2021人教A版数学必修3-几何概型 说课稿
几何概型(教学设计)

3.3 几何概型一、教材分析本节课是人教A版教材数学必修3第三章第三节的内容。
“几何概型”这一节内容是在学习了“古典概型”之后的第二类概率模型,是对古典概型的内容进一步拓展,是等可能事件的概念从有限向无限的延伸。
通过本节内容的学习,学生将会更深的体会到数学与实际生活的紧密关系,以及数形结合的思想无处不在。
因此在教学中要做到难度适中,同时要接近生活,基本应以贴近生活的例题与习题为主。
二、教学目标1.了解几何概型与古典概型的区别与联系,知道均匀分布的含义。
2.理解几何概型的定义、特点,掌握几何概型的概率公式。
3.会求简单的几何概型的事件的概率。
三、教学重点几何概型的特点,会用公式计算几何概型的概率。
四、教学难点在具体问题中找到几何测度并正确计算。
五、教学过程(一)创设情境,引入新课。
问题一:北京奥运会圆满闭幕,某玩具厂商为推销其生产的福娃玩具,扩大知名度,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,则可获得一套福娃玩具,则顾客能得到一套福娃玩具的概率是________.问题二:厂商为了增强活动的趣味性,改变了活动方式,设立了一个可以自由转动的转盘(如图1)转盘被分成8个扇形区域.顾客随意转动转盘,如果转盘停止转动时,指针正好指向阴影区域,顾客则可获得一套福娃玩具.问顾客能得到一套福娃玩具的概率是________.(教师通过白板演示)设计意图:通过这两个实际问题,学生都能很快的进入问题中思考,尤其是问题二,使学生意识到这个问题的基本事件有无数个。
(二)师生互动,探求新知思考1:以上两个问题都是古典概型吗?为什么?经过分析,问题一是古典概型,问题二不是古典概型,因为基本事件有无限个,虽然类甲 乙 【预习自测】1、在轴的坐标为[0,3]上的线段上任取一点, 其坐标小于1的概率是_____________。
2、在2升水中有一个草履虫,现从中随机抽取0.1升水样放到显微镜下观察,则发现草履虫的概率是_____.似于古典概型的等可能,但由于基本事件和所研究的事件包含的基本事件都有无数个,显然不能用古典概型的概率公式来解决,由此引出几何概型的概念。
人教版高二数学必修三《几何概型》说课稿

人教版高二数学必修三《几何概型》说课稿一、引入大家好,今天我将给大家讲解人教版高二数学必修三中的《几何概型》这一单元。
本单元主要介绍了几何概型的概念、性质和运用,帮助学生更好地理解几何概型在数学中的重要性和应用价值。
二、教学目标本节课的教学目标主要包括以下几个方面:1.了解几何概型的基本概念和性质;2.掌握几何概型的构造方法和判断几何图形是否相似的准则;3.能够灵活应用所学知识解决实际问题;4.培养学生的观察力、逻辑思维能力和分析解决问题的能力。
三、教学重难点本节课的教学重点主要集中在以下几个方面:1.掌握几何概型的构造方法;2.理解几何概型的相似性质;3.解决实际问题时能够合理运用几何概型的知识。
教学难点主要在于学生对几何概型的抽象理解、运用知识解决实际问题的能力以及对相似性质的深入理解。
四、教学过程本节课的教学过程主要分为以下几个环节:导入、理论探究、拓展应用和归纳总结。
1. 导入在导入环节中,我将通过提问或举例的方式引导学生回顾前几节课所学的内容,激发他们的兴趣并铺垫本节课的教学。
2. 理论探究在理论探究环节中,我将向学生详细介绍几何概型的概念和性质,重点讲解几何概型的构造方法和判断几何图形是否相似的准则。
我会使用具体的例子来说明这些概念和性质,并通过示意图让学生更直观地理解。
在讲解的过程中,我会引导学生积极参与,通过问题解答、讨论等方式加深对知识点的理解。
3. 拓展应用在拓展应用环节中,我将设计一些实际问题,让学生灵活运用所学的几何概型知识解决问题。
通过实际问题的讨论和解答,帮助学生将抽象的几何概型知识应用到实际生活中,并培养他们的问题解决能力和分析能力。
4. 归纳总结在归纳总结环节中,我将提醒学生对本节课的重点和难点进行总结,并梳理几何概型的核心知识点。
通过让学生自己总结和分享,巩固他们的学习效果。
同时,我也会进行重点知识点的强调和回顾,以加深学生对这些知识点的记忆和理解。
五、教学手段本节课的教学将采用多种教学手段,包括:•多媒体辅助教学:通过投影仪或电子白板展示示意图、实例演示等,帮助学生更直观地理解知识点。
人教版必修3《几何概型》说课稿

2 小 组 合 作学 习 。 、
