江苏专用2018高考数学一轮复习第十章算法统计与概率第56课几何概型课时分层训练
(江苏专用)2018高考数学一轮复习 第十章 算法、统计与概率 第55课 古典概型课时分层训练

第十章 算法、统计与概率 第55课 古典概型课时分层训练A 组 基础达标(建议用时:30分钟)一、填空题1.(2017·镇江期中)从甲、乙、丙3名候选学生中选取2名作为青年志愿者,则甲被选中的概率为________.23[从甲、乙、丙3名候选学生中选取2名共有(甲,乙),(甲,丙),(乙,丙)三种情况,甲被选中的概率P =23.] 2.(2017·无锡期中)某人抛掷质地均匀的骰子,其抛掷两次的数字之和为7的概率是________.16[抛掷两次骰子共有36种不同的结果,其中数字之和为1的共有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),6种不同的结果,故所求事件的概率P =636=16.] 3.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【导学号:62172305】23[设两本不同的数学书为a 1,a 2,1本语文书为b .则在书架上的摆放方法有a 1a 2b ,a 1ba 2,a 2a 1b ,a 2ba 1,ba 1a 2,ba 2a 1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率P =46=23.] 4.(2017·扬州模拟)从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是________.25[从5个数中随机抽取2个不同的数,共有10种不同的结果,其中2个数的和为偶数,共有(1,3),(1,5),(3,5),(2,4)4种不同的结果,故所求事件的概率P =410=25.] 5.同时抛掷三枚质地均匀、大小相同的硬币一次,则至少有两枚硬币正面向上的概率为________.12[所有可能的试验结果有(上,上,上),(上,上,下),(上,下,上),(下,上,上),(下,下,下),(下,下,上),(下,上,下),(上,下, 下)共8种.只有一枚正面向上的试验结果只有3种,全部向下的1种,故所求事件的概率P =1-3+18=12.]6.(2015·全国卷Ⅰ改编)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________.110[从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.] 7.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.13[记“两人都中奖”为事件A , 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),共2种,所以P (A )=26=13.] 8.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【导学号:62172306】13[点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.] 9.在集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n π3,n =1,2,3,…,10中任取一个元素,所取元素恰好满足方程cos x =12的概率是________. 15 [基本事件总数为10,满足方程cos x =12的基本事件数为2,故所求概率为P =210=15.] 10.从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为________.【导学号:62172307】16[由题意知,向量m 共有4×3=12个, 由m ⊥n ,得m ·n =0,即a =b ,则满足m ⊥n 的m 有(3,3),(5,5)共2个,故所求概率P =212=16.]二、解答题11.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.[解] (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35. 12.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.[解] (1)由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P (A )=327=19. 因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同“为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89. 因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89. B 组 能力提升(建议用时:15分钟)1.已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为________.23[对函数f (x )求导可得f ′(x )=x 2+2ax +b 2,要满足题意需x 2+2ax +b 2=0有两个不等实根,即Δ=4(a 2-b 2)>0,即a >b .又(a ,b )的取法共有9种,其中满足a >b 的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种,故所求的概率P =69=23.] 2.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事件发生的概率为________.14[由题意知(a ,b )的所有可能结果有4×4=16个.其中满足a -2b +4<0的有(1,3),(1,4),(2,4),(3,4)共4种结果.故所求事件的概率P =416=14.] 3.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.[解] 将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见共有10种.令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110,即此人被评为优秀的概率为110. (2)P (E )=35,P (F )=P (D )+P (E )=710. ∴此人被评为良好及以上的概率为710. 4.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.(1)求连续取两次都是白球的概率;(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?[解] (1)连续取两次的基本事件有:(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16个.连续取两次都是白球的基本事件有:(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4个.故所求概率为416=14. (2)连续取三次的基本事件有:(红,红,红),(红,红,白1),(红,红,白2),(红,红,黑);(红,白1,红),(红,白1,白1),(红,白1,白2),(红,白1,黑),…,共64个.因为取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的基本事件有:(红,白1,白1),(红,白1,白2),(红,白2,白1),(红,白2,白2),(白1,红,白1),(白1,红,白2),(白2,红,白1),(白2,红,白2),(白1,白1,红),(白1,白2,红),(白2,白1,红),(白2,白2,红),(红,红,黑),(红,黑,红),(黑,红,红),共15个.故所求概率为1564.百度文库是百度发布的供网友在线分享文档的平台。
江苏专用2018高考数学一轮复习第十章算法统计与概率第56课几何概型教师用书

