判断显卡性能的主要参数有哪些
显卡性能检测

显卡性能检测显卡性能检测是衡量一款显卡在特定条件下的性能表现,并通过一系列测试指标来量化显卡的运算速度、图形处理能力以及图像质量等方面的表现。
显卡性能检测通常可以从以下几个方面进行评估:1. 3D渲染性能:通过测试显卡在各种3D场景下的帧率以及流畅度,来评估显卡对于3D游戏和应用的处理能力。
这主要测试显卡的GPU(图形处理器)以及显存的性能。
2. 图像质量:通过测试显卡对于图像的处理能力,包括颜色准确度、图像纹理等,来评估显卡在显示图像时的表现。
这主要测试显卡的输出接口、信号传输能力以及显存的质量。
3. 计算性能:通过测试显卡在计算任务中的处理速度来评估显卡的计算能力。
这主要测试显卡的CUDA或OpenCL等并行计算技术的表现,主要适用于一些需要大量并行计算的应用场景。
4. 散热性能:通过测试显卡在长时间高负载运算下的温度以及散热能力,来评估显卡在稳定性和使用寿命方面的表现。
这主要测试显卡的散热设计、风扇转速以及散热器的质量。
为了进行显卡性能检测,可以使用一些专业的测试软件,如3DMark、Unigine Heaven等,这些软件可以进行全面的显卡性能测试,并提供详细的测试结果和分数来评估显卡的性能。
另外,在进行显卡性能检测时,还应该注意以下几个方面:1. 版本兼容性:测试软件和显卡驱动的版本应相互匹配,以确保测试结果的准确性。
2. 温度和功耗监控:在运行测试软件时,应该实时监控显卡的温度和功耗,避免超温和过载情况的发生。
3. 其它硬件性能和系统设置:显卡的性能还受到系统中其他硬件的影响,如CPU、内存等,因此在进行显卡性能测试时,也应注意这些硬件的性能和设置。
总结而言,显卡性能测试对于选择合适的显卡以及评估显卡在特定场景下的性能表现非常重要。
通过合适的测试软件和正确的测试方法,可以全面、客观地评估显卡的性能,为用户提供有价值的参考和决策依据。
显卡的性能指标范文

显卡的性能指标范文显卡是电脑中重要的硬件组件之一,它决定了电脑的图形渲染和显示能力。
显卡的性能指标包括芯片型号、核心频率、显存容量、显存带宽、流处理器数量、纹理单元数量、像素填充率、输出接口等。
下面将详细介绍这些指标以及它们对显卡性能的影响。
1.芯片型号:芯片型号是显卡性能的一个重要参考指标。
不同芯片型号拥有不同的架构和处理能力,高端型号通常具有更多的流处理器和纹理单元,能够提供更好的图形渲染性能。
2.核心频率:核心频率表示显卡芯片的工作速度,以MHz或GHz为单位。
核心频率越高,表示芯片能够以更快的速度执行计算任务,提供更流畅的图形渲染和高帧率的游戏体验。
3.显存容量:显存容量是显卡用于存储和处理图像数据的内存大小,通常以GB为单位。
较大的显存容量允许显卡同时处理更多的图像数据,提供更高的图像质量和更复杂的图形效果。
4.显存带宽:显存带宽表示显卡显存与GPU之间的数据传输速度,通常以GB/s为单位。
较高的显存带宽能够更快地将图像数据传输到GPU进行处理,提供更快的图形渲染速度。
5.流处理器数量:流处理器是显卡中用于进行并行计算的核心部件,通常以个数计算。
更多的流处理器意味着显卡能够同时处理更多的图像数据,提供更高的图形渲染性能。
6.纹理单元数量:纹理单元用于处理纹理贴图,影响显卡对纹理细节的处理能力。
较大的纹理单元数量能够提供更高的纹理细节和更逼真的图形效果。
7.像素填充率:像素填充率表示显卡每秒能够渲染的像素数量,以像素/秒为单位。
较高的像素填充率能够提供更高的图形质量和更流畅的游戏体验。
8. 输出接口:输出接口决定了显卡与显示设备之间的连接方式,包括HDMI、DisplayPort和DVI等。
不同的输出接口支持不同的分辨率和刷新率,影响显卡的显示能力和兼容性。
除了这些基本的性能指标外,显卡还会有其他一些衡量指标,如功耗、散热性能、支持的图像特效、支持的硬件加速技术等。
这些指标也会对显卡的性能和使用体验产生影响。
显卡性能指标

显卡性能指标显卡是电脑中的一个重要组件,负责处理图像和视频。
不同的显卡具有不同的性能指标,影响着电脑的图形处理和游戏性能。
下面介绍一些常见的显卡性能指标。
1. 显卡芯片:显卡芯片是显卡的核心部件,决定了显卡的处理能力和支持的技术。
