奥数提高班第八讲:图形的初步认识
小学六年级奥数知识整理:几何初步认识

小学六年级奥数知识整理:几何初步认识1、长方形(1) 特征对边相等, 4 个角都是直角的四边形。
有两条对称轴。
(2) 计算公式c=2(a+b)s=ab2、正方形(1) 特征:四条边都相等,四个角都是直角的四边形。
有 4 条对称轴。
(2) 计算公式c=4as=a23、三角形(1) 特征由三条线段围成的图形。
内角和是180 度。
三角形具有稳定性。
三角形有三条高。
(2) 计算公式s=ah/2(3) 分类按角分锐角三角形:三个角都是锐角直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45 度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等; 三个内角都是60度;有三条对称轴。
4、平行四边形(1) 特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180 度。
平行四边形容易变形。
(2) 计算公式s=ah5、梯形(1) 特征只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2) 公式s=(a+b)h/2=mh6、圆(1) 圆的理解平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o 表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r 表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用 d 表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r 。
圆的大小由半径决定。
圆有无数条对称轴。
(2) 圆的画法把圆规的两脚分开,定好两脚间的距离(即半径); 把有针尖的一只脚固定在一点(即圆心) 上; 把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3) 圆的周长围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。
用字母n表示。
《图形认识初步》知识点

《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
《图形的初步认识》知识总览

---------------------------------------------------------------最新资料推荐------------------------------------------------------《图形的初步认识》知识总览《图形认识初步》中考知识温故斋【课程标准要求】1. 直观认识立体图形、展开图和平面图形。
2. 掌握点和线的基本性质。
3. 正确理解两点间距离的含义。
4. 掌握点、线段、直线、射线的表示方法。
5. 会比较两线段的大小。
6. 理解角的两种定义,掌握角的三种表示方法。
7. 会比较两角的大小,理解角的和、差、角平分线的意义。
8. 理解互为余角和补角的概念,认识对顶角的概念。
【梳理中考考点】 1. 常见的立体图形有:圆柱、圆锥、棱柱、棱锥、球体。
象围成棱柱、棱锥等立体图形的面都是平面的立体图形又称为多面体。
2.立体图形的平面展开图。
3.线段的中点:把一条线段分成两条相等的线段的点。
4.角平分线:把一个角分成两个相等的角的射线。
5.互为余角:如果两个角的和等于直角(),那么就称这两个角互为余1 / 5角。
6.互为补角:如果两个角的和等于平角(),那么就称这两个角互为补角。
(互为余角与互为补角都是指两个角的一种特殊关系) 7.几个重要结论:(1)两点之间,线段最短. (2)经过两点有且只有一条直线。
(3)同(等)角的余角相等,同(等)角的补角相等。
【解读经典考题】考点 1:立体图形的展开图问题例 2(诸暨市课改实验区):下列四个图形中,每个小正方形都标上了颜色. 若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是-------()【解读】:立体图形的展开图问题主要考查同学们的空间想象能力。
这里选 C。
.【练习 1】(广东省课改实验区):水平放置的正方体的六个面分别用前面、后面、上面、下面、左面、右面表示,如图是一个正方体的表面展开图,若图中2 在正方体的前面,则这个正方体黄红黄红绿绿黄红绿红绿黄绿红红绿黄黄绿红黄红黄绿A.B.C.---------------------------------------------------------------最新资料推荐------------------------------------------------------3 / 5D . A B C D 的后面是 ( ) A . O B . 6C . 快D . 乐 考点 2。
图形的初步认识课件

分解图形
定义
01
分解图形是指将一个复杂图形拆分成若干个简单图形的操作过
程。
特点
02
分解图形可以帮助我们更好地理解图形的构成和性质,同时也
有助于解决一些几何问题。
例子
03
一个复杂的几何图形可以通过分解成若干个三角形、矩形、圆
形等简单图形来求解其面积、周长等几何量。
06
图形在实际生活中的应用
建筑设计
实例
在平面内,一个点可以按某一比例放大或缩小; 一个正方形可以按比例放大或缩小。
05
图形的组合与分解
组合图形
定义
组合图形是由两个或多个简单图形通过一定的规则组合在一起形 成的复杂图形。
特点
组合图形具有整体性和部分性,其性质和特征既受各组成图形的影 响,又表现出自身的独特性质。
例子
常见的组合图形有矩形、三角形、圆形等,它们可以通过平移、旋 转、对称等方式进行组合。
特点
图形在旋转过程中,其内部任意 两点间的距离保持不变,但与旋 转的角度和旋转中心的位置有关。
实例
在平面内,一个点可以绕某一点 进行旋转;一个圆可以绕圆心进
行旋转。
缩放
缩放
将图形按一定的比例放大或缩小,但不改变图形 的形状。
特点
图形在缩放过程中,其内部任意两点间的距离按 比例变化,与缩放的比例因子有关。
建筑设计是图形应用的重要领域之一,建筑师通过运用各种图形元素, 如线条、形状、色彩和纹理等,来创造具有功能性和美感的建筑作品。
在建筑设计过程中,建筑师需要综合考虑建筑的使用功能、结构要求和 审美需求等因素,运用图形的组合和变化来满足这些要求。
建筑设计中的图形应用不仅包括二维图形,如平面图、立面图和剖面图 等,还包括三维图形,如效果图和模型等。这些图形能够帮助建筑师更 好地表达设计意图和与客户的沟通。
初中奥数提高班第8讲_图形的初步认识