第56课 几何概型[最新考纲]1.几何概型的概念设D 是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的概率计算公式一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.3.要切实理解并掌握几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN作为所求概率的近似值.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)随机模拟方法是以事件发生的频率估计概率.( )(2)从区间[1,10]内任取一个数,取到1的概率是110.( )(3)概率为0的事件一定是不可能事件.( )(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) [答案] (1)√ (2)× (3)× (4)√2.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是________.(填序号)图561① [P (①)=38,P (②)=28,P (③)=26,P (④)=13,∴P (①)>P (③)=P (④)>P (②).]3.(2016·全国卷Ⅱ改编)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为________.58[如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58.]4.如图562所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图5620.18 [由题意知,S 阴S 正=1801 000=0.18. ∵S 正=1,∴S 阴=0.18.]5.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是________.1-π4 [如图所示,区域D 为正方形OABC 及其内部,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π,∴所求事件的概率P =4-π4=1-π4.]7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________.图563(2)如图563所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.(1)12 (2)13 [(1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.(2)以A 为圆心,以AD =1为半径作圆弧交AC ,AP ,AB 分别为C ′,P ′,B ′.依题意,点P ′在上任何位置是等可能的,且射线AP 与线段BC 有公共点,则事件“点P ′在上发生”.又在Rt △ABC 中,易求∠BAC =∠B ′AC ′=π6.故所求事件的概率P ==π6·1π2·1=13.] [规律方法] 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD 为测度”计算几何概型的概率,导致错求P =12.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比.[变式训练1] (1)设A 为圆周上一点,在圆周上等可能地任取一点与A 连结,则弦长超过半径2倍的概率是________. 【导学号:62172308】(2)(2016·山东高考)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.(1)12 (2)34 [(1)作等腰直角△AOC 和△AMC ,B 为圆上任一点,则当点B 在上运动时,弦长|AB |>2R ,∴P ==12.(2)由直线y =kx 与圆(x -5)2+y 2=9相交,得|5k |k 2+1<3,即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝ ⎛⎭⎪⎫-342=34.]☞角度1 与随机模拟相关的几何概型(2016·全国卷Ⅱ改编)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为________.4mn[因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4mn.]☞角度2 与线性规划交汇问题由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为________.78[如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝ ⎛⎭⎪⎫-12,32,S △BCD =12×12×(2-1)=14,S △OAB =12×2×2=2,故P =S 四边形OACDS △OAB =2-142=78.][规律方法] 1.与面积有关的平面图形的几何概型,解题的关键是对所求的事件A 构成的平面区域形状的判断及面积的计算,基本方法是数形结合.2.解题时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.1111ABCD A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【导学号:62172309】1-π12[设“点P 到点O 的距离大于1”为事件A . 则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.] [规律方法] 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.[变式训练2] 如图564,正方体ABCD A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M ABCD 的体积小于16的概率为________.图56412[设四棱锥M ABCD 的高为h ,由于V 正方体=1. 则13·S ABCD ·h <16, 又S ABCD =1,∴h <12,即点M 在正方体的下半部分, ∴所求概率P =12V 正方体V 正方体=12.][思想与方法]1.古典概型与几何概型的区别在于:前者基本事件的个数有限,后者基本事件的个数无限.2.判断几何概型中的几何度量形式的方法 (1)当题干是双重变量问题,一般与面积有关系.(2)当题干是单变量问题,要看变量可以等可能到达的区域:若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积),即一个几何度量的形式取决于该度量可以等可能变化的区域.[易错与防范]1.易混淆几何概型与古典概型,两者共同点是试验中每个结果的发生是等可能的,不同之处是几何概型的试验结果的个数是无限的,古典概型中试验结果的个数是有限的.2.准确把握几何概型的“测度”是解题关键.3.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.课时分层训练(五十六)A 组 基础达标 (建议用时:30分钟)1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________.【导学号:62172310】35[在区间[-2,3]上随机选取一个数X ,则X ≤1, 即-2≤X ≤1的概率为P =35.]2.如图565所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是________.图5653π [设阴影部分的面积为S ,且圆的面积S ′=π·32=9π. 由几何概型的概率得S S ′=13,则S =3π.] 3.若将一个质点随机投入如图566所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________.图566π4 [设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4.] 4.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为________.【导学号:62172311】12[由题设知,区域D 是以原点O 为中心的正方形,直线y =kx 将其面积平分,如图,所求概率为12.]5.一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率为________.π120[屋子的体积为5×4×3=60米3, 捕蝇器能捕捉到的空间体积为18×43π×13×3=π2米3,故苍蝇被捕捉的概率是π260=π120.]6.(2015·山东高考改编)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为________.34 [不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.]7.已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC<12V S ABC 的概率为________. 【导学号:62172312】 78 [当点P 到底面ABC 的距离小于32时, V P ABC <12V S ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.]8.在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为________. 13 [由0≤sin x ≤12,且x ∈[0,π], 解得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.]9.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.1316 [∵去看电影的概率P 1=π·12-π·⎝ ⎛⎭⎪⎫122π·12=34, 去打篮球的概率P 2=π·⎝ ⎛⎭⎪⎫142π·12=116, ∴不在家看书的概率为P =34+116=1316.]10.如图567,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.