市面上常见的显卡芯片厂商有NVIDIA和AMD,其中NVIDIA的显卡性能通常更强大。
2. GPU频率:GPU频率是指显卡芯片的工作频率,以MHz为单位。
频率越高表示显卡的处理能力越强,可以更快地处理图像和视频。
3. 显存容量:显存是显卡用于存储图像和视频数据的内存,决定了显卡可以处理的图像尺寸和数量。
显存容量越大,显卡可以处理的图像和视频越复杂和多样。
4. 显存带宽:显存带宽是指显卡芯片和显存之间的数据传输速度,通常以GB/s为单位。
带宽越高表示显卡可以更快地读写显存,提高图像和视频处理的速度。
5. CUDA核心数:CUDA核心是NVIDIA显卡特有的处理单元,负责执行图形计算和并行运算。
CUDA核心数越多表示显卡的并行计算能力越强,可以更好地支持大型图形软件和游戏。
6. DirectX和OpenGL支持:DirectX和OpenGL是两种常用的图形API(应用程序接口),用于处理图像和视频。
显卡的支持版本和兼容性决定了其可以运行的图形软件和游戏。
7. HDMI和DisplayPort接口:HDMI和DisplayPort是两种常用的数字视频输出接口,用于连接显卡和显示器。
显卡的接口类型和版本决定了其支持的分辨率和刷新率。
8. 散热设计:显卡在工作时会产生大量热量,散热设计影响着显卡的稳定性和寿命。
常见的散热方式包括风扇散热和散热器散热,高性能显卡通常需要更好的散热设计。
以上是一些常见的显卡性能指标,用户在购买显卡时可以根据自己的需求和预算选择合适的产品。
此外,还可以参考显卡的评测和性能对比来进行选择,以获得最佳的图形处理和游戏体验。
显卡主要参数

显卡主要参数显卡是计算机中非常重要的硬件组件之一,它负责处理图形和图像的呈现、显示和渲染。
显卡的主要参数包括显存容量、显卡核心频率、显存频率、显卡接口类型、显存类型以及功耗。
首先是显存容量。
显存是显卡用来存储图像和图形数据的地方,它的容量决定了显卡能够处理的复杂度和分辨率。
一般来说,显存容量越大,显卡处理复杂图形和游戏的能力就越强。
其次是显卡核心频率。
显卡核心频率是指显卡处理器的运行速度。
它决定了显卡的计算能力和处理图形的速度。
一般来说,显卡核心频率越高,显卡处理图像的速度就越快。
接下来是显存频率。
显存频率是指显存的运行速度,它决定了显存向显卡处理器传输数据的速度。
显存频率越高,显存向显卡处理器传输数据的速度就越快,显卡的性能就越好。
然后是显卡接口类型。
显卡接口类型指的是显卡与主板之间的连接方式。
目前常见的显卡接口类型有PCI Express和AGP。
PCI Express是目前最主流的显卡接口类型,它的传输速度更快,兼容性更好。
AGP是较早的显卡接口类型,现在已经逐渐被淘汰。
显存类型是指显存芯片的类型。
常见的显存类型有GDDR6、GDDR5、GDDR4等。
不同类型的显存具有不同的带宽和传输速度,影响到显卡的性能。
最后是功耗。
功耗代表了显卡在工作时消耗的电能。
显卡功耗越大,对电源的要求就越高,对散热的要求也越高。
低功耗的显卡在发热和噪音方面会有明显的优势。
综上所述,显卡的主要参数包括显存容量、显卡核心频率、显存频率、显卡接口类型、显存类型以及功耗。
这些参数决定了显卡的性能和适用场景,购买显卡时,需要根据个人需求选择合适的参数组合。
显卡的性能指标有那些

显卡的性能指标有那些显卡(Graphics card)是计算机的重要组件之一,用于处理图像和图形相关的计算任务。
不同显卡的性能取决于多个指标,以下是一些常见的显卡性能指标:1. 图形处理单元(GPU):GPU 是显卡的核心组件,它用于执行图形渲染和计算任务。
显卡的性能很大程度上取决于 GPU 的性能。
GPU 通常被描述为有多少个流处理器(Shader cores)或 CUDA 核心(NVIDIA 的GPU 计算核心)。
2. 持续工作频率(Base Clock):显卡的持续工作频率指的是 GPU在正常工作情况下的基本时钟频率。
频率越高,显卡的计算能力越强。
3. 加速工作频率(Boost Clock):显卡的加速工作频率指的是 GPU 在短时间内能够达到的最大时钟频率。
Boost Clock 提供了一种超频的方式,可以在需要更高性能时自动提升显卡的工作频率。
