八年级数学分式的加减检测试题
八年级数学上册分式加减运算计算题练习(含答案)(最新整理)

八年级数学上册 分式加减运算 计算题练习1、化简:.2、化简:. 2(2222abb a b a b a ++÷--421444122++--+-x x x x x 3、化简:. 4、化简:.a a a a 21222-÷-+a a ---1115、化简:.6、化简:. 2222)2(nm mnm m n mn m --⋅++1224422-+÷--x x x x 7、化简:. 8、化简:.)111(111(2+-÷-+a a 1)12111(2-÷+-+-+x xx x x x 9、化简:. 10、化简:.a a a a a -+-÷--2244)111(14414(2-+-÷---x x x x x x 11、化简:. 12、化简:.962966322--+++⋅+a a a a a a 112222+---x xx x x 13、化简:. 14、化简:.1231621222+-+÷-+-+x x x x x x x 12)121(22+-+÷-+x x xx x 15、化简:. 16、化简:.)111(12+-÷-x x x 44211(22+++÷+-x x xx x 17、化简:. 18、化简:.11221(223+-+--÷--x xx x x x x x x 24)2122(--÷--+x x x x 19、化简:. 20、化简:.1112221222-++++÷--x x x x x x 11131332+-+÷--x x x x x 21、化简:. 22、化简:.9)3132(2-÷-++x x x x 12242(2++÷-+-x x x x x23、化简:. 24、化简:.x x x x x x x x -⋅+----+444122(22344)3392(2--+-÷+-+-x x x x x x 25、化简:. 25、化简:. 121441222+-÷-+-+-a a a a a a 2422(2+÷---m m m m m m 27、化简:. 28、化简:.222a b ab b a a b a b --++-x x x x x x -+⋅+÷++-21)2(1242229、化简:. 30、化简:12412122++-÷+--x x x x x )111(1222+-+÷+-x x x x x 31、化简:. 32、化简:.1221122+-+÷--+a a a a a a ba ba b a b b a b a +-÷--+-2)2(33、化简:. 34、化简:.121)121(2+-+÷-+x x x x 11211222---+--⨯+-x aax a a a a a a 35、化简:. 36、化简:. 41)2212(216822+++-+÷++-x x x x x x x xa x x a 221(-÷-37、化简:. 38、化简:.1)11(22-÷---x xx x x 1)112(2-÷+--a a a a a a 39、化简:421211(2--÷-+x x x参考答案1、原式=.2、原式=.3、原式=a 2+2a.4、原式=.5、原式=m+n.b a ab +2)2(24--x x 122--a a6、原式=.7、原式=.8、原式=.9、原式=. 10、原式=.x x -1a a 1+1-x x 2-a a 22-+x x 11、原式=. 12、原式=. 13、原式=3x-7. 14、原式=. 15、原式=.a 21+x x x x 1-11-x 16、原式=1+. 17、原式=. 18、原式=-x-4. 19、原式=.2x x +-2122-x x20、原式=. 21、原式=. 22、原式=x+1. 24、原式=. x x +21x x 9-2)2(1--x 25、原式=. 26、原式=. 27、原式=. 28、原式=. 2-x x 1-a a 2-m m b a ba -+29、原式=. 30、原式=. 31、原式=. 32、原式=.11+-x 21+x 11-x 21+a 33、原式=. 34、原式=x ﹣1. 35、原式=0. 36、原式=.b a a -2x x 442+37、原式=. 38、原式=. 39、原式=a+3. 40、原式=.a x +1x x 1+12+x。
数学(北京课改版)八年级上册课后零失误训练:10.4分式

零失误训练基础能力训练★回归教材 注重基础◆分式的加减运算 1.=---ba ab a a 53______. 2..______432482475222=+--+--+-xx x x x x x x x 3..______3432=---+x x x 4..______234=-+-2+xy y y x y x 5.下列各式中正确的是( ) A.21553x x x =+ B.ab a b b a a b -=- C.444=-+-x y y y x x D.1111122+=---x x x 6.(2008·黄冈)计算ab a a b b a +÷-)(的结果为( ) A.b b a - B.b b a + C.a b a - D.ab a + 7.计算5331++-x x 等于( ) A.12+x B.)5)(3(24+-+x x x C.)5)(3(4+-x x D.)5)(3(44+--x x x 8.计算2121112-++--+a a a a 的结果是( ) A.21-+a a B.21++a a C.21+-a a D.21--a a 9.(2008·龙岩)化简求值:b a b a ab b a --÷++2222)2(,其中a =2,21-=b . 10.ac a b -224. 11.2222)()(a b b b a a ---. 12.ba b b a ++-22.13.2144212+-+-+-x x x x . ◆分式的混合运算 14.xy y x y xy x y x xy x y +÷+++++222)2(. 15.)1()2()(3333333333ba b a a b b a a b +÷-+÷-. 