第8讲图形的初步认识一、学习策略指引简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,需要在图形形状方面进行想象和判断,掌握立体图形和平面图形的联系与转化,可以培养抽象的空间想象能力.1.三视图:就是从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看的方向不同,有左视图、右视图.2.一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.3.一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。
例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.4.技巧与方法:由三视图想象物体的形状,对初学者来说是一个难点,需按规律操作:抓住俯视图,结合其它两种视图,发挥空间想象.例如对简单组合体可在俯视图上操作,参照主视图从左到右,结合左视图从前排到后排,确定每一个位置上的正方体的个数,在相应的俯视图上标上数字.5.钟表问题:钟表里的分钟与时针的转动问题本质上与行程问题中的两人追击问题非常相似.行程问题中的距离相当于这里的角度;行程问题中的速度相当于这里时(分)针的转动速度.二、型例题分析:例1:由几个小立方体搭成的一个几何体如图1所示,它的主(正)视图见图2,那么它的俯视图为()图1 图2 A.B.C.D.例2.如图是由几个完全相同的小正方体所垒的几何体的俯视图,小正方形中的数字代表该位置小正方体的块数,请你画出这个立方体的正视图和左视图.例3.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为().A. 19m2B. 21m2C. 33m2D. 34m2例4.时钟里,时针从5点整的位置起,顺时针方向转多少度时,分钟与时针第一次重合?三、专项练习(一)选择题:1.如下图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A.4B.5C.6D.72.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图为().3.如图是一个物体的三视图,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱4.已知一个物体由x个相同的正方体堆成,它的主视图和左视图如图所示,那么x的最大值是().A.13 B.12C.11 D.105.如右图所示的立方体,如果把它展开,可以是下列图形中的()左视图正视图俯视图主视图左视图6.正方体的平面展开图是右图,原正方体形如()A.B.C.D.(二)填空:7.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子.C 2B 1A 4(第8题)(三)探究8.如图是一个正方体木块的表面展开图。
小学六年级奥数几何初步认识知识点

小学六年级的数学中,几何初步认识是非常重要的一部分。
在几何学中,学生将学习各种形状、图形的属性和关系。
这方面的知识能够帮助他们理解空间和形状,并发展他们的空间思维能力。
以下是小学六年级奥数几何初步认识的一些重要知识点。
1.点、线和面:学生需要了解点、线和面的概念。
点是没有大小和形状的,线是由无限多个点组成的,面是由无限多个线段组成的,可以看作是没有厚度的平面。
2.二维和三维:学生需要区分二维和三维的概念。
二维是指平面上的图形,只有长度和宽度,而三维是指有高度的图形,具有长度、宽度和高度。
3.直线和曲线:学生需要能够辨别直线和曲线。
直线是由无限多个连续的点组成的,在两个点之间是最短的路径。
曲线则是有弯曲的,没有最短路径的。
4.线段和射线:学生需要理解线段和射线的概念。
线段是由两个端点及其之间的点组成的,有确定的长度。
射线则是由一个起点和其上的任意点组成的,没有终点,但有一个方向。
5.角:学生需要学习角的概念。
角是由两条射线共享一个起点形成的,起点叫做角的顶点,两条射线叫做角的边。
6.直角、锐角和钝角:学生需要学习直角、锐角和钝角的概念。
直角是90度的角,锐角是小于90度的角,钝角是大于90度小于180度的角。
7.平行和垂直:学生需要学会判断两条线段或者两条线是否平行或者垂直。
平行的线段在同一平面上,永远不会相交。
垂直的线段或线相交,并且形成90度的角。
8.三角形:学生需要学习三角形的属性和分类。
三角形是由三条线段组成的图形。
根据边的长度和角的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。
9.正方形、长方形和平行四边形:学生需要学习正方形、长方形和平行四边形的属性和特点。
正方形的四条边都相等,四个角都是直角。
长方形的相对边相等,四个角都是直角。
平行四边形的对边平行,相对边相等。
10.圆和圆心:学生需要学习圆和圆心的概念。
圆是平面上到一个固定点距离相等的所有点的集合。
这个固定点叫做圆心,到圆心的距离叫做半径。
初一年级奥数知识点:几何图形初步