4.显存容量(VRAM):显存是显卡用于存储图像和图形数据的内存。
显存的容量决定了显卡能够处理的图像和图形的大小,以及是否能够同时处理多个任务。
5. 显存带宽(Memory Bandwidth):显存带宽指的是显卡内存模块与 GPU 之间的数据传输速率。
带宽越高,显卡能更快地读取和写入数据,从而提高性能。
6. 总线宽度(Memory Interface):总线宽度是指 GPU 与显存之间的数据传输通道的宽度。
总线宽度越大,显卡能够以更高的速度传输数据,提高性能。
7.浮点运算性能(FLOPS):浮点运算性能是指显卡能够执行的浮点运算(例如加法和乘法)的能力。
这通常以每秒几十亿次浮点运算的形式表示。
8. 架构(Architecture):架构是指显卡的设计和组织方式。
不同的架构在性能和功能上可能有所不同。
例如,NVIDIA 的图灵架构和安培架构相比前一代的帕斯卡架构有更好的性能和计算能力。
9. 接口和连接方式:显卡通常有不同的接口,如 PCI Express (PCIe)和高级图形接口(High-bandwidth interconnect)。
显卡的主要性能指标

显卡的主要性能指标显卡(Graphics Processing Unit,GPU)作为计算机硬件中的重要组成部分,对于图形显示和图像渲染起着至关重要的作用。
显卡的性能指标包括许多方面,下面将详细介绍显卡的主要性能指标。
1. 显存(Video Memory):显卡的显存是指显卡用于存储图像和图形数据的内存容量。
通常来说,显存越大,显卡能够处理和显示的高分辨率图像就越多,图像处理速度也会更快。
一般来说,4GB-8GB的显存对于大部分绝大多数应用已经足够了,但对于高端游戏或者图形设计等专业应用,可能需要更大容量的显存。
2. GPU核心数量(Core Count):GPU核心数量是指显卡中处理图形数据和运算的核心数量。
核心数量越多,显卡的计算能力和并行处理能力就越强,可以更高效地进行渲染和图像处理。
通常,高端显卡的核心数量会较多,中低端则相对较少。
3. GPU核心频率(Core Clock):GPU核心频率是指显卡核心工作的时钟频率,也可以被称为显卡的主频。
频率越高,显卡的计算能力就越强,渲染速度就越快。
然而,核心频率并不是唯一影响性能的因素,与其他因素一起综合考虑性能更为全面。
4. 显卡总线宽度(Memory Bus Width):显卡总线宽度是显存与GPU之间的数据传输通道,是显存对GPU提供数据的速度。
总线宽度越大,数据传输速度越快,提高了显卡的数据带宽,从而在大规模3D图形渲染和高分辨率图像处理等场景下能够更高效地处理数据。
5. 显卡功耗(TDP,Thermal Design Power):显卡功耗是指显卡在正常工作状态下所消耗的能量。
功耗越高,显卡的发热量就越大,可能需要更好的散热系统来保持显卡的稳定工作。
功耗也会影响显卡的性能表现,过高的功耗可能导致显卡性能下降或者运行不稳定。
6. 像素填充率(Pixel Fill Rate):像素填充率是指显卡每秒钟能够处理和渲染的像素数量。
填充率越高,显卡可以更快地渲染图像和图形,通常表示为每秒钟的百万像素数(MPixels/s)或者每秒几十亿像素数(GigaPixels/s)。
显卡的主要性能指标

显卡的主要性能指标显卡是计算机重要的硬件之一,它负责处理显示图像和视频的任务。
显卡的性能指标直接影响了计算机在图形处理和游戏方面的表现。
下面是显卡的主要性能指标解释:1. 显存容量(Video Memory):显卡的显存用于保存图像和视频数据,在运行复杂图形应用和高分辨率游戏时,显存的容量越大越好,能提供更流畅的画面和高质量的纹理。
2. GPU核心频率(Core Clock):GPU核心频率代表显卡处理器的工作速度,通常以MHz为单位,频率越高,处理图形任务的能力越强。
3. 显存频率(Memory Clock):显存频率指的是显存芯片的工作速度,也通常以MHz为单位。
较高的显存频率确保快速读取和写入显存数据,提高图形渲染的速度。
4. 像素填充率(Pixel Fill Rate):像素填充率代表每秒钟显卡可以渲染的像素数量,单位通常是GPixels/s。