六 、 学 过 程 教 1 教 学过 程分为创设情境 , 构建概念 . 固概念例题分析构 巩 建模 型归纳总结五个环节 苏霍姆林斯基说过 :应该让我们的 学生在每一节课上 都 “ 感到热烈的、 沸腾 的、 多姿多彩的精神生活。 课堂上 , ” 只有让学 生真 正 “ ” “ ” 来 , 生 的学 习 热情 才 会 高 涨 , 造 力 才 会 动 、活 起 学 创 加强 。 由此 , 景 引入 时 , 情 以学 生 喜 闻乐 见 的游 戏 ( 用这 样 的 心 利 情 转 盘 , 出 你 的心 情 指 数 , 选 用转 盘 指 针 测 出 你 的 心情 指 数 ) 为 背景 创 设 问题 一 , 学 生 踊 跃 参 与 , 进 一 步 给 出 问题 二 , 学 请 并 请
读 写算
21年 01
第 4 期 6
数学教 育研 究
人教版必修 3《 几何概型 》说课稿
黄 郁 姿
( 北京 市 国际艺术学校 北京 1 0 7 0 0 8)
尊 敬 的评 委 . 师 们大 家 好 : 老 我说 课 的 题 目是 几何 概 型 , 我将 从 教 材 分 析 、 情 分 析 , 学 教 学 目标 、 教学 重 点难 点 、 法学 法 、 学 过程 六 个方 面加 以 阐述 。 教 教 教 材 分 析 本 节 课 为人 教 B 必 修 3 版 第三 章 第 三 单元 第 一 节 , 何概 型 几 是 继 古 典概 型 之 后 学 习 的 另一 类 等 可 能概 型 , 对 古 典 概 型 的 是 延 续 补 充 , 研 究 有 限个基 本 事件 过渡 到研 究 无 限 个基 本 事件 . 从 在 比较 中提 高 对 古 典 概 型 的理 解 , 一 步 体 会概 率 的思 想 及 其 进 丰 富 内涵 , 为学 习 选 修2 中随机 变量 及 其 分 布 列奠 定 基 础 。 -3 根 据 课程 标 准 的要 求 , 将 本节 内容设 计 为 两课 时 , 节 为第 一 课 我 本 时, 目的 在于 让学 生体 验 知识 的 发 现和 形成 过 程 。 二课 时为 活 第 动 课 , 流各 人 的 古 典概 型 、 交 几何 概 型 应 用 题 和学 习 心得 , 师 教 在 课 下提 供 课外 资 料 素材 , 学 生们 参 考 , 供 指导 部 分 学 生如 何选 材 , 成 编题 , 正 体 现 过 程 教学 的理 念 。 完 真 2教 学 的 重 点和 难点 :1 重点 : 、 () ①理 解 几何概 型 的概念 、 特 点; ②会用其求解随机事件的概率 。2 难点 : () 如何判断一个试验
高中数学《几何概型》说课稿

高中数学《几何概型》说课稿:老师聘请考试《说课》学问点|考点汇总高中数学《几何概型》说课稿恭敬的各位考官,大家好,我是今日的X号考生,今日我说课的题目是《几何概型》。
新课标指出,高中数学课程的教学要能提高同学的"四基、四能',按照这一课程目标,本节课我将从教材分析、教学目标、教学过程等几个方面来绽开我的说课。
一、说教材本节课选自人教A版高中数学必修3第三章。
本节课的内容是在古典概型基础上的进一步进展,是等可能大事的概念从有限向无限的延长。
通过本节课的学习,同学能进一步体味试验结果的随机性与逻辑性,并体味到对事物的态度不应当持肯定化的观点。
二、说学情高中生智力发育已趋于成熟,对于未知事物有着很强的探索欲望,且此前古典概型的学习为本节课打下了良好的基础。
但基本领件有很多多个的发觉以及此种状况下概率该如何计算,同学并不容易想到。
因此我会从详细的生活、实践问题入手,组织同学开展活动,在观看、思量中抽象、概括本节课的要点。
三、说教学目标结合以上分析,我制定本节课教学目标如下:(一)学问与技能初步体味几何概型的意义,控制几何概型的概率计算公式,并能举行简洁应用。
(二)过程与办法在通过几何概型特点概括出几何概型概率计算公式的过程中,进一步进展合情推理能力,学会运用数形结合的思想解决概率计算问题。
(三)情感、看法与价值观通过贴近生活的素材,激发学习数学的爱好,体味用科学的看法、辩证的思想去观看、分析、讨论客观世界。
四、说教学重难点同时,本节课教学重点为:几何概型的意义及概率计算公式。
教学难点为:几何概型概率计算公式的推导。
五、说教法和学法教学的一切活动都必需以强调同学的积极性、主动性为动身点,按照这一教学理念,本节课我将采纳讲授法、自主探索法、练习法等教学办法。
六、说教学过程下面说说我的教学过程。