图56714 [因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),E (0,1).所以C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0). 故矩形ABCD 的面积为2×3=6,S 阴影=12×1×3=32.根据几何概型得P =326=14.]11.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为________. 【导学号:62172313】12[如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.] 12.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________.24-π24[由题意作图,如图,则点P 应落在深色阴影部分,S 三角形=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=24-π24.]B 组 能力提升 (建议用时:15分钟)1.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.3 [由|x |≤m ,得-m ≤x ≤m . 当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m - -2 6=56,解得m =3.] 2.在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.23[∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4 3p -2 ≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+ 5-2 5=23.] 3.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为________. 14-12π[|z |= x -1 2+y 2≤1,即(x -1)2+y 2≤1,表示的是圆及其内部,如图所示.当|z |≤1时,y ≥x 表示的是图中阴影部分.∵S 圆=π×12=π,S 阴影=π4-12×12=π-24. 故所求事件的概率P =S 阴影S 圆=π-24π=14-12π.]4.随机地向半圆0<y <2ax -x 2(a 为正数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________.12+1π[由0<y <2ax -x 2(a >0), 得(x -a )2+y 2<a 2, 因此半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.]5.(2015·湖北高考改编)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则下列正确的是________.①p 1<p 2<12; ②p 2<12<p 1; ③12<p 2<p 1; ④p 1<12<p 2.④ [如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE (如图①),其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分(如图②),其面积显然大于12,故p 2>12,则p 1<12<p 2.]6.甲、乙两辆车去同一货场装货物,货物每次只能给一辆车装货物,所以若两辆车同时到达,则需要有一车等待.已知甲、乙两车装货物需要的时间都为20分钟,倘若甲、乙两车都在某1小时内到达该货场(在此期间货场没有其他车辆),则至少有一辆车需要等待装货物的概率为________.59[设甲、乙货车到达的时间分别为x ,y 分钟,据题意基本事件空间可表示为Ω=⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪0≤x ≤60,0≤y ≤60, 而事件“有一辆车等待装货”可表示为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ 0≤x ≤60,0≤y ≤60,|x -y |≤20,, 如图,据几何概型可知其概率等于P (A )=S 阴影S 正方形=60×60-2×12×40×4060×60=59.]。
(江苏专用)2018高考数学一轮复习 第十章 算法、统计与概率 第52课 随机抽样课时分层训练

第十章 算法、统计与概率 第52课 随机抽样课时分层训练A 组 基础达标(建议用时:30分钟)1.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ________.按学段分层抽样 [不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.]2.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是________.(填序号) 【导学号:62172290】①5,10,15,20,25;②3,13,23,33,43;③1,2,3,4,5;④2,4,6,16,32.② [间隔距离为10,故可能编号是3,13,23,33,43.]3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =________.13 [依题意得360=n 120+80+60,故n =13.] 4.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则p 1,p 2,p 3的大小关系为________.p 1=p 2=p 3 [由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.]5.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为________. 【导学号:62172291】 695 [由题意可知,第一组随机抽取的编号a 1=15,分段间隔数k =N n =1 00050=20,则抽取的第35个编号为a 35=15+(35-1)×20=695.] 6.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.970 [由题意可知抽样比为2002 000=110, 设样本中女生有x 人,则x +(x +6)=200,所以x =97,该校共有女生97110=970人.] 7.(2017·南京模拟)某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.60 [根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.] 8.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________. 514 [根据题意,9n -1=13,解得n =28.故每个个体被抽到的概率为1028=514.] 9.(2017·扬州模拟)用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________. 【导学号:62172292】11 [由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x ,则由系统抽样的法则可知,第n 组抽出个体的号码应该为x +(n -1)×8,所以第16组应抽出的号码为x +(16-1)×8=123,解得x =3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.]10.央视春晚直播不到20天的时候,某媒体报道,由六小龄童和郭富城合演的《猴戏》节目被毙,为此,某网站针对“是否支持该节目上春晚”对网民进行调查,得到如下数据:为________.16 [持“支持”态度的网民抽取的人数为48×8 0008 000+6 000+10 000=48×13=16.] 11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图522所示,则该校女教师的人数为________人.图522137 [初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137.]12.(2017·泰州期末)某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从男学生中抽取的人数为100人,那么n =________.200 [由分层抽样的特点可知:100800=n 200+800+600,即n =200.] B 组 能力提升(建议用时:15分钟)1.(2017·常州期末)某地区有高中学校10所,初中学校30所,小学学校60所,现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校________所.6 [由分层抽样的特点可知初中学校应抽取20×3010+30+60=6(所).] 2.