填充率越高,显卡的绘制速度越快。
5. 纹理贴图速率(Texture Fill Rate):纹理贴图速率指的是显卡每秒钟可以处理的纹理贴图数量,单位通常是GTexels/s。
较高的贴图速率可提供更细腻的纹理渲染效果。
6. 浮点运算性能(Floating Point Performance):浮点运算性能代表显卡进行复杂计算的能力,通常以浮点运算每秒(FLOPS)为单位。
高性能的显卡能够更快地执行图形渲染、物理模拟等任务。
7. 内存总线宽度(Memory Bus Width):内存总线宽度决定了显卡通往显存的数据传输带宽。
较宽的总线可以更快地传输数据,提高显存读写效率。
8. 显示接口(Display Interfaces):显卡可提供的显示接口与计算机显示器的连接方式有关。
常见的接口有HDMI、DisplayPort和DVI等,不同接口支持的分辨率和刷新率也有所区别。
9. 多GPU支持(Multi-GPU Support):一些显卡支持多个显卡同时运行,以实现更高的图形渲染性能。
显卡性能参数详解

显卡性能参数详解显卡是计算机中的一个重要组成部分,对于游戏玩家和图形设计师来说尤为重要。
显卡的性能参数直接决定了计算机的图形处理能力和游戏性能。
下面将详细解释几个常见的显卡性能参数。
1.显存容量:显存是显卡中用于存储图形数据的空间,显存容量直接影响显卡的图像处理能力。
较大的显存容量可以支持运行更高分辨率的游戏和处理更复杂的3D模型,因此对于游戏玩家和图形设计师来说,选择显存容量较大的显卡是很重要的。
2.核心频率:显卡的核心频率是指显卡核心处理器的工作频率,即每秒钟可以执行的指令数。
较高的核心频率意味着显卡能够更快地处理图形数据,提高图像渲染速度和游戏帧率。
然而,核心频率不仅仅取决于硬件本身,还受到其他因素如散热和功耗的影响。
3.显存频率:显卡显存频率是指显存芯片的工作频率,即每秒钟存取数据的速度。
显存频率的提高可以加快显卡对于图像数据的读写速度,从而提高图像处理效率。
和核心频率一样,显存频率也会受到散热和功耗的限制。
4.显卡架构:显卡架构决定了显卡内部的数据处理方式和流程。
常见的显卡架构有AMD的GCN和NVIDIA的Pascal、Turing等。
不同的架构对于不同类型的图形处理任务有不同的优化,因此在选择显卡时也需要考虑架构的因素。
5.流处理器数量:流处理器是显卡中用于并行处理图形数据的核心组件,数量越多意味着显卡能够同时处理更多的图形数据,从而提高图形处理的效率。
不同的显卡型号和架构有不同数量的流处理器,因此在选择显卡时需要考虑具体的需求和预算。
6.接口类型:显卡的接口类型决定了它与计算机主板的连接方式,现在主流的接口类型有PCIe、AGP、PCI等。
PCIe是目前最常见和最先进的接口类型,它提供了更高的带宽和更稳定的连接性能,因此在选择显卡时需要确保显卡接口与主板接口相匹配。
总结起来,显卡的性能取决于多个参数,包括显存容量、核心频率、显存频率、显卡架构、流处理器数量和接口类型。
综合考虑这些参数的因素,可以选择适合自己需求和预算的显卡,以获得更好的图像处理和游戏性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断显卡性能的主要参数有哪些?2008-09-09 18:04:17| 分类:科技博览|字号订阅显示芯片显示芯片,又称图型处理器- GPU,它在显卡中的作用,就如同CPU在电脑中的作用一样。
更直接的比喻就是大脑在人身体里的作用。
先简要介绍一下常见的生产显示芯片的厂商:Intel、ATI、nVidia、VIA(S3)、SIS、Matrox、3D Labs。
Intel、VIA(S3)、SIS 主要生产集成芯片;ATI、nVidia 以独立芯片为主,是目前市场上的主流,但由于ATi现在已经被AMD收购,以后是否会继续出独立显示芯片很难说了;Matrox、3D Labs 则主要面向专业图形市场。
由于ATI和nVidia基本占据了主流显卡市场,下面主要将主要针对这两家公司的产品做介绍。