综合创新训练★登高望远 课外拓展◆综合运用 16.20)2()1(22--+---+x x x x . 17.(1)在和式+⨯+⨯+⨯751531311…中,第5项为_______,第n 项为_______, (2)利用上述结论计算:)0022)(0002(1...)6)(4(1)4)(2(1)2(1+++++++++++x x x x x x x x . ◆实际运用18.现有单价为x 元的糖果a 千克,单价为y 元的糖果6千克,单价为z 元的糖果c 千克,若将这三种糖果混在一起,则混合后的糖果单价为多少元?19.(2008·巴中)在解题目:“当x =1 949时,求代数式1122444222+-+-÷-+-xx x x x x x 的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗?请说明理由.20.某人用电脑录入汉字文稿的速度是手抄的3倍,如果他手抄的速度是每秒x 字,那么他录入3 000字文稿的时间比手抄少用多少秒?21.甲、乙两港分别位于长江的上、下游,相距s km ,一艘游轮往返其间,如果游轮在静水中的速度是a km /h ,水流速度是b km /h ,那么该游轮往返两港的时间差是多少? ◆阅读理解22.请你阅读下列计算过程,再回答所提出的问题: 题目:计算xx x ----13132. 解:原式13)1)(1(3---+-=x x x x A )1)(1()1(3)1)(1(3-++--+-=x x x x x x B =x -3-3(x+1) C=-2x -6. D(1)上述计算过程中,从哪一步开始出现错误:_______.(2)从B 到C 是否正确,若不正确,错误的原因是_______.(3)请你正确解答.23.(1)观察下列各式:, (6)151651301;5141541201;4131431121;312132161-=⨯=-=⨯=-=⨯=-=⨯=由此可推断=421_______. (2)请猜想能表示(1)的特点的一般规律的式子,用含字m 的等式表示出来,并证明(m 表示正整数).(3)请用(2)中的规律计算:231341651222+-++--+-x x x x x x .参考答案1答案:b a a --2 2答案:x1 3答案:36-+x x 4答案:25答案:C6答案:A 解析:原式bb a b a a ab b a b a a b a ab b a -=+∙-+=+÷-=))((22,故选A 7答案:D8答案: B 解析:原式21)1)(2()1)(1()1)(2(1)1)(2(122222++=-+-+=-+-=-+--++-+=a a a a a a a a a a a a a a a . 9答案:解析:原式ab b a b a ab b a +=+∙+=1)(2.当a =2,21-=b 时,原式23)21(2212-=-⨯-=. 10答案:解析:原式2244aac b -=. 11答案:解析:原式ba b a b a b a -+=--=222)(.12答案:解析:原式ba b a b a b b a ++=++-=222222. 13答案:解析:原式22)2)(2()2()2)(2(44)2)(2(2342222+-=-+-=-++-=-++-++--=x x x x x x x x x x x x x x . 14答案:解析:xyy x y xy x y x xy x y +÷+++++222)2( xy x y y x xy x xy y )()(222+∙+++= 2222xy xy x ++=. 15答案:解析:)1()2()(3333333333ba b a a b b a a b +÷-+÷- 33333663333662ba b b a a b b a b a a b +∙-+∙-= 333ba b --=. 16答案:解析:原式2)2(1122-+--+=x x x 222)2(1444-+-+--=x x x x 2)2(74--=x x 17答案:解析: (1)1191⨯ )12)(12(1+-n n (2))0022)(0002(1...)6)(4(1)4)(2(1)2(1+++++++++++x x x x x x x x )0022100021...4121211(21+-++++-+++-=x x x x x x)0022(0011)002211(21+=+-=x x x x . 18答案:解析:混合后的糖果单价为cb a cz by ax ++++元. 19答案:解析:聪聪说得有道理. 因为原式111111)2(2)2)(2()2(2=+-=+--+⨯-+-=xx x x x x x x x ,所以只要使原式有意义,无论x 取何值,原式的值都相同,都为常数1.20答案:解析:xx x 0002300030003=- ∴他录入3 000字文稿的时间比手抄少用x 0002秒. 21答案:解析:222b a bs b a s b a s -=+--. ∴该游轮往返两港的时间差是222ba bs -秒. 22答案:解析:(1)A(2)把分母漏掉了 (3)xx x ----13132 13)1)(1(3-+-+-=x x x x )1)(1()1(33)1)(1()1(3)1)(1(3-+++-=-+++-+-=x x x x x x x x x x )1)(1(4-+=x x x 23答案:解析:(1)7161- (2)111)1(1+-=+m m m m ; 证明:,)1(1)1(1111+=+-+=+-m m m m m m m m ∴等式成立. (3)原式)2)(1(1)1)(3(1)3)(2(1--+-----=x x x x x x 1121)1131(212131---+-------=x x x x x x341)1131(212+-=---=x x x x。
人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。
(完整版)八年级数学上册分式加减运算计算题练习(含答案)