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 均成等差数列,则第二车间生产的产品数为________.1 200 [因为a ,b ,c 成等差数列,所以2b =a +c ,所以a +b +c 3=b ,所以第二车间抽取的产品数占抽样产品总数的13.根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即为13×3 600=1 200.] 3.(2017·苏州模拟)将参加夏令营的600名学生编号为001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600住在第Ⅲ营区,三个营区被抽中的人数依次为________.25,17,8 [由系统抽样的特点知,从号码003开始每间隔60050=12人抽出1个, 设抽出的第n 个号码为a n ,则a n =3+12(n -1),由a n ≤300知n ≤25;由a n ≤495知n ≤42,所以第Ⅰ营区被抽取的人数为25,第Ⅱ营区被抽取的人数为42-25=17,第Ⅲ营区被抽取的人数为50-42=8.]4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取________人.8 [设样本容量为N ,则N ×3070=6,∴N =14, ∴高二年级所抽学生人数为14×4070=8.] 5.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中学学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________,________.① ②图523200 20 [易知,样本容量为(3 500+4 500+2 000)×2%=200.又样本中高中学生共有2 000×2%=40(人).利用图②知,高中学生的近视率为50%.因此所抽样本中高中学生的近视人数为40×50%=20(人).]6.(2017·无锡模拟)一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.76 [由题意知,m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.]百度文库是百度发布的供网友在线分享文档的平台。
(江苏版)2018年高考数学一轮复习专题10.3概率(讲)

专题10.3 概率【最新考纲解读】【考点深度剖析】概率均是以填空题的形式进行考查,题目多为中低档题,着重考查学生运算求解能力.概率一般与计数原理结合考查,也可单独设置题目. 【课前检测训练】 【判一判】判断下面结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( ) (2)随机事件和随机试验是一回事.( )(3)在大量重复试验中,概率是频率的稳定值.( ) (4)两个事件的和事件是指两个事件都得发生.( )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( ) (6)两互斥事件的概率和为1.( )(7)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( ) (8)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( ) (9)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( ) (10)(教材改编)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( )(11)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( )(12)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( ) (13)在一个正方形区域内任取一点的概率是零.( )(14)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(15)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (16)随机模拟方法是以事件发生的频率估计概率.( ) (17)与面积有关的几何概型的概率与几何图形的形状有关.( ) (18)从区间[1,10]内任取一个数,取到1的概率是P =19.( )1. ×2. ×3. √4. ×5. √6. ×7. ×8. ×9. ×10. √11. √12. √13. √14. √15. √16. √17. ×18. × 【练一练】1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶 D .两次都不中靶 【答案】D2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8 【答案】B【解析】因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3,故选B.3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1 365石 【答案】B【解析】因为样品中米内夹谷的比为28254,所以这批米内夹谷为1 534×28254≈169(石).4.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.【答案】0【解析】①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.5.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 【答案】②【解析】①是互斥不对立的事件,②是对立事件,③④不是互斥事件.6.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16 【答案】B7.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45 【答案】C【解析】取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35.故选C.8.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.310 B.15 C.110 D.120【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有如下10种不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.9.同时掷两个骰子,向上点数不相同的概率为________.【答案】56【解析】掷两个骰子一次,向上的点数共6×6=36种可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P =1-66×6=56.10.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是________. 【答案】2511.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 【答案】B【解析】坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.12.在区间[0,2]上随机地取一个数x ,则事件“-1≤12log ⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34 B.23 C.13 D.14 【答案】A【解析】∵由-1≤12log ⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2,∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34. 13.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是()A.π2 B.π4 C.π6 D.π8【答案】B14.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.【答案】0.18【解析】由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18.15.如图,圆中有一内接等腰三角形.假设你在图中随机撒一把黄豆,则它落在阴影部分的概率为________.【答案】1π【解析】设圆的半径为R ,由题意知圆内接三角形为等腰直角三角形,其直角边长为2R ,则所求事件的概率为:P =S 阴S 圆=12×2R ×2R πR 2=1π. 【题根精选精析】 考点1:随机事件的概率【1-1】【2015苏州联考】4张卡上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为 . 【答案】13【解析】因为从四张卡片中任取出两张共有6种情况,其中两种卡片上数字和为偶数的共有2种情况.所以两张数字为偶数的概率为13. 