奥数体现了数学与奥林匹克体育运动精神的共通性更快、更高、 更强。
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命 题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入 学考试。
奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维 和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比 普通数学要深奥些。
下面是 1、几何图形点、线、面、体这些可帮助人们有效的刻画错综复 杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相 联系的。
2、几何图形的分类几何图形一般分为立体图形和平面图形。
3、直线几何学基本概念,是点在空间内沿相同或相反方向运动 的轨迹。
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标 系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有 一解时,二直线相交于一点。
常用直线与轴正向的夹角叫直线的倾斜角或该角的正切称直线 的斜率来表示平面上直线对于轴的倾斜程度。
4、射线在欧几里德几何学中,直线上的一点和它一旁的部分所 组成的图形称为射线或半直线。
5、线段指一个或一个以上不同线素组成一段连续的或不连续的 图线,如实线的线段或由长划、短间隔、点、短间隔、点、短间隔组 成的双点长划线的线段。
线段有如下性质两点之间线段最短。
6、两点间的距离连接两点间线段的长度叫做这两点间的距离。
7、端点直线上两个点和它们之间的部分叫做线段,这两个点叫 做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字 母也表示线段长度,记作线段或线段,线段。
其中表示直线上的任意两点。
《图形的初步认识》全章复习与巩固(提高)知识讲解

《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角(1)定义:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成.(2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱.(3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2).(4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱.【总结升华】根据立体图形的特点,从特殊到一般,寻找规律.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个B.1个C.2个D.3个【答案】B 提示:③正确3. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于().A.330°B.315°C.310°D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【总结升华】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE =90°,所以∠2=90°-∠1=90°-27°20′=62°40′. 又∠AOD =180°-∠1=152°40′,∠3=∠FOD .所以∠3=12∠AOD =76°20′. 答:∠2为62°40′,∠3为76°20′.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x °时,与分针第一次重合,依题意有: 12x =90+x 解得9011x =答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决. 举一反三:【变式】125°÷4= °= ° ′ 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法5. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm ) 所以BC =35-x =35-18=17(cm )33182722CD x ==⨯=(cm ) 所以AD =AB+BC+CD =18+17+27=62(cm )【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm ). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm ).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm ).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB =(cm ).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲 图形的初步认识
一 学习策略指引
简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,需要在图形形状方面进行想象和判断,掌握立体图形和平面图形的联系与转化,可以培养抽象的空间想象能力.
1.三视图:就是从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看的方向不同,有左视图、右视图.
2.一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.
3.一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。
例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.
4.技巧与方法:
由三视图想象物体的形状,对初学者来说是一个难点,需按规律操作:抓住俯视图,结合其它两种视图,发挥空间想象.例如对简单组合体可在俯视图上操作,参照主视图从左到右,结合左视图从前排到后排,确定每一个位置上的正方体的个数,在相应的俯视图上标上数字.
5.钟表问题:钟表里的分钟与时针的转动问题本质上与行程问题中的两人追击问题非常相似.行程问题中的距离相当于这里的角度;行程问题中的速度相当于这里时(分)针的转动速度.
二.典型例题分析:
例1:由几个小立方体搭成的一个几何体如图1所示,它的主(正)视图见图2,那么它的俯视图为( )
例2.如图是由几个完全相同的小正方体所垒的几何体的俯视图,小正方形中的数字代表该位置小正方体的块数,请你画出这个立方体的正视图和左视图.
例
3.一个画家有14个边长为1m 的正方体,他在地面上把它们摆成如图所示的形式,然后
他把露出的表面都涂上颜色,那么被涂上颜色的总面积为( ). A. 19m 2
B. 21m 2
C. 33m 2
D. 34m 2
图1 图2 A. B. C. D.
例4.时钟里,时针从5点整的位置起,顺时针方向转多少度时,分钟与时针第一次重合?
三.专项练习 (一)选择题:
1.如下图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是 ( )
A.4
B.5
C.6
D.7
2.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图为( ).
3.如图是一个物体的三视图,则该物体的形状是( )
A.圆锥
B.圆柱
C.三棱锥
D.三棱柱
4. 已知一个物体由x 个相同的正方体堆成,它的主视图和左视图如图所示,那么x 的最大
值是( ).
A .13
B .12
C .11
D .10
5. 如右图所示的立方体,如果把它展开,可以是下列图形中的( )
左视图
正视图
俯视图
主视图
左视图
6.正方体的平面展开图是右图,原正方体形如( )
(二)填空:7.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子.
(第8题)
(三)探究
8.如图是一个正方体木块的表面展开图。
若在正方体的各面填上数,使得对面两数之和为7,则A 、B 、C 处填的数各是多少?
9. 如图,是由一些大小相同的小正方体组成的简单的几何体的主视图和俯视图. (1)请你画出这个几何体的一种左视图;
(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.
A. B. C. D.
C 2
B 1
A
4
主视图 俯视图
10.如图都是由边长为1的正方体叠成的图形.
例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律,求第(5)个图形的表面积是多少个平方单位?第(n)个图形的表面积又是多少个平方单位?
11.在4点与5点之间,时针与分针在何时(1)成120°;(2)成90°.
四.课外作业
1.在晚6点到7点之间,时针与分针何时成90°角?
2.在4点到6点之间,时针与分针何时成120°角?
3.用小立方块塔一个几何体,使得它的主视图和俯视图如图所示.
这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?。