八年级数学上册 分式加减运算 计算题练习1、化简:)2(2222ab b a b a b a ++÷--.2、化简:421444122++--+-x x x x x . 3、化简:a a a a 21222-÷-+. 4、化简:a a ---111.5、化简:2222)2(n m mn m m n mn m --⋅++.6、化简:1224422-+÷--x xx x .7、化简:)111()111(2+-÷-+a a . 8、化简:1)12111(2-÷+-+-+x xx x x x .9、化简:a a a a a -+-÷--2244)111(. 10、化简:144)14(2-+-÷---x x x x x x .11、化简:962966322--+++⋅+a a a a a a . 12、化简:112222+---x x x x x .13、化简:1231621222+-+÷-+-+x x x x x x x . 14、化简:12)121(22+-+÷-+x x x x x .15、化简:)111(12+-÷-x x x . 16、化简:44)211(22+++÷+-x x x x x .17、化简:1122)1(223+-+--÷--x x x x x x x x x . 18、化简:24)2122(--÷--+x xx x .19、化简:1112221222-++++÷--x x x x x x . 20、化简:11131332+-+÷--x x x x x .21、化简:9)3132(2-÷-++x xx x . 22、化简:12)242(2++÷-+-x x x x x .23、化简:xxx x x x x x -⋅+----+4)44122(22. 24、化简:344)3392(2--+-÷+-+-x x x x x x .25、化简:121441222+-÷-+-+-a a a a a a . 25、化简:2)422(2+÷---m mm m m m . 27、化简:222a b abb a a b a b --++-. 28、化简:x x x x x x -+⋅+÷++-21)2(12422. 29、化简:12412122++-÷+--x x x x x . 30、化简:)111(1222+-+÷+-x x x x x31、化简:1221122+-+÷--+a a a a a a . 32、化简:ba ba b a b b a b a +-÷--+-2)2(.33、化简:121)121(2+-+÷-+x x x x . 34、化简:11211222---+--⨯+-x a ax a a a a a a .35、化简:41)2212(216822+++-+÷++-x x x x x x x . 36、化简:xa x x a 22)1(-÷-.37、化简:1)11(22-÷---x x x x x . 38、化简:1)112(2-÷+--a a a a a a .39、化简:421)211(2--÷-+x x x参考答案1、原式=ba ab +. 2、原式=2)2(24--x x . 3、原式=a 2+2a. 4、原式=122--a a . 5、原式=m+n.6、原式=x x -1.7、原式=a a 1+.8、原式=1-x x .9、原式=2-a a . 10、原式=22-+x x . 11、原式=a 2. 12、原式=1+x x . 13、原式=3x-7. 14、原式=x x 1-. 15、原式=11-x .16、原式=1+2. 17、原式=x x +-21. 18、原式=-x-4. 19、原式=22-x x.20、原式=x x +21. 21、原式=xx 9-. 22、原式=x+1. 24、原式=2)2(1--x . 25、原式=2-x x . 26、原式=1-a a . 27、原式=2-m m . 28、原式=b a ba -+. 29、原式=11+-x . 30、原式=21+x . 31、原式=11-x . 32、原式=21+a .33、原式=b a a -2. 34、原式=x ﹣1. 35、原式=0. 36、原式=x x 442+.37、原式=a x +1. 38、原式=x x 1+. 39、原式=a+3. 40、原式=12+x .。
北师大版八年级数学下册分式的加减法练习试题及答案

3.3 分式的加减法(1)一、目标导航1.同分母的分式的加减法的运算法则及其应用;2.简单的异分母的分式相加减的运算.二、基础过关1.计算:(1)ab ab c ab c 743+-= ;(2)ab b b a a -+-= ; (3)=+-+3932a a a __________;(4)abcac ab 433265+-= . 2.下列计算正确的是( )A .m m m 312=-+B .1=---ab b b a a C .212122++=++-+y y y y y D .b a a b b b a a -=---1)()(22 3.分式25,34ca bc a 的最简公分母是_________. 4.计算:242+-x = . 5.计算213122x x x ---- 的结果是____________. 6.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.7.计算:(1)ab a b 1+- (2) ab b a ab b a 22)2()2(+--(3)222)3(9)3(x y x y x ----- (4)22225421a a a a a a --+--8.先化简,再求值:))(())((2222a c b a b c c a b a b a ---+---,其中3=a ,2-=b ,1-=c .三、能力提升9.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 10.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 11.化简11x y y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1 B .x y C .y x D .-1 12.计算:(1)969392222++-+++x x x x x x x (2)23111x x x x -⎛⎫÷+- ⎪--⎝⎭13. 已知03461022=+--+b a b a ,求ab a b ab a ab b a b a b a -++⨯-÷⎪⎭⎫ ⎝⎛+-2222222的值.四、聚沙成塔已知x +y 1=z +x 1=1,求y +z 1的值.3.3分式的加减法(1)1.⑴abc -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.。