(一)引入新课首先我会带领同学复习确定随机大事发生的概率的两种办法,一是通过频率估算概率,二是用古典概型的概率公式来计算大事发生的概率。
2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3

2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X 落到[0,1]区间内任何一点是等可能的,则称X 为[0,1]区间上的均匀随机数. 三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=1/4.两次出现相同面的概率为.(2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的, 于是事件A发生的概率P(A)=.第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为×π×1222 cm2的大圆内,而当中靶点落在面积为×π×12.22 cm2的黄心内时,事件B发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g)=.点评:通过实例初步体会几何概型的意义.思路2例 1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P(A)=(60-40)/60=1/3.即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x(6≤x≤7)时开始,晚报在y(5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y)对应.于是试验的所有可能结果就与G中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g就表示“晚报在晚餐开始之前被送到”.容易求得g的面积为,G的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P(A)=.变式训练在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min一班,在车站停1 min,求乘客到达站台立即乘上车的概率.解:由几何概型知,所求事件A的概率为P(A)=.2.两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)==.3.在500 mL的水中有一个草履虫,现从中随机取出2 mL水样放到显微镜下观察,则发现草履虫的概率是()A.0.5B.0.4C.0.004D.不能确定解析:由于取水样的随机性,所求事件A:“在取出2 mL的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004.答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如右图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=.拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P=95604060222=-=的面积的面积G g .2.(蒲丰(Buffon)投针问题)平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x),0≤φ≤π,0≤x≤a/2},为一矩形.针与平行线相交的充要条件是g :x≤sinφ(见下图右).所求概率是P= ππφφπa l a d l 22/sin )2/(0=••=⎰.注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N次,(或一次投针若干枚,总计N枚),统计与平行线相交的次数n,则P≈n/N.又因a 与l都可精确测量,故从2l/aπ≈n/N,可解得π≈2lN/an.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位. 设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业课本习题3.3A组1、2、3.设计感想本节课首先对古典概型进行了复习,使学生掌握古典概型的适用条件,巩固了古典概型的概率计算公式,接着设计了多个试验,从课题的引入,到问题的提出都非常有针对性,引人入胜,接着从求概率不能问题引出几何概型这一不同于古典概型的又一概率模型,并通过探究,归纳出几何概型的概率计算公式,同时比较了古典概型和几何概型的区别和联系,通过思路1和思路2两种不同的例题类型和层次,加深理解和运用,由于它们与实际生活联系密切,所以要反复练习,达到为我们的工作与生活服务,然而这部分内容高考是新内容,因此同学们要高度重视,全面把握,争取好成绩.。