【1-2】【2015无锡模拟】抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 .【答案】至多一件次品【解析】事件A 不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A 的对立事件为至多一件次品.【1-3】【2015通州模拟】某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,则这位射手在一次射击中不够9环的概率是 . 【答案】0.48【基础知识】1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件. (1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()An n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率. 3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ= ),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生. 一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥. 对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件. 4.事件的关系与运算5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A .由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0. 5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤. (2)必然事件的概率:()1p A =. (3)不可能事件的概率:()0p A =. (4)互斥事件的概率加法公式:①()()()p A B p A p B =+ (,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥). (5)对立事件的概率:()()1P A P A =-. 【思想方法】1. 概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.2. 判断事件关系时要注意 (1)利用集合观点判断事件关系;(2)可以写出所有试验结果,看所求事件包含哪几个试验结果,从而判断所求事件的关系.3.对于互斥事件要抓住如下的特征进行理解: 第一,互斥事件研究的是两个事件之间的关系; 第二,所研究的两个事件是在一次试验中涉及的; 第三,两个事件互斥是从试验的结果不能同时出现来确定的4.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,事件A 的对立事件记作A ,从集合的角度来看,事件A 所含结果的集合正是全集U 中由事件A 所含结果组成集合的补集,即A A U = ,A A φ= ,对立事件一定是互斥事件,但互斥事件不一定是对立事件.事件,A B 的和记作A B +,表示事件,A B 至少有一个发生.当,A B 为互斥事件时,事件A B +是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的.当计算事件A 的概率()p A 比较困难时,有时计算它的对立事件A 的概率则要容易些,为此有()()1P A P A =-.这不仅体现逆向思维,同时对培养思维的灵活性是非常有益的.求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和;二是先去求此事件的对立事件的概率.对于n 个互斥事件12,,,n A A A ,其加法公式为()()()()1212n n p A A A p A p A p A =+++ . 分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.5.对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件的关系.6.实际生活中的概率问题,在阅读理解的基础上,利用互斥事件分类,有时还借助对立事件寻求间接求解问题的捷径,这类问题重在考查学生思维的灵活性和解决实际问题的能力.7.求解随机事件的概率关键是准确计算基本事件数,计算的方法有: (1)列举法; (2)列表法; (3)利用树状图列举.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.二是间接求法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维(正难则反),特别是“至多”,“至少”型题目,用间接求法就显得较简便.【温馨提示】在概率的计算中,一般是根据随机事件的含义,把随机事件分成几个互斥事件的和,每个小的事件再分为几个相互独立事件的乘积,然后根据相应的概率公式进行计算. 考点2:古典概型【2-1】【2015常州联考】有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为______.【答案】821【解析】从编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,有410210C =种不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的;设事件A 为“取出球的编号互不相同”,则事件A 包含了111115222280C C C C C ⋅⋅⋅⋅=个基本事件,所以()80821021P A == 【2-2】【2015六合模拟】从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为______. 【答案】13【2-3】【2015南京模拟】从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则关于x 的方程2220x ax b ++=有两个虚根的概率是______. 【答案】15【解析】这实质是一个古典概型问题,首先题中选取数,a b 的总方法为5315⨯=,而要使方程有虚根,则22440a b ∆=-<,即a b <(因为题中,a b 均为正数),而满足这个条件的(,)a b 只能取(1,2),(1,3),(2,3)共3种,故概率为31155=. 【2-4】【2015镇江模拟】由数字0,1,2,3组成一个没有重复数字,且不被10整除的四位数,则两个偶函数不相邻的概率是______. 【答案】31【2-5】【2015海门联考】从0,1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c=++的系数,则使得()12f ∈Z 的概率为 . 【答案】4190【解析】首先从0,1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数分别为,,a b c ,取法数为310720A =,使(1)2f Z ∈,即使a b c ++(0)a ≠为偶数的取法有12322325535254()()328C C A C A A A -+-=,所概率为3284172090=. 【基础知识】1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1。
2018版高中数学一轮全程复习(课件)第十章 计数原理、概率、随机变量及其分布 10.8

[知识重温]
一、必记 9●个知识点
1.条件概率的定义
PAB
设 A,B 为两个事件,且 P(A)>0,称 P(B|A)=①__P_A___为
在事件 A 发生的条件下,事件 B 发生的条件概率.
2.条件概率的性质
(1)条件概率具有一般概率的性质,即 0≤P(B|A)≤1;
1 解析:根据条件概率的公式得 P(B|A)=PPAAB=22π=14.
π 答案:14
第二十一页,编辑于星期六:二十二点 二十四 分。
考向二 相互独立事件的概率[自主练透型] [例 2]
如图所示,由 M 到 N 的电路中有 4 个元件,分别标为 T1, T2,T3,T4,电流能通过 T1,T2,T3 的概率都是 p,电流能通过 T4 的概率是 0.9,电流能否通过各元件相互独立.已知 T1,T2, T3 中至少有一个能通过电流的概率为 0.999.
(2)如果 B,C 是两个互斥事件,则 P(B∪C|A)=②__P_(_B_|_A_)___
+P(C|A).
第十页,编辑于星期六:二十二点 二十四分。
3.相互独立事件的定义及性质 (1)定义:设 A,B 是两个事件,若 P(AB)=③__P_(_A_)_P_(_B_)_, 则称事件 A 与事件 B 相互独立. (2)性质:若事件 A 与 B 相互独立,那么 A 与 B ,A 与 B,A 与 B 也都相互独立. 4.独立重复试验概率公式 在相同条件下重复做的 n 次试验称为 n 次独立重复试验,若 用 Ai(i=1,2,…,n)表示第 i 次试验结果,则 P(A1A2A3…An)=④ __P_(_A_1_)P_(_A__2)_P_(_A_3_)…__P__(A__n)___.