八年级数学分式的加减试题

初二数学分式的加减冀教版本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
【本讲教育信息】一、教学内容:分式的加减1. 分式的加减.2. 分式的混合运算.二、知识要点:1. 分式的加减〔1〕同分母分式相加减同分母分式相加减,分母不变,分子相加减. 即:a c ±b c =a ±b c. 〔2〕异分母分式的加减运算异分母分式相加减,先通分,变为同分母分式,再加减,用字母表示是:b a ±d c =bc ac ±ad ac =bc ±ad ac. 2. 分式的通分〔1〕定义:把几个异分母分式分别转化为与原来分式相等的同分母分式叫分式的通分.〔2〕根据:分式通分的根据是分式的根本性质.〔3〕关键:通分的关键是确定几个分式的最简公分母.〔4〕最简公分母:各分母所有因式的最高次幂的积,叫做最简公分母.3. 分式的混合运算分式的混合运算关键是弄清运算顺序,与分数的加、减、乘、除混合运算一样,也是先算乘除,再算加减,有括号的先算括号内的.三、重点难点:本讲重点是分式的加减法,难点是异分母分式相加减时,几个分式的公分母通常不止一个,但选取的公分母越简单,运算也就越简便.【典型例题】例1. 计算:5a +6b 3a 2bc +3b -4a 3ba 2c -a +3b 3cba 2. 分析:根据乘法交换律有:3a 2bc =3ba 2c =3cba 2,所以此题是三个同分母的分式相加减. 根据法那么计算即可.解:5a +6b 3a 2bc +3b -4a 3ba 2c -a +3b 3cba 2=〔5a +6b 〕+〔3b -4a 〕-〔a +3b 〕3a 2bc=5a +6b +3b -4a -a -3b 3a 2bc=6b 3a 2bc=2a 2c 评析:〔1〕同分母分式相加减时,“分子相加减〞是指把各个分式的“分子的整体〞相加减,即各个分子都应有括号,当分子是单项式时,括号可以略. 当分子是多项式时,括号不可以略. 尤其是当两多项式的分子相减时,括号万万不能略. 〔2〕分式加减运算的结果必须化成最简分式或者整式.例2. 计算:〔1〕56ab -23ac; 〔2〕x 2〔x +y 〕2+2y 2〔y +x 〕2-y 2-2xy 〔-x -y 〕2. 分析:〔1〕此题中两分母不同. 属异分母分式,可将分母6ab 、3ac 都化为以6abc 为分母的分式. 〔2〕由于〔x +y 〕2=〔y +x 〕2=〔-x -y 〕2,所以此题本质上是同分母分式相加减,按法那么计算即可.解:〔1〕56ab -23ac =5c 6abc -4b 6abc =5c -4b 6abc. 〔2〕x 2〔x +y 〕2+2y 2〔y +x 〕2-y 2-2xy 〔-x -y 〕2=x 2〔x +y 〕2+2y 2〔x +y 〕2-y 2-2xy 〔x +y 〕2=x 2+2y 2-〔y 2-2xy 〕〔x +y 〕2=x 2+2y 2-y 2+2xy 〔x +y 〕2=〔x +y 〕2〔x +y 〕2=1.评析:分母互为相反数时,可通过改变其中一个分式的符号转化为同分母分式. 假设分母是互为相反数的奇次幂时,因为互为相反数的奇次幂是互为相反数的,所以需改变一个分式的符号使之化为同分母分式;假如分母是互为相反数的偶次幂时,因为互为相反数的偶次幂相等,所以它们是同分母分式.例3. 通分:4a 5b 2c ,3c 10a 2b ,5b -2ac 2. 分析:因为分母系数的最小公倍数是10,字母a 、b 、c 的最高次幂分别是a 2、b 2、c 2,所以最简公分母是10a 2b 2c 2.解:因为最简公分母是10a 2b 2c 2,所以,4a 5b 2c =4a ·2a 2c 5b 2c ·2a 2c =8a 3c 10a 2b 2c 2, 3c 10a 2b =3c ·bc 210a 2b ·bc 2=3bc 310a 2b 2c 2, 5b -2ac 2=-5b ·5ab 22ac 2·5ab 2=-25ab 310a 2b 2c 2. 评析:最简公分母确实定步骤:〔1〕最简公分母的系数是各分母系数的最小公倍数.〔2〕最简公分母中的字母是指在各分母中出现的字母〔或者含字母的式子〕.〔3〕最简公分母中字母的指数应取各分母中一样字母的最高次幂.例4. 计算:〔x +2x 2-2x -x -1x 2-4x +4〕÷4-x x . 分析:此题是分式的混合运算. 关键是搞清运算顺序.解:〔x +2x 2-2x -x -1x 2-4x +4〕÷4-x x =[x +2x 〔x -2〕-x -1(x -2)2]·x -〔x -4〕=x 2-4-x 2+x x (x -2)2·x -〔x -4〕=-1x 2-4x +4. 评析:解决此题,除要理清运算顺序外,还要注意x 2-4x +4的分解,必须将结果写作〔x -2〕2,不能写作〔x -2〕〔x -2〕,否那么确定最简公分母就会出现错误.例5. 列车提速前的速度是a 千米/时,提速后快了b 千米/时,从甲地到乙地的行驶路程为s 千米,那么列车提速后比提速前早到多长时间是?分析:由t =s v ,可知提速前与提速后的时间是分别为s a 小时,s a +b小时,再求它们的差即可. 解:s a -s a +b =s 〔a +b 〕a 〔a +b 〕-sa a 〔a +b 〕=sa +sb -sa a 〔a +b 〕=sb a 〔a +b 〕. 答:列车提速后比提速前早到sb a 〔a +b 〕小时.例6. 〔1〕x =-2,求〔1-1x 〕÷x 2-2x +1x的值. 