙O 上,点P 是在CD ︵上不同于点C 的任意一点,则∠DPC 的度数是__135__度.16.(安徽淮南潘集区第二次联考)如图,四边形ABCD 内接于⊙O ,∠DAE 是四边形ABCD 的一个外角,且AD 平分∠CAE.求证:DB =DC.证明:∵∠DAC 与∠DBC 是同弧所对的圆周角, ∴∠DAC =∠DBC.∵AD 平分∠CAE ,∴∠EAD =∠DAC , ∴∠EAD =∠DBC.∵四边形ABCD 内接于⊙O ,∴∠EAD =∠BCD , ∴∠DBC =∠BCD ,∴DB =DC.【能力培优提升】1.(广西北部湾经济区模拟)如图,在⊙O 中,点C 在优弧AB 上,将BC ︵沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD.则下列结论中错误的是( D )A .AC =CD B.AC ︵+BD ︵=BC ︵C .OD ⊥ABD .CD 平分∠ACB2.(湖北武汉调研)如图,点D 在半圆O 上,半径OB =61,AD =10,点C 在BD ︵上移动,连接AC ,H 是AC上一点,∠DHC =90°,连接BH ,点C 在移动的过程中,BH 的最小值是( D )A .5B .6C .7D .83.如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( B )A .100°B .110°C .115°D .120°4.如图,四边形ABCD 为⊙O 的内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连接BD ,∠GBC =50°,则∠DBC 的度数为( C )A .50°B .60°C .80°D .85°5.(河北石家庄一模)如图,点A ,B ,C ,D ,E 都是⊙O 上的点,AC ︵=AE ︵,∠B =122°,则∠D =( B )A .58°B .116°C .122°D .128°6.(四川内江模拟)如图,在⊙O 上有定点C 和动点P ,位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点Q ,已知⊙O 的半径为52,tan ∠ABC =34,则CQ 的最大值是__203__.7.(辽宁辽阳中考)如图,A ,B ,C ,D 是⊙O 上的四点,且点B 是AC ︵的中点,BD 交OC 于点E ,∠AOC =100°,∠OCD =35°,那么∠OED =__60°__.8.(北京西城区二模)如图,点A ,B ,C ,D 都在⊙O 上,C 是 BD ︵的中点,AB =CD.若∠ODC =50°,则∠ABC 的度数为__100__°.9.(安徽合肥联考)如图,四边形ABDC 内接于⊙O ,∠BAC =60°,AD 平分∠BAC 交⊙O 于点D ,连接OB ,OC ,BD ,CD.(1)求证:四边形OBDC 是菱形;(2)若∠ABO =15°,OB =1,求弦AC 的长.解:(1)证明:如图,连接OD. 由圆周角定理,得∠BOC =2∠BAC =120°. ∵AD 平分∠BAC ,∴BD ︵=CD ︵,∴∠BOD =∠COD =60°.∵OB =OD ,OC =OD ,∴△BOD 和△COD 是等边三角形, ∴OB =BD =DC =OC ,∴四边形OBDC 是菱形. (2)如图,连接OA.∵OB =OA ,∠ABO =15°, ∴∠OAB =15°,∴∠AOB =150°, ∴∠AOC =360°-150°-120°=90°, ∴AC =OA 2+OC 2=2.10.已知△ABC ,以AB 为直径的⊙O 分别交AC 于点D ,BC 于点E ,连接ED ,ED =EC. (1)求证:AB =AC ; (2)若AB =4,BC =23,求CD 的长.解:(1)证明:∵ED =EC , ∴∠EDC =∠C.∵点A ,B ,E ,D 都在⊙O 上, ∴∠CDE =∠B , ∴∠B =∠C ,∴AB =AC.(2)如图,连接AE.∵AB 为直径,∴AE ⊥BC.又AB =AC ,∴BE =CE =12BC =3.∵∠C =∠C ,∠CDE =∠B ,∴△CDE ∽△CBA , ∴CD CB =CEAC ,∴CE ·CB =CD ·CA. 又AC =AB =4,∴3×23=4CD ,∴CD =32.11.(天津南开区一模)如图1,在⊙O 中,直径AB =4,CD =2,直线AD ,BC 相交于点E. (1)∠E 的度数为__60°__;(2)如图2,AB 与CD 交于点F ,请补全图形并求∠E 的度数; (3)如图3,直径AB 与弦CD 不相交,求∠AEC 的度数.