2018版高中数学一轮全程复习(课件)第十章 计数原理、概率、随机变量及其分布 10.3

9 x
的
展开式中 x 的系数等于( )
A.84 B.24 C.6 D.-24
[解析]
根据二项式定理可知,Tr+1=Cr9-13r99-rx
9-r- r 3
=Cr9
-13r99-rx
9- 4r 3
,令
9-43r=1,得
r=6,∴x
的系数为
C69-136×93
=84,故选 A.
[答案] A
第十六页,编辑于星期六:二十二点 二十四分。
2r≥8-1 r, 即7-1 r≥r+2 1,
解得rr≥ ≤113336.,
又∵r∈Z,∴r=5.∴系数最大的项为 T6=C57x2·25y5=672x2y5. 故选 C.
r=3,故常数项是第四项且
T4
=-84.
答案:C
第三页,编辑于星期六:二十二点 二十四分。
2.(2015·陕西卷)二项式(x+1)n(n∈N+)的展开式中 x2 的系数 为 15,则 n=( )
A.7 B.6 C.5 D.4 解析:由(x+1)n=(1+x)n=1+C1nx+C2nx2+…+Cnnxn,知 C2n= 15,所以nn2-1=15,解得 n=6 或 n=-5(舍去).故选 B. 答案:B
第十三页,编辑于星期六:二十二点 二十四分。
第十四页,编辑于星期六:二十二点 二十四分。
[授课提示:对应学生用书第 174 页] 考向一 求展开式中的指定项或特定项
[自主练透型] [例 1] (1)(2016·全国卷乙)(2x+ x)5 的展开式中,x3 的系数 是________;(用数字填写答案)
解析:Tr+1=C7r ·(x3)7-r1xr=C7r x21-4r, 令 21-4r=5,得 r=4,C47=35. 故展开式中 x5 的系数为 35. 答案:35
2018版高考数学文江苏专用大一轮复习讲义文档 第十章

1.简单随机抽样(1)定义:一般地,从个体为N 的总体中逐个不放回地取出n 个个体作为样本(n ∈N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法,称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①采用随机的方法将总体中的N 个个体编号;②将编号按间隔k 分段,当N n 是整数时,取k =N n ;当Nn 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n ,并将剩下的总体重新编号;③在第一段中用简单随机抽样确定起始的个体编号l ;④按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)简单随机抽样是一种不放回抽样.( √ )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.(×)(3)抽签法中,先抽的人抽中的可能性大.(×)(4)系统抽样在第1段抽样时采用简单随机抽样.(√)(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(×)(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为______________.答案25,56,19解析因为125∶280∶95=25∶56∶19,所以抽取人数分别为25,56,19.2.(2015·四川改编)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是__________.答案分层抽样法解析根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.3.(1)某学校为了了解2016年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法问题与方法配对正确的是____________.答案(1)Ⅲ,(2)Ⅰ解析通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.4.某工厂平均每天生产某种机器零件大约10 000件,要求产品检验员每天抽取50件零件,检查其质量状况,采用系统抽样方法抽取,若抽取的第一组中的号码为0010,则第三组抽取的号码为________.答案 0410解析 分段间隔数为10 00050=200,则第三组抽取的号码为0010+2×200=0410.5.某学校高一,高二,高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生. 答案 15解析 设应从高二年级抽取x 名学生, 则x ∶50=3∶10, 解得x =15.题型一 简单随机抽样例1 (1)以下抽样方法是简单随机抽样的有________.①在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖;②某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格;③某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见;④用抽签方法从10件产品中选取3件进行质量检验.(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案 (1)④ (2)01解析 (1)①、②不是简单随机抽样,因为抽取的个体间的间隔是固定的;③不是简单随机抽样,因为总体的个体有明显的层次;④是简单随机抽样. (2)由题意知前5个个体的编号为08,02,14,07,01.思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.(1)下列抽样试验中,适合用抽签法的有________.①从某厂生产的5 000件产品中抽取600件进行质量检验;②从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;③从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;④从某厂生产的5 000件产品中抽取10件进行质量检验.(2)下列抽取样本的方式不属于简单随机抽样的有________________.①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.答案(1)②(2)①②③④解析(1)①、④中的总体个体数较多,不适宜抽签法,③中甲、乙两厂的产品质量有区别,也不适宜抽签法.②是简单随机抽样.(2)①不是简单随机抽样.②不是简单随机抽样.由于它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.题型二系统抽样例2(1)(2015·湖南改编)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示13 0 0 3 4 5 6 6 8 8 8 9 14 1 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 8 15122333若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 答案 (1)4 (2)12解析 (1)由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.(2)由84042=20,即每20人抽取1人,所以抽取编号落在区间[481,720]的人数为720-48020=24020=12. 引申探究1.本例(2)中条件不变,若第三组抽得的号码为44,则在第八组中抽得的号码是________. 答案 144解析 在第八组中抽得的号码为(8-3)×20+44=144.2.本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人,所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.(1)(2016·南京模拟)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是________.(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 (1)18 (2)10解析 (1)分段间隔为524=13,故还有一个学生的编号为5+13=18.(2)由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 题型三 分层抽样命题点1 求总体或样本容量例3 (1)(2016·苏北四市联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =________. (2)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 (1)90 (2)1 800解析 (1)依题意得33+5+7×n =18,解得n =90,即样本容量为90.