〔2〕先化简,再求值:a +2b a +b +2b 2a 2-b 2,其中a =-2,b =13. 解:〔1〕〔1-1x 〕÷x 2-2x +1x=〔x -1x 〕÷〔x -1〕2x=x -1x ·x 〔x -1〕2=1x -1 当x =-2时,原式=1x -1=1-2-1=-13.〔2〕a +2b a +b +2b 2a 2-b 2=a +2b a +b +2b 2〔a +b 〕〔a -b 〕=〔a +2b 〕〔a -b 〕〔a +b 〕〔a -b 〕+2b 2〔a +b 〕〔a -b 〕=a 2-ab +2ab -2b 2+2b 2〔a +b 〕〔a -b 〕=a 2+ab 〔a +b 〕〔a -b 〕=a a -b当a =-2,b =13时,原式=a a -b =67. 评析:分式求值问题,注意先化简,再代入求值.【方法总结】分子、分母有公因式的分式要约分,异分母分式相加减要通分后再加减. 通分与约分有什么区别与联络呢?1. 它们的根据都是分式的根本性质,如:x 2-4x -2=x +2,这是约分;1x 2-4+1x -2=1x 2-4+x +2x 2-4,这是在通分,可见约分是针对一个分式而言,而通分是针对多个分式而言的.2. 约分是把分式化简,而通分是把分式化繁,是为了进展加减运算,无论分式的乘除还是加减运算,运算的结果都是通过约分来化成最简分式或者整式.【模拟试题】〔答题时间是:60分钟〕一. 选择题1. 以下计算中,正确的选项是〔 〕 A. 1a +1b =2a +b B. b a -b +2a =2aC. c a -b +c b -a =0 D . a 2(a +1)2-1(a +1)2=1a +1 2. 化简x 2y -x -y 2y -x的结果是 〔 〕A. -x -yB. y -xC. x -yD. x +y3. 化简a b -b a -a 2+b 2ab的结果是 〔 〕 A. 0 B. -2a b C. -2b a D. 2b a4. 计算〔a b -b a 〕÷a +b a的结果为 〔 〕 A. a -b b B. a +b b C. a -b a D. a +b a5. 计算A ÷B C÷D 的运算顺序正确的选项是 〔 〕 A. A ÷B ÷C ÷D B. A ×C ÷B ÷D C. A ÷B ×C ×D D. A ×C ÷B ×D6. 假设y 2+y -2=0,那么y 2+y -1y 2+y的值是 〔 〕 A. 2 B. 32 C. -12 D. 37. 使代数式1m 2-1+1m +1+1m -1等于0的m 的值是 〔 〕 A. 3 B. 1 C. -1 D. -12*8. 甲、乙二人加工同种零件,甲在m 天内可以加工a 个零件,乙在n 天内可以加工b 个零件,假设两人同时加工p 个零件,那么需要的天数是 〔 〕A. pmn an +bmB. an +bm pmnC. mn p 〔an +bm 〕D. p 〔an +bm 〕mn *9. x =1-1y ,y =1-1z ,那么用含z 的代数式表示x 为 〔 〕A. x =11-zB. x =z -1zC. x=1z -1D. x =1-z z **10. 1a +1b =1a +b ,那么b a +a b的值是 〔 〕 A. 1B. -1C. 0D. 2二. 填空题1. 计算2x 2x -y +y y -2x的结果是__________. 2. 计算1x +12x +13x的结果是__________. 3. 锅炉房储存了c 天用的煤m 吨,要使储存的煤比预定的天数多用d 天,每天应当节约__________吨煤.4. M x 2-y 2=2xy -y 2x 2-y 2+x -y x +y,那么M =__________. *5. ab =1,那么a a +1+b b +1的值是__________. *6. 小明从甲地到乙地的速度为5千米/时,原路返回的速度为4千米/时,那么他往返的平均速度是__________.*7. 计算11-x +11+x +21+x 2+41+x 4=__________. **8. 一组按规律排列的式子:-b 2a ,b 5a 2,-b 8a 3,b 11a 4,…〔ab ≠0〕,其中第7个式子是__________,第n 个式子是__________〔n 为正整数〕.三. 解答题1. 化简与求值:〔1〕x 2-y 2x +y -4x (x -y )+y 22x -y〔2〕a -2a 2-4+a +1a +2〔3〕1-a -b a +2b ÷a 2-b 2a 2+4ab +4b 2〔4〕m m +3-6m 2-9-23-m,其中m =-2. 〔5〕a 2+a a -1÷〔a -a a -1〕 2. 如下图,是物理学中并联电路图. 总电阻为R ,两支路分电阻分别为R 1、R 2,根据公式,总电阻R 的倒数等于两个分电阻R 1、R 2的倒数之和. 请用R 1、R 2的代数式表示R.R 23. 观察以下式子:11×2=1-12,12×3=12-13,13×4=13-14,… 试写出用n 〔n 为正整数〕表示的规律:______________________________.根据上述规律计算: 1x (x +1)+1(x +1)(x +2)+1(x +2)(x +3)+…+1(x +2021)(x +2021).试题答案一. 选择题1. C2. A3. C4. A5. B6. B7. D8. A9. A 10. B二. 填空题1. 12. 116x3. md c 〔c +d 〕4. x 25. 16. 409千米/时7. 81-x 88. -b 20a 7,〔-1〕n b 3n -1a n三. 解答题1. 〔1〕原式=x -y -〔2x -y 〕=-x〔2〕原式=1a +2+a +1a +2=1 〔3〕原式=1-a -b a +2b ×〔a +2b 〕2〔a +b 〕〔a -b 〕=1-a +2b a +b =-b a +b〔4〕原式=m 2-m m 2-9=-65 〔5〕原式=a 〔a +1〕a -1×a -1a 〔a -2〕=a +1a -22. 因为总电阻R 的倒数等于两个分电阻R 1、R 2的倒数之和,所以有1R =1R 1+1R 2. 所以1R =R 1+R 2R 1R 2,所以R =R 1R 2R 1+R 2. 3.1n 〔n +1〕=1n -1n +1;原式=1x -1x +2021=2021x 〔x +2021〕.本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