高中数学必修三《几何概型》教学设计

《几何概型》教学设计教学内容分析:本课时教材选自人教A版数学必修3第三章概率部分第3.3节的内容.几何概型是概率必修章节的收尾篇,共有两个课时,本节课为第一课时,它是继古典概型之后学习的另一类等可能概型;是教材新增加的内容,对它的要求仅限于初步体会几何概型的意义.几何概型的研究,是古典概型的拓广,将古典概型试验结果有限个拓广到无限个;课本介绍几何概型主要是为了更广泛地满足随机模拟的需要.概率教学的核心问题是让学生了解随机现象与概率的意义,运用数学方法去研究不确定现象的规律,让学生初步形成用随机的观念去观察、分析、研究客观世界的态度,并获取认识世界的初步知识和科学方法.一.学生学习情况分析:学生前面已经学习了随机事件的概率和古典概型,初步学会了用古典概型公式解决概率题,大多数学生对于概率的学习以及概率试验产生了浓厚的兴趣,逐渐会把一些问题模型化.但是学生在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强.二.设计思想:建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。
也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构.基于以上理论,本节课遵循引导发现、循序渐进的思路,采用问题探究式教学,让学生在观察分析、自主探索、合作交流的过程中建构几何概型的概念以及归纳出几何概型公式,运用实物、多媒体辅助,倡导“自主、合作、探究”的学习方式.具体流程如下:→→→三.教学过程设计:课题引入:你出行要坐公交车,如果公交车每15分钟一班,其中包括公交车在站台等待的时间3分钟,你到站台的任意时刻是等可能的,那么你刚到站台,就能坐上车,不用等待的概率是多少呢?(基本事件有无限多个,故不是古典概型)教师:这个模型就是我们今天要学习的几何概率模型,简称几何概型.导入新课问题情境[情景一]教师取一根长度为3米的绳子,拉直后在任意位置剪断,使得剪出的两段的长都不小于一米(记为事件A),求此事件发生的概率.师生共同探究:此试验中,从每一个位置剪断都是一个试验结果,剪断位置可以是绳子上任一点,试验的可能结果为无限个,发现不是古典概型,不可以用古典概型的方法求解.探索:如图所示,把绳子三等分,于是当剪断位置在中间一段时,事件A 发生,于是1()3P A 中间线段长度=整条线段长度[情景二]十一节期间,“XX 百货”超市为了扩大知名度,特意举行了大型的购物抽奖促销活动,有的顾客在购物后抽奖时,有点犯蒙了,原来聪明的商家为促销活动设计了三种方案:飞镖游戏:如图所示,规定顾客射中红色区域表示中奖 聪明的你能帮他们分析一下选择哪种方案中奖的概率大?五等分 圆心角之比为1:2:3 半径之比为1:2问题1:在三种情况下某顾客中奖的概率分别是多少?学生思考并回答,可见在图中,顾客中奖的概率分别为51、61、41 问题2:上述每个红色区域对应的位置和形状都是不同的,从结论来看,顾客中奖的概率与红色区域的哪个因素有关?哪些因素无关?(与面积有关,与其位置和形状无关)[情景三]一只小蜜蜂在一棱长为6cm 的正方体笼子里飞,它距笼边大于1cm 的概率是多少?问题3同学们观察对比,找出三个情景的共同点与不同点?问题4同学们能否根据自己的理解说说什么是几何概型?【设计意图】三个情景设置让学生发现试验的结果有无限个,此发现它们不是古典概型, 无法用古典概型的方法求解,然后师生探索此问题怎样解决,最后教师点题:这就是我们今天要学习的几何概型. 情境一的设计是从长度方面考虑问题,是为了引入概念,情境二、三的设计从面积和体积方面考虑问题,是为了让学生全面了解几何概型的概念,并且渗透数形结合的数学思想方法.小组的讨论是为了培养学生的合作意识和团队精神.