(2)分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件.命题点2 求某层入样的个体数例4 (2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为________.(2)(2015·福建)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________. 答案 (1)180 (2)25解析 (1)由题意抽样比为3201 600=15,∴该样本中的老年教师人数为900×15=180.(2)由题意知,男生共有500名,根据分层抽样的特点,在容量为45的样本中男生应抽取的人数为45×500900=25.思维升华 分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.(1)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.(2)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.答案 (1)200,20 (2)50解析 (1)该地区中小学生总人数为 3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20. (2)1 00080=x 4,x =50.五审图表找规律典例 (14分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? (3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?抽取40人调查身体状况↓(观察图表中的人数分类统计情况) 样本人群应受年龄影响↓(表中老、中、青分类清楚,人数确定) 要以老、中、青分层,用分层抽样 ↓要开一个25人的座谈会 ↓(讨论单位发展与薪金调整)样本人群应受管理、技术开发、营销、生产方面的影响↓(表中管理、技术开发、营销、生产分类清楚,人数确定)要以管理、技术开发、营销、生产人员分层,用分层抽样↓要抽20人调查对广州亚运会举办情况的了解↓可认为亚运会是大众体育盛会,一个单位人员对情,况了解相当将单位人员看作一个整体↓(从表中数据看总人数为2 000)人员较多,可采用系统抽样规范解答解(1)按老年、中年、青年分层,用分层抽样法抽取,[1分]抽取比例为402 000=150.[3分]故老年人、中年人、青年人各抽取4人、12人、24人.[5分] (2)按管理、技术开发、营销、生产分层,用分层抽样法抽取,[6分]抽取比例为252 000=180,[8分]故管理、技术开发、营销、生产各部门抽取2人、4人、6人、13人.[10分](3)用系统抽样,对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.[14分]1.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=________.答案13解析∵360=n120+80+60,∴n=13.2.(2017·扬州月考)打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体抽取一个13张的样本.这种抽样方法是______________. 答案 系统抽样解析 符合系统抽样的特点,故是系统抽样.3.(2016·南京、盐城联考)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________. 答案 17解析 由题意可得从高二年级学生中抽出的人数为20400×360=18,故从高三年级学生中抽取的人数为55-20-18=17.4.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为______. 答案 25解析 由1 00040=25,可得分段的间隔为25.5.(2016·镇江模拟)将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______________. 答案 16,28,40,52解析 编号组数为5,间隔为605=12,因为在第一组抽得04号:又4+12=16,16+12=28,28+12=40,40+12=52, 所以其余4个号码为16,28,40,52.6.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为__________________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17. 7.(2016·山西大同一中月考)用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是__________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.8.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生. 答案 60解析 设应从一年级本科生中抽取x 名学生,则x 300=44+5+5+6,解得x =60.9.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意,可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.10.一个总体中有90个个体,随机编号0,1,2,…,89,以从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.答案 76解析 由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 依题意可知二年级的女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故用分层抽样法应在三年级抽取的学生人数为64×28=16.13.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n . 解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.14.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x ,y 的值. 解 (1)用分层抽样的方法在35~50岁中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3. 抽取的样本中有研究生2人,本科生3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有等可能基本事件共有10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 1,B 3),(B 2,B 3),其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2), ∴从中任取2人,至少有1人学历为研究生的概率为710. (2)由题意,得10N =539,解得N =78,∴35~50岁中被抽取的人数为78-48-10=20,∴4880+x=2050=1020+y,解得x=40,y=5,即x,y的值分别为40,5.。
2018年高考数学(理)(江苏专用)总复习教师用书:第十章算法、统计与概率第1讲 算法含答案

第1讲算法考试要求 1.算法的含义,算法的思想,A级要求;2。
算法流程图的三种基本逻辑结构:顺序、选择、循环,A级要求;3.基本算法语句,A级要求.知识梳理1.算法的含义:算法通常指可以用计算机来解决某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步之内完成.2.流程图:又叫程序框图,是一种用程序框、流程线及文字说明来表示算法的图形.在流程图中,一个或几个程序框的组合表示算法中的一个步骤;带有有向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.3.三种基本逻辑结构顺序结构:依次进行多个处理的结构称为顺序结构,如图(1)所示.选择结构:先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构(或称为“分支结构”),如图(2)所示.循环结构:需要重复执行同一操作的结构称为循环结构,其又可分为如下两种结构:①先判断所给条件p是否成立,若p成立,则执行A,再判断条件p 是否成立;若p仍成立,则又执行A,如此反复,直到某一次条件p不成立为止.这样的循环结构称为当型循环,如图(3)所示.②先执行A,再判断所给条件p是否成立,若p不成立,则再执行A,如此反复,直到p成立,该循环过程结束,这样的循环结构称为直到型循环,如图(4)所示.4.基本算法语句包括:赋值语句,输入、输出语句,条件语句,循环语句.