分式的加减练习题

分式的加减习题精选(一)一、判断题··二、选择题三、填空题9.10.11.12.四、计算题13.14.15.16.分式的加减 习题精选(二)1.1+--b b a等于 ( )A.b b b a -+-2 B.b b b a ++-2 C.b b b a +--2 D.b b b a ---2 2.⎪⎪⎭⎫⎝⎛-÷y x x 11等于 ( )A.y x y x -2 B.x y y x -2C.xy x -2 D.2x xy -3.m n m n m n -+-22等于 ( ) A.m+n B.m-n C.-m+n D.-m-n4.计算)6(246612--+--a a a a a ,其结果等于 ( ) A.)6(210--a a B.)6(210--a a C.a a 24- D.a a 24+5.如果x y <<-1,那么2211++-++x y x y 的值 ()A.大于零 B.等于零C.小于零 D.以上都有可能6.计算:1213223-+----x x x x x 7.计算:22229631y xy x y x y x y x +--÷---8.计算: 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y9.计算: ⎪⎭⎫⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 10.计算:2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+11.已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x yx y x y xy x y xy x x 的值.12.计算:x x x x -----52335175 13.计算:y x z zy z x y z x z y x y x -++---+++-+14.计算: 1123-+-+x x x x15.已知0132=++x x ,求441x x +的值.16.已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 分式的加减 习题精选(三)一、选择题:1.分式的值为( )A .B .C .D .2.分式、、的最简公分母是( ) A .B .C .D .3.分式的值为( )A .B .C .D .以上都不对4.把分式、、通分后,各分式的分子之和为( )A .B .C .D .5.若的值为,则的值为()A.B.C.D.6.已知为整数,且为整数,则符合条件的有()A.2个B.3个C.4个D.5个二、填空题:1.式子的最简公分母是___________。
八年级数学上册第3章分式测试卷新版青岛版

第3章分式测试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的2.(3分)当a=﹣1时,分式()A.等于0 B.等于1 C.等于﹣1 D.无意义3.(3分)化简的结果是()A.B.C.D.4.(3分)下列等式中,正确的是()A.B.C.D.5.(3分)计算:的结果为()A.1 B.C.D.6.(3分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4 D.3﹣x=47.(3分)方程=的解为()A.﹣1 B.1 C.﹣3 D.38.(3分)关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣39.(3分)已知,则的值等于()A.6 B.﹣6 C.D.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=二、填空题(共6小题,每小题4分,满分16分)11.(4分)化简:(1)=;(2)=.12.(2分)分式、、﹣的最简公分母是.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.14.(2分)已知,则=.15.(2分)某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天.16.(2分)如果3x=4y,那么x:y=.三、解答题(共7小题,满分54分)17.(6分)计算:.18.(8分)计算:()•.19.(6分)先化简,再求值:()+,其中x=6.20.(6分)解方程:.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?答案一、选择题(共10小题,每小题3分,满分30分)1.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.【解答】解:将分式中的x,y的值变为原来的100倍,则此分式的值100倍,故选:B.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数,分式的值不变.2.(3分)当a=﹣1时,分式()A.等于0 B.等于1 C.等于﹣1 D.无意义【考点】64:分式的值.【专题】11:计算题.【分析】根据分式的分母不为0求出x不能为1,且不能为﹣1,故a=﹣1代入分式无意义.【解答】解:根据题意得:a2﹣1≠0,即a≠1且a≠﹣1,则a=﹣1时,分式无意义.故选:D.【点评】此题考查了分式的值,注意考虑分母不为0.3.(3分)化简的结果是()A.B.C.D.【考点】66:约分.【分析】先把分式的分子与分母分别进行因式分解,然后约分即可.【解答】解:==;故选:D.【点评】此题考查了约分,解题的关键是对分式的分子与分母分别因式分解,然后约去公因式,分式的约分是分式运算的基础,应重点掌握.4.(3分)下列等式中,正确的是()A.B.C.D.