解:(2)如图2,直线AD ,CB 交于点E ,连接OD ,OC ,AC. ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DAC =30°,∴∠EBD =30°. ∵AB 为直径,∴∠ADB =90°, ∴∠E =90°-30°=60°. (3)如图3,连接OD ,OC.∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠CBD =30°. ∵AB 是直径,∴∠ADB =90°, ∴∠BED =60°,∴∠AEC =60°.。
沪科版九年级(下册)数学:24.3《圆周角》

圆周角教学设计一、教材分析本节教学内容源于沪科版九年级下册“24.3.1圆周角”,属于“空间与图形”领域中“圆”的内容。
圆心角、圆周角是与圆有关的角,圆周角是在垂径定理、圆心角及弧、弦、圆心角的关系定理的基础上学习的。
圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等以及证明圆中三角形相似等数学问题提供了十分便捷的方法和思路。
圆周角定理的证明,采用完全归纳法,通过分类讨论,把一般问题转化为特殊情况来证明,渗透了分类讨论和一般到特殊的化归思想,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力,进一步发展学生的逻辑思维能力和演绎推理能力。
二、教学目标1.理解圆周角的定义。
通过与圆心角的类比,明确圆周角的两个特征:①顶点在圆上;②两边都与圆相交,会在具体情景中辨别圆周角。
2.掌握圆周角定理及其推论。
经历操作、观察、猜想、分析、交流、论证等数学活动,体验圆周角定理的探索过程,发展学生的逻辑思维能力和推理论证以及用几何言语表达的能力;3.通过对圆周角定理的论证,渗透分类讨论、化归等数学思想和方法。
三、教学过程设计活动一创设情景,引入概念,发展规律师:(出示圆柱形海洋馆图片)下图是圆柱形海洋馆的俯视图。
海洋馆的前侧延伸到海洋里,并用玻璃隔开,人们站在海洋馆内部,透过其中的圆弧形玻璃窗可以观看到窗外的海洋动物。
下图是圆柱形的海洋馆横切面的示意图,弧AB表示圆弧形玻璃窗。
同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,丙、丁分别站在其他靠墙的位置D和E。
师:同学甲的视角∠AOB的顶点在圆心处,我们称这样的角为圆心角。
同学乙的视角∠ACB、同学丙的视角∠ADB和同学丁的视角∠AEB不同于圆心角,是与圆有关的另一类角,我们称这类角为圆周角。
师:观察∠ACB、∠ADB、∠AEB的边和顶点与圆的位置有什么共同特点?生1:这三个角的共同点有两个:①顶点都在圆周上;②两边都与圆相交。
沪科版九年级数学下2圆周角(第1课时圆周角及其推论)课件

圆周角定理推论
推论1:在同圆或等圆中,同弧或等弧所对的两个圆周角相等, 相等的圆周角所对的弧也相等
D
B E
●O
A
C
A
B O
B′ C
C′
思考:1.半圆或直径所对的圆周角等于多少度? 90°
2. 90°的圆周角所对的弦是否是直径?
C
AB是直径
A
推论2:
半圆或直径所对的圆周角都相等,都等于
90°(直角).反过来也是成立的,即90°的
不是 有一边和圆不相交。
问题:⊙O是等边△ABC的外接圆,完成下列填空
A
(1)∠BAC= 60
°
新知探究
(2)∵AB= AC = BC
O B
C ∴ AB= AC = BC ∴∠BOC= 120 °
BC对的圆心角是 ∠BOC ,对的圆周角 ∠BAC
猜想:BC对的圆心角是对的圆周角 2 倍
讨论:同弧所对的圆周角和圆心角的位置关系有几种?
用于找相 等的弧
用于判断某条 线是否过圆心
用于判断某个 圆周角是否是 直角
练一练. 试找出下图中所有相等的圆周角。
D
A1
87
2
3 4
6
5
B
C
∠2=∠7 ∠1=∠4
∠3=∠6 ∠5=∠8
︵︵ 例2、 在⊙O中,AB是直径, CB = CF 弦 CG⊥AB于D,交BF于E,求证:BE=EC
证明: 连结CB ∵AB是直径, CG⊥AB于D ︵︵ ∴CB = BG ︵︵ ∵CB = CF ︵︵ ∴BG = CF ∴∠FBG=∠GCB
BAC
B
1
C BOC
BOC BAC C
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O 图(1)
F
C
B
●
C
图(2)
由此你能得出什么结论?