型号ATi公司的主要品牌Radeon(镭) 系列,其型号由早其的Radeon Xpress 200 到Radeon (X300、X550、X600、X700、X800、X850) 到近期的Radeon (X1300、X1600、X1800、X1900、X1950) 性能依次由低到高。
nVIDIA公司的主要品牌GeForce 系列,其型号由早其的GeForce 256、GeForce2 (100/200/400)、GeForce3(200/500)、GeForce4(420/440/460/4000/4200/4400/4600/4800) 到GeForceFX(5200/5500/5600/5700/5800/5900/5950)、GeForce(6100/6150/6200/6400/6500/6600/6800/) 再到近其的GeForce(7300/7600/7800/7900/7950) 性能依次由低到高。
版本级别除了上述标准版本之外,还有些特殊版,特殊版一般会在标准版的型号后面加个后缀,常见的有:ATi:SE (Simplify Edition 简化版) 通常只有64bit内存界面,或者是像素流水线数量减少。
Pro (Professional Edition 专业版) 高频版,一般比标版在管线数量/顶点数量还有频率这些方面都要稍微高一点。
XT (eXTreme 高端版) 是ATi系列中高端的,而nVIDIA用作低端型号。
XT PE (eXTreme Premium Edition XT白金版) 高端的型号。
XL (eXtreme Limited 高端系列中的较低端型号)ATI最新推出的R430中的高频版XTX (XT eXtreme 高端版) X1000系列发布之后的新的命名规则。
CE (Crossfire Edition 交叉火力版) 交叉火力。
VIVO (VIDEO IN and VIDEO OUT) 指显卡同时具备视频输入与视频捕捉两大功能。
HM (Hyper Memory)可以占用内存的显卡nVIDIA:ZT 在XT基础上再次降频以降低价格。
XT 降频版,而在ATi中表示最高端。
LE (Lower Edition 低端版) 和XT基本一样,ATi也用过。
MX 平价版,大众类。
GTS/GS 低频版。
GE 比GS稍强点,其实就是超了频的GS。
GT 高频版。
比GS高一个档次因为GT没有缩减管线和顶点单元。
GTO 比GT稍强点,有点汽车中GTO的味道。
Ultra 在GF7系列之前代表着最高端,但7系列最高端的命名就改为GTX 。
GTX (GT eXtreme)加强版,降频或者缩减流水管道后成为GT,再继续缩水成为GS版本。
GT2 双GPU显卡。
TI (Titanium 钛) 一般就是代表了nVidia的高端版本。
Go 多用语移动平台。
TC (Turbo Cache)可以占用内存的显卡开发代号所谓开发代号就是显示芯片制造商为了便于显示芯片在设计、生产、销售方面的管理和驱动架构的统一而对一个系列的显示芯片给出的相应的基本的代号。
开发代号作用是降低显示芯片制造商的成本、丰富产品线以及实现驱动程序的统一。
一般来说,显示芯片制造商可以利用一个基本开发代号再通过控制渲染管线数量、顶点着色单元数量、显存类型、显存位宽、核心和显存频率、所支持的技术特性等方面来衍生出一系列的显示芯片来满足不同的性能、价格、市场等不同的定位,还可以把制造过程中具有部分瑕疵的高端显示芯片产品通过屏蔽管线等方法处理成为完全合格的相应低端的显示芯片产品出售,从而大幅度降低设计和制造的难度和成本,丰富自己的产品线。
同一种开发代号的显示芯片可以使用相同的驱动程序,这为显示芯片制造商编写驱动程序以及消费者使用显卡都提供了方便。
同一种开发代号的显示芯片的渲染架构以及所支持的技术特性是基本上相同的,而且所采用的制程也相同,所以开发代号是判断显卡性能和档次的重要参数。
同一类型号的不同版本可以是一个代号,例如:GeForce (X700、X700 Pro、X700 XT) 代号都是RV410;而Radeon (X1900、X1900XT、X1900XTX) 代号都是R580 等,但也有其他的情况,如:GeForce (7300 LE、7300 GS) 代号是G72 ;而GeForce (7300 GT、7600 GS、7600 GT) 代号都是G73 等。