【考点】6B:分式的加减法.【专题】11:计算题.【分析】解决本题首先对每个分式进行通分,然后进行加减运算,找出正确选项.【解答】解:A、,错误;B、,错误;C、,正确;D、,错误.故选:C.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.通分时,注意分母不变,分子相加减,还要注意符号的处理.5.(3分)计算:的结果为()A.1 B.C.D.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+•=+==1.故选:A.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4 D.3﹣x=4【考点】B3:解分式方程.【专题】16:压轴题.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣2和2﹣x互为相反数,可得2﹣x=﹣(x﹣2),所以可得最简公分母为x﹣2,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣2,得:3﹣x=4(x﹣2).故选:A.【点评】对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:3﹣x=4形式的出现.7.(3分)方程=的解为()A.﹣1 B.1 C.﹣3 D.3【考点】B3:解分式方程.【专题】11:计算题.【分析】观察可得方程最简公分母为2x(x﹣2),去分母,化为整式方程求解.【解答】解:去分母,得x=3(x﹣2),解得:x=3,经检验:x=3是原方程的解.故选:D.【点评】解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.8.(3分)关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣3【考点】B2:分式方程的解.【专题】11:计算题.【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.【解答】解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.【点评】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.9.(3分)已知,则的值等于()A.6 B.﹣6 C.D.【考点】65:分式的基本性质;6B:分式的加减法.【专题】11:计算题.【分析】由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.【解答】解:已知可以得到a﹣b=﹣4ab,则==6.故选:A.【点评】观察式子,得到已知与未知的式子之间的关系是解决本题的关键.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意可得等量关系:180吨÷实际每天生产化肥(x+3)吨=120吨÷原计划每天生产化肥x吨,根据等量关系列出方程即可.【解答】解:原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意得:=,故选:A.【点评】此题主要由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题(共6小题,每小题4分,满分16分)11.(4分)化简:(1)=;(2)=.【考点】66:约分.【专题】11:计算题.【分析】(1)直接约分即可;(2)先把分子分母因式分解,然后约分即可.【解答】解:(1)原式=;(2)原式==.故答案为;.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.12.(2分)分式、、﹣的最简公分母是abc2.【考点】69:最简公分母.【分析】利用最简公分母的定义求解即可.【解答】解:分式、、﹣的最简公分母是abc2.故答案为:abc2.【点评】本题主要考查了最简公分母,解题的关键是熟记如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.【考点】37:规律型:数字的变化类.【分析】由题意可知:分子都是1,分母可以拆成连续两个自然数的乘积,由此得出第n个数是,进一步解决问题即可.【解答】解:1)第10个数是=;(2)第n个数是.故答案为:;.【点评】此题考查数字的变化规律,把分数的分母拆成连续两个自然数的乘积是解决问题的关键.14.(2分)已知,则=.【考点】4C:完全平方公式;65:分式的基本性质.【专题】11:计算题.【分析】把已知两边平方后展开求出x2+的值,把代数式化成含有上式的形式,代入即可.【解答】解:x+=4,平方得:x2+2x•+=16,∴x2+=14,∴原式===.故答案为:.【点评】本题主要考查对分式的基本性质,完全平方公式等知识点的理解和掌握,能把代数式化成含有x2+的形式是解此题的关键.15.(2分)某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天.【考点】6G:列代数式(分式).【分析】多用的天数=现在用的天数﹣原来用的天数.【解答】解:先求出原计划可用多少天,即,现在每天用原材料(a﹣b)吨,则现在可用天,所以,现在可以多用.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.16.(2分)如果3x=4y,那么x:y=4:3 .【考点】S1:比例的性质.【分析】根据等式的性质,可得答案.【解答】解:由3x=4y,得x:y=4:3,故答案为:4:3.【点评】本题考查了比例的性质,等式的两边都除以3y是解题关键.三、解答题(共7小题,满分54分)17.(6分)计算:.【考点】6B:分式的加减法.【分析】先通分,然后计算分式的加法.【解答】解:原式=﹣===.【点评】本题考查了分式的加减运算,题目比较容易.