圆周角定理的推论2
A O
B
●
C
用于判断某个圆周角是否是直 角或判断某条直线是否过圆心
半圆或直径所对的圆周角是直角; 90°的圆周角所对的弦是直径。
(1)相等的圆周角所对的弧也相等。(
(2)90 的角所对的弦是直径。
(3)同弦所对的圆周角相等。
B
●
A
O
CEΒιβλιοθήκη A、B、C在半径为2cm的⊙O上,若
60°或120° 。 BC=2 3 cm,则∠A的度数为___________
如图,以⊙O的半径OA为直径作⊙O1, ⊙O的弦AD交⊙O1于C,则 垂 直 (1)OC与AD的位置关系是_______; 平 行 (2)OC与BD的位置关系是_______; 4 (3)若OC = 2cm,则BD = ____cm 。
O
C B
如图,△ABC的顶点A、B、C都在⊙O上, ∠A=45°,BC=6,求⊙O的半径。
解:连接BO,CO ∵∠A=45° ∴∠BOC=2∠A=90° 又OB=OC ∴∠OBC=∠OCB=45° ∴OB=OC=BC· sin45°
2 =6× 2
A
B C
●
O
= 3 2
生活实践
当球员在B,D,E处射门时, 他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC,∠AEC.这三个角 的大小有什么关系?.
∴当x=2.4时,水池DEFN的面积最大,最大值是12。
船在航行过程中,船长通过测定角度来确定是否会 遇到暗礁。如图,A、B表示灯塔,暗礁分布在经过A、B两 点的一个圆形区域内,C表示一个危险临界点, ∠ACB 就是“危险角”。当船与两个灯塔的夹角大于“危险角” 时,就有可能触礁。 (1)当船与两个灯塔的夹角大于“危险角”时, 船位于哪个区域?为什么? (2)当船与两个灯塔的夹角小于“危险角”时, αP 船位于哪个区域?为什么? E C 分析 :船所处区域有三种情况:
C N M A D G E B F
解:(1)
AB为直径 ACB 90 在RtABC中,AB 8 6 10 1 1 S ABC AC BC AB CG 2 2 8 6 10h
2 2
h 4.8
(2)设水池DEFN的面积为y ∵NF∥AB ∴△CNF∽△CAB
。
(
(
C
X X X
)
)
)
A
B C
O
A
O E
B
A
D
(1)如图所示, ∠BAC= ∠BDC,∠DAC=
∠DBC
.
B
A
C
(2)如图所示,⊙O的直径AB=10cm, C为⊙O上一点,∠BAC=30°, 则BC= 5 cm
●
O C
B
如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,则⊙O的直径为 8 _____
O D B E C
4、已知BC为半圆O的直径,点F为半圆上异于B、 ︵ C的一点,点A是BF的中点,AD⊥BC于点D,BF 交AD于点E. 求证:(1)AE=BE; (2)BE· BF=BD· BC .
A
F
E B D O C
5.如图:已知BC为⊙O的直径,AD⊥BC, 垂足为D,BF交AD于E,且AE=BE. ︵ ︵ (1)求证:AB=AF 3 (2)若sin∠FBC= , AB 4 5 , 求AD 的长。 5
1.什么是圆周角?
D
B
●
O C
E
A
顶点在圆上,它的两边分 别与圆还有另一个交点, 像这样的角,叫做圆周角.
2.圆周角定理的内容是什么?
一条弧所对的圆周角等于它所对的圆 心角的一半.
A C
●
A C
●
A C B
●
O
O
O
B B
即∠ABC =
1 ∠AOC. 2
100º ,所对的圆周 1.100º的弧所对的圆心角等于_______ 50º 角等于_______ 2、一弦分圆周成两部分,其中一部分是另一部分的 36º 或144º 4倍,则这弦所对的圆周角度数为______________ 3、如图,在⊙O中,∠BAC=32º,则∠BOC=______ 64º 4、如图,⊙O中,∠ACB = 130º,则∠AOB=______ 100º
证明:连结BE ∵AE是⊙O的直径,∴∠ABE=90° ∵ AD是△ABC的高,∴∠ADC=90° ∴∠ADC =∠ABE=900, B ∠C =∠E ∴△ADC∽ △ABE ∴ AC AD
AE AB
A
O D E
C
∴AB ·AC = AE ·AD
2、在圆的内接△ABC中,AB+AC=12,
C
P
· O α
E
A
B
1、本节课我们学习了哪些知识?
圆周角定理的两个推论
2、本节课我们学习了哪些方法?