(1)条件语句的一般形式为:错误!其中A表示判断的条件,B表示满足条件时执行的操作内容,C表示不满足条件时执行的操作内容,End If表示条件语句结束.(2)循环语句①循环语句用来实现算法中的循环结构.②其中当型循环可用下面的语句形式来描述:错误!直到型循环可用下面的语句形式来描述:Do,循环体,Until p,End Do(3)当循环的次数已经确定,可用“For"语句表示,“For”语句的一般形式为:错误!诊断自测1.判断正误(在括号内打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.()(2)流程图中的图形符号可以由个人来确定.()(3)输入框只能紧接开始框,输出框只能紧接结束框.()(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.()解析对于(1),算法能够重复使用;对于(2),流程图中的图形符号不能由个人来确定;对于(3),输入框不一定紧接开始框之后,故(1)(2)(3)错.答案(1)×(2)×(3)×(4)√2.(2016·江苏卷)如图是一个算法的流程图,则输出的a的值是________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 算法、统计与概率 第56课 几何概型课时分层训练A 组 基础达标 (建议用时:30分钟)1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________.【导学号:62172310】35[在区间[-2,3]上随机选取一个数X ,则X ≤1, 即-2≤X ≤1的概率为P =35.]2.如图565所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是________.图5653π [设阴影部分的面积为S ,且圆的面积S ′=π·32=9π. 由几何概型的概率得S S ′=13,则S =3π.] 3.若将一个质点随机投入如图566所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________.图566π4 [设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4.] 4.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为________.【导学号:62172311】12[由题设知,区域D 是以原点O 为中心的正方形,直线y =kx 将其面积平分,如图,所求概率为12.]5.一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率为________.π120[屋子的体积为5×4×3=60米3, 捕蝇器能捕捉到的空间体积为18×43π×13×3=π2米3,故苍蝇被捕捉的概率是π260=π120.]6.(2015·山东高考改编)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为________.34 [不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.]7.已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC<12V S ABC 的概率为________. 【导学号:62172312】 78 [当点P 到底面ABC 的距离小于32时, V P ABC <12V S ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.]8.在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为________. 13 [由0≤sin x ≤12,且x ∈[0,π],解得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.]9.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.1316 [∵去看电影的概率P 1=π·12-π·⎝ ⎛⎭⎪⎫122π·1=34, 去打篮球的概率P 2=π·⎝ ⎛⎭⎪⎫142π·12=116, ∴不在家看书的概率为P =34+116=1316.]10.如图567,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.图56714 [因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),E (0,1).所以C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0). 故矩形ABCD 的面积为2×3=6,S 阴影=12×1×3=32.根据几何概型得P =326=14.]11.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为________. 【导学号:62172313】12[如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.] 12.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________.24-π24[由题意作图,如图,则点P 应落在深色阴影部分,S 三角形=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=24-π24.]B 组 能力提升 (建议用时:15分钟)1.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.3 [由|x |≤m ,得-m ≤x ≤m . 当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m - -2 6=56,解得m =3.] 2.在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.23[∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4 3p -2 ≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+ 5-2 5=23.] 3.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为________.14-12π[|z |= x -1 2+y 2≤1,即(x -1)2+y 2≤1,表示的是圆及其内部,如图所示.当|z |≤1时,y ≥x 表示的是图中阴影部分.∵S 圆=π×12=π,S 阴影=π4-12×12=π-24. 故所求事件的概率P =S 阴影S 圆=π-24π=14-12π.]4.随机地向半圆0<y <2ax -x 2(a 为正数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________.12+1π[由0<y <2ax -x 2(a >0), 得(x -a )2+y 2<a 2, 因此半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.]5.(2015·湖北高考改编)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则下列正确的是________.①p 1<p 2<12; ②p 2<12<p 1; ③12<p 2<p 1; ④p 1<12<p 2.④ [如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE (如图①),其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分(如图②),其面积显然大于12,故p 2>12,则p 1<12<p 2.]6.甲、乙两辆车去同一货场装货物,货物每次只能给一辆车装货物,所以若两辆车同时到达,则需要有一车等待.已知甲、乙两车装货物需要的时间都为20分钟,倘若甲、乙两车都在某1小时内到达该货场(在此期间货场没有其他车辆),则至少有一辆车需要等待装货物的概率为________.59[设甲、乙货车到达的时间分别为x ,y 分钟,据题意基本事件空间可表示为Ω=⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪0≤x ≤60,0≤y ≤60, 而事件“有一辆车等待装货”可表示为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ 0≤x ≤60,0≤y ≤60,|x -y |≤20,, 如图,据几何概型可知其概率等于P (A )=S 阴影S 正方形=60×60-2×12×40×4060×60=59.]。