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.18.(8分)计算:()•.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式括号中先计算除法运算,再计算减法运算,约分即可得到结果.【解答】解:原式=(﹣•)•=•=1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:()+,其中x=6.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=6代入原式进行计算即可.【解答】解:原式=[﹣]•=•=x﹣4.当x=6时,原式=4﹣6=﹣2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(6分)解方程:.【考点】B3:解分式方程.【专题】11:计算题.【分析】首先两边同乘2x﹣5去掉分母,然后解整式方程即可求解.【解答】解:两边同乘2x﹣5得x﹣5=2x﹣5,∴x=0,检验当x=0时,2x﹣5≠0,∴原方程的根为x=0.【点评】此题主要考查了分式方程的解法,解题的关键去掉分母使分式方程变为整式方程即可解决问题.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?【考点】8A:一元一次方程的应用.【分析】设原来全厂共有4x人.依据“女工与全厂人数的比是2:3,”列出方程,并解答.【解答】解:设原来全厂共有4x人.依题意得(3x+60):(4x+60×2)=2:3,9x+180=8x+240,9x﹣8x=240﹣180,4x=240.答:原来全厂共有240人.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】8A:一元一次方程的应用;B7:分式方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x 天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.23.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,根据化简结果即可得出结论.【解答】解:对.∵原式=•﹣x=x﹣x=0,∴把x=2008错抄成x=2080,他的计算结果也正确.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)x3+ =(x+ )( x2-1+ )
=3×(7-1)=18;
(3)∵ = x2+ +1=7+1=8,
∴ =
第三步;随堂练习
计算
(1) (2)
(3)
.答案:(1)2x(2) (3)3
第四步:课后练习
1.计算
(1)
(2)
(3)
2.计算 ,并求出当 -1的值
(2)
[分析]这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.
解:
=
=
=
=
【例1】计算:(1)[ + + ( + )]· ;
(2)(x-y- )(x+y- )÷[3(x+y)- ]。
分析:分式的四则混合运算要注意运算顺序及括号的关系。
解:(1)原式=[ + + ]·
=[ + + ]·
= ·
说明:分式的加、减、乘、除混合运算注意以下几点:
(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。
(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。
(3)注意括号的“添”或“去”、“变大”与“变小”。
(4)结果要化为最简分式。
第二步;例题讲解
(P21)例8.计算
[分析]这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.
(补充)计算
(1)
[分析]这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..
解:
=
=
=
=
16.2.2分式的加减(二)
教学目标
明确分式混合运算的顺序,熟练地进行分式的混合运算.
重点、难点
重点:熟练地进行分式的混合运算.
难点:熟练地进行分式的混合运算.
情感态度与价值观
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题。
教学过程
教学设计与师生互动
答案:1.(1) (2) (3) 2. ,-
创新能力运用
1.已知:x+y+z=3y=2z,求 的值。
2.已知: - =3,求 的值。
课后小结:
课后反思:
备注
第一步:课堂引入
提问:1.说出分数混合运算的顺序.
2.教师指出分数的混合运算与分式的混合运算的顺序相同.
类比:
分式混合运算时,要注意运算顺序,
在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减.
有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,
注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.
= = 。
(2)原式= · ÷
= · ·
=y-x。
【例2】计算:(1)( - + )·(a3-b3);
(2)( - )÷ 。
解:(1)原式= - +
= - +ab
=a2+ab+b2-(a2-b2)-ab
= a2+ab+b2-a2+b2-ab =2b2。
(2)原式=[ - ]·
= - = -
= =
= = 。【Βιβλιοθήκη 】已知x+ =3,求下列各式的值:
(1)x2+ ;(2)x3+ ;(3) 。
分析:观察已知条件和所求式,可将所求的式进行分解因式,将已知条件整体代入,第(3)题是先求它的倒数值,可以将x2+ =7直接代入,求得它的值。此外对于已知条件x+ =3,可以变形为x2-3x+1=0,也可以变形为 =1,在后两种表达形式下,要能熟练地将它转化为x+ =3。