(二)概念形成在问题情景的铺垫下,教师引导学生用自己的语言描述几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.A 发生的概率的计算公式为:A ()P A =构成事件的区域长度(面积或体积)全部结果所构成的区域长度(面积或体积)【设计意图】通过用表格列出相同和不同点,既体现了数学中类比的思想又能让学生更好的了解几何概型,从而突出教学重点.通过递进式地设置问题,使学生将实际问题转化成数学概念,体验到了探寻数学规律的乐趣,加深了学生对概念的了解和对公式的探究,突出教学重点.(三)实际应用例1某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.(此例师生共同探讨解决)解完此例题后归纳求解几何概型问题的步骤:记事件例2一海豚在水中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边超过2m 的概率.(此例先让学生独立思考,然后教师再画龙点睛的分析并求解)课堂训练:1.如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.2、你出行要坐公交车,如果公交车每15分钟一班,其中包括公交车在站台等待的时间3分钟,那么你刚到站台,就能坐上车,不用等待的概率是多少呢?【设计意图】实际应用部分有问题,有例题,也有学生的训练,练习2的设计是为了让学生认识到数学源于生活,又应用于生活,生活中处处有数学;例题的设置让学生对几何概型的题目有了更深刻的理解,认识到几何概型主要是要把概率问题与几何问题完美的结合,几何度量中到底是长度、面积还是体积呢?我们要认真加以判断,要学会用数形结合的思想解决概率问题.(四)课堂小结教师引导学生反思:本节课我们学了什么?学会了什么?1.几何概型的定义、计算公式如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成 比 例,则称这样的概率模型为几何概率模型,简称为几何概型积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P )( 2.注意理解几何概型与古典概型的区别。
几何概型说课稿

几何概型说课稿 Prepared on 22 November 2020《几何概型》说课稿(第一课时)各位老师:大家好!我今天说课的题目是《几何概型》,该内容选自于人教版普通高中课程标准实验教科书高中数学A版必修三,该教材一共分为三章,分别是算法初步、统计和概率。
而几何概型这一小节选自于该教材的第三章第三节。
该节内容课时安排为两个课时,本节课内容为第一课时。
下面我将从教材、教学目标、教法和学法、教学过程四个方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用本节内容是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常见概型的学习,是等可能事件的概念从有限向无限的延伸,是对古典概型内容的进一步拓展,学好此节内容对全面系统地掌握概率知识和对于学生辩证思想的进一步形成都具有良好的作用。
2、教学的重点和难点本课是一节概念新授课,不仅要把握好新课的学习,而且要与前面所学的古典概型很好的区分开来,因此把掌握几何概型的概念,及其两个重要特征、能判断某个事件是古典概型还是几何概型及几何概型中概率的计算公式作为教学重点。
又由于要正确的运用几何概型的公式必须要学会正确的建立合理的几何模型来进行求解,所以我把该节课的教学难点设置为:在实际问题中如何正确建立合理的几何模型求解概率。
二、教学目标分析依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等,我认为这一节课要达到的三维目标可确定为:1.知识目标(1)通过具体例子理解几何概型的概念和掌握几何概型的概率公式;(2)会判别某种概型是古典概型还是几何概型;2、能力目标:(1)通过把古典概型的例子稍加变化后成为几何概型,从有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。
(2)通过实例培养学生把实际问题转化成数学问题的能力,让学生感知用图形解决概率问题的方法。
3、情感目标通过对几何概型的教学,培养学生独立思考探索的能力,让学生体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。
高中数学《几何概型》说课稿 新人教A版必修3