制造工艺制造工艺指得是在生产GPU过程中,要进行加工各种电路和电子元件,制造导线连接各个元器件。
通常其生产的精度以um(微米)来表示,未来有向nm(纳米)发展的趋势(1mm=1000um 1um=1000nm),精度越高,生产工艺越先进。
在同样的材料中可以制造更多的电子元件,连接线也越细,提高芯片的集成度,芯片的功耗也越小。
制造工艺的微米是指IC内电路与电路之间的距离。
制造工艺的趋势是向密集度愈高的方向发展。
密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。
微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。
芯片制造工艺在1995年以后,从0.5微米、0.35微米、0.25微米、0.18微米、0.15微米、0.13微米,再到目前主流的90 纳米(0.09纳米) 、65 纳米等。
核心频率显卡的核心频率是指显示核心的工作频率,其工作频率在一定程度上可以反映出显示核心的性能,但显卡的性能是由核心频率、显存、像素管线、像素填充率等等多方面的情况所决定的,因此在显示核心不同的情况下,核心频率高并不代表此显卡性能强劲。
比如9600PRO 的核心频率达到了400MHz,要比9800PRO的380MHz高,但在性能上9800PRO绝对要强于9600PRO。
在同样级别的芯片中,核心频率高的则性能要强一些,提高核心频率就是显卡超频的方法之一。
显示芯片主流的只有ATI和NVIDIA两家,两家都提供显示核心给第三方的厂商,在同样的显示核心下,部分厂商会适当提高其产品的显示核心频率,使其工作在高于显示核心固定的频率上以达到更高的性能。
2、显存类型目前市场中所采用的显存类型主要有SDRAM,DDR SDRAM,DDR SGRAM三种。
SDRAM颗粒目前主要应用在低端显卡上,频率一般不超过200MHz,在价格和性能上它比DDR都没有什么优势,因此逐渐被DDR取代。
DDR SDRAM 是Double Data Rate SDRAM的缩写(双倍数据速率) ,它能提供较高的工作频率,带来优异的数据处理性能。
DDR SGRAM 是显卡厂商特别针对绘图者需求,为了加强图形的存取处理以及绘图控制效率,从同步动态随机存取内存(SDRAM)所改良而得的产品。
SGRAM允许以方块(Blocks) 为单位个别修改或者存取内存中的资料,它能够与中央处理器(CPU)同步工作,可以减少内存读取次数,增加绘图控制器的效率,尽管它稳定性不错,而且性能表现也很好,但是它的超频性能很差。
目前市场上的主流是DDR2和DDR3,。
位宽显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。
目前市场上的显存位宽有64位、128位、256位和512位几种,人们习惯上叫的64位显卡、128位显卡和256位显卡就是指其相应的显存位宽。
显存位宽越高,性能越好价格也就越高,因此512位宽的显存更多应用于高端显卡,而主流显卡基本都采用128和256位显存。
显存带宽=显存频率X显存位宽/8,在显存频率相当的情况下,显存位宽将决定显存带宽的大小。
例如:同样显存频率为500MHz的128位和256位显存,那么它俩的显存带宽将分别为:128位=500MHz*128∕8=8GB/s,而256位=500MHz*256∕8=16GB/s,是128位的2倍,可见显存位宽在显存数据中的重要性。
显卡的显存是由一块块的显存芯片构成的,显存总位宽同样也是由显存颗粒的位宽组成。
显存位宽=显存颗粒位宽×显存颗粒数。
显存颗粒上都带有相关厂家的内存编号,可以去网上查找其编号,就能了解其位宽,再乘以显存颗粒数,就能得到显卡的位宽。
容量这个就比较好理解了,容量越大,存的东西就越多,当然也就越好。
目前主流的显存容量,64MB、128MB、256MB、512MB等。
封装类型显存封装形式主要有:TSOP (Thin Small Out-Line Package) 薄型小尺寸封装QFP (Quad Flat Package) 小型方块平面封装MicroBGA (Micro Ball Grid Array) 微型球闸阵列封