作辅助线的方法:
(1)构造直径上的圆周角。
(2)构造同弧所对的圆周角。
(1)在⊙O上;(2)在⊙O内;
(3)在⊙O外。 A
·
o
B
分这三种情况逐一讨论,便可说明。
解: (1)当船与两个灯塔的夹角α大于“危险角” 时,船位于暗礁区域内( ⊙O内)。理由如下: ①假设船在⊙O上,则∠ α= ∠C,这与∠ α> ∠C 矛盾,所以船不可能在⊙O上; ②假设船在⊙O外,如图,则∠ α< ∠AEB, ∠AEB= ∠C,即∠ α< ∠C,这与∠ α> ∠C矛盾, 所以船不可能在⊙O外; 综上所述,船只能在⊙O内。
AD⊥BC于D,且AD=3,设⊙O的半径为y, AB的长为x. (1)用含x的代数式表示y; (2)当AB长为多少时,⊙O的面积最大?并 求出最大面积.
A
B
O
D
C
E
3、已知:点A、B、C在⊙O上,AB=AC,点D是 BC边上一点,点E是直线AD和圆的交点. (1)探索:AB、AD、AE之间的关系. (2)当D为BC延长线上一点时,上述结论还 成立吗?如果成立,请画图给予证明;若不 A 成立,说明理由.
A
O
C
B A
O B C
如图,OA,OB,OC都是⊙O的半径,∠ AOB=2∠ BOC, ∠ ACB与∠ BAC的大小有什么关系?为什么?
解:∠ACB=2∠BAC.理由是: ∵∠AOB=2∠ACB ∠BOC=2∠BAC ∠AOB=2∠BOC ∴2∠ACB =2(2∠BAC) ∴∠ACB=2∠BAC
A 请同学们认真观察 ∠AOB与∠ACB, ∠BOC与∠BAC的关 系。
D C
A
O1
O
B
如图,AB是⊙O的直径,BD是弦,延长 BD到C,使AC=AB,BD与CD的大小有什么关系 ?为什么?
解: BD=CD
理由是:连接AD A
∵AB是⊙O的直径
∴∠ADB=90° 即AD⊥BC 又∵AC=AB ∴BD=CD(三线合一) C D B
●
O
1、如图,AE⊙O的直径, △ABC的顶点都 在⊙O上,AD是△ABC的高; 求证:AB · AC = AE · AD
CM NF 4.8 x NF CG AB 4.8 10 48 10x NF 4.8 48 10x 25 2 y D N NF x x 10x 4.8 12 b 10 当x 2.4时, 2a 25 2 12 102 y max 12 25 4 12
A E O F
B
D
C
在直径为AB的半圆内划出一块三角形区域,使 三角形的一边为AB,顶点C在半圆周上,其他两边分 别为6和8,现要建造一个矩形水池DEFN,使D、E在 AB上,N在AC上,F在BC上。设计如图所示的方案。
(1)求△ABC中AB边上的高h; (2)设DN=x,当x取何值时,水池DEFN的面积最大? 最大值是多少?
α
P
C
E
· A
o
B
解: (2)当船与两个灯塔的夹角α小于“危险角” 时,船位于暗礁区域外( ⊙O外)。理由如下: ①假设船在⊙O上,则∠ α= ∠C,这与∠ α< ∠C矛 盾,所以船不可能在⊙O上; ②假设船在⊙O内,如图,延长AP交⊙O于E,连接 BE,则∠E= ∠C。因为 ∠ α> ∠E, 所以∠ α> ∠C,这与∠ α< ∠C矛盾,所以船不可能在⊙O内; 综上所述,船只能在⊙O外。
图2
圆周角定理的推论1:
用于找相 等的角
在同圆或等圆中, 同弧或等弧所对的圆周角相等;
相等的圆周角所对的弧也相等.
用于找相 等的弧
问题讨论 1.如图(1),BC是⊙O的直径,A是⊙O上 任一点,你能确定∠BAC的度数吗? 2.如图(2),圆周角∠BAC =90º,弦BC经过 圆心O吗?为什么?
A B
A B
●
O
D
C
E
1.如图1,在⊙O中,∠ABC,∠ADC,∠AEC有什么 共同特征?它们的大小有什么关系?为什么?
D B
●
A E E
●
O C
O
B D
图1(2)
C
A
图1(1)
∠ABC = ∠ADC = ∠AEC
2. 如图 2,在⊙O中,若AB等于 EF.能否得到∠C =∠G呢?
C G
⌒
⌒
A B
O F E