《几何概型》说课稿今天我说课的题目是《几何概型》,我将从教材分析,教法与学法分析,教学过程设计、课后反思及教学设计说明五个方面来阐述。
一、教材分析:1、教材的地位和作用:本节课是新教材人教版必修3第三章第三节第一课,它安排在“古典概型”之后,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。
教材这样安排的作用:一是体现了古典概型和几何概型的区别,在类比中巩固这两种概型,二是为解决实际问题提供了一种新的模型,在教材中起到了承上启下的作用。
2、教学的重点和难点:(1)重点:①正确理解几何概型的定义、特点;②会用几何概型概率公式求解随机事件的概率。
(2)难点:①根据古典概型与几何概型的区别,来判断一个试验是否为几何概型,②将实际问题抽象成几何概型。
3、教学目标:①学生通过转盘游戏,理解几何概型的定义及概率计算公式。
②通过情境创设与例题教学使学生掌握几何概型的判断及概率计算公式的应用。
③采用类比发现和归纳发现,让学生体验探究问题的过程,学会应用数学知识来解决实际问题,从而提高学生的思维能力。
④通过探究发现与合作交流,使学生认识到数学与现实生活的联系,从“发现”中体验成功,养成主动探索求知的习惯,培养学生合作交流的意识。
二、教法与学法分析1、教法分析高中新课程中注重以学生的发展为本,结合学生认知规律及内容特点,我主要采用探究式教学方法。
通过转盘游戏,使学生经历从直观到抽象,从特殊到一般的认知,引导学生主动概括与归纳出几何概型定义及公式,从而突破重点。
再通过情境创设与具体实例,引导学生明确几何概型的应用,来突破难点。
整堂课紧紧围绕“以学生为主体”的教学原则,充分发挥学生的主体能动性,让每个学生都积极参与到学习活动中来。
2、学法分析从贴近实际生活的情境创设出发,以类比方式让学生体验两种概型的差异,激起学生极大的兴趣,这一创设既贴近了学生原有的认知水平,又把新知识设定在学生思维的最近的发展区内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《几何概型》说课稿
《几何概型》
今天我说课的题目是几何概型,我将从教材分析,教学过程分析,教法学法分析,评价分析、板书设计五个方面来阐述。
一、教材分析:
1、地位和作用:
本节课是高中数学必修三第三章第三节几何概型的第一课时,是在学习了随机事件的概率及古典概型之后,引入的另一类基本的概率模型,在概率论中占有相当重要的地位。
学好几何概型可以有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
2、教学的重点和难点:
(1)重点:①了解几何概型的概念、特点;②会用几何概型概
率公式求解随机事件的概率。
(2)难点:如何判断一个试验是否为几何概型,弄清在一个几
何概型中构成事件A的区域和试验的全部结果所构
成的区域及度量。
3、教学目标:
(1)知识与技能:
①了解几何概型的概念②会用公式求解随机事件的概率。
(2)过程与方法:
通过试验,将已学过计算概率的方法做对比,提出新问题,师生共同探究,引导学生继续对概率的另一类问题进行
思考、分析,进而提出可行性解决问题的建议或想法。
(3)情感、态度与价值观:
通过试验,感知生活中的数学,培养学生用随机的观点来理性的理解世界,增强学生数学思维情趣,形成学习数学
知识的积极态度。
二、教法分析
基于以上对本节课教学过程的分析,体现了本节课的教法是:采用引导发现和归纳概括相结合的教学方法,通过两组试验来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
三、教学过程分析:
基于以上分析,本节课的教学过程我将分为五个环节:提出问题,引入新课;思考交流,形成概念;观察类比,推导公式;例题分析,推广应用;总结概括,加深理解。
1、提出问题,引入新课
本节课理解起来很困难,特别是如何判断一个试验是否为几何概型,其概率如何计算对学生来说是个难点。
那么如何分散这些难点的呢?由于几何概型与古典概型既有共性(等可能性),又有本质上的区别,因此,我在本节课的开始设计了两组试验,试验的第一题是古典概型,稍加变化之后就是几何概型,它们表面上很相似,但实际上有本质的不同。
这样,学生在复习旧知识的同时又产生了新的问题,这可以激起学生求知的欲望。
(赌博游戏):甲乙两赌徒掷色子,规定掷一次谁掷出6点朝上则谁胜,请问甲、乙赌徒获胜的概率谁大?
学生分析:色子的六个面上的数字是有限个的,且每次都是等可能性的,因而可以利用古典概型。
学生求解:
1
6 p 乙
(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲
获胜的概率是多少?
学生分析:
(1)指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;
(2)利用B区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;
2、问题猜想
⑴两个问题概率的求法一样吗?若不一样,请问可能是什么原因导致的?
⑵你是如何解决这些问题的?
⑶有什么方法确保所求的概率是正确的?
学生对比分析:
⑴赌博游戏:色子的六个面上的数字是有限个的,且每次投掷都
是等可能性的,因可以利用古典概型;
转盘游戏:指针指向的每个方向都是等可能性的,但指针所指
的方向却是无限个的,因而无法利用古典概型。
⑵借助几何图形的长度、面积等分析概率;
⑶对转盘游戏进行模拟试验,确保所求的概率是正确的。
我认为这一过程符合新课标的“以问题引领”的要求,学生接受起来比较自然,易于接受,也乐于接受。
3、观察类比,推导公式
(1)几何概型的定义:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
(2)几何概型的特点:
(1)试验中所有可能出现的基本事件有无限多个.
(2)每个基本事件出现的可能性相等.
(3)几何概型求事件A的概率公式:
()A
P A
构成事件的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
4、例题分析,推广应用
在形成概念和公式之后,我将带领学生体验利用新知识解决问题的乐趣,进入本节课的下一个环节:例题分析,推广应用。
根据学生的实际情况,我设计两个例题。
例1:
一海豚在水中自由游弋, 水池为长30m 、宽20m 的长方形。
求此刻海豚嘴尖离岸边不超过2m 的概率。
分析:对于几何概型,关键是要构造出随机事件对应的几何概型。
求解:
例2:平面上画了一些彼此相距2a 的平行线,把一枚半径r ﹤a 的硬币任意掷在这平面上,求硬币不与任一条平行线相碰的概率。
解:设事件A:“硬币不与任一条平行线相碰”.由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,其长度就是几何概型定义中区域Ω的几何度量.
只有当r ﹤|OM|<a 时硬币不与平行线相碰,其长度就是子区域A 的几何度量.
所以, 例题2的设置有两个目的: 23020600)
m μ=⨯=Ω(230202616184)m A μ=⨯-⨯=(23A 75
Ωμ184P(A)===μ600
①规范学生解决实际问题的思路:第一步,将实际问题抽象成已学过的概率模型;第二步,再利用相应的公式进行计算。
②介绍几何概型的计算方法,培养学生分析问题和解决问题的能力。
通过比较我们发现,例1与例2本质是一样的,都可抽象成几何图形的度量比,由此我们可以得到解几何概型问题的一般方法。
①画图②确定区域、A ③套用公式
5、总结概括,加深理解
课堂小结是一个不容忽视的环节,既可以梳理本节课的学习过程,又可以加深理解。
四、评价分析
本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出几何概型的概念,由一个问题的提出进一步加深对几何概型的两个特点的理解;再通过学生观察类比推导出几何概型的概率计算公式。
这一过程能够培养学生发现问题、分析问题、解决问题的能力。
在解决概率的计算上,教师鼓励学生思考解决新一类概率问题的方法,积极与已学过的古典概型做对比,让学生感受求新一类概率问
题的一般方法,从而化解如何求概率的教学困惑。
由此,整个教学设计可以在教师的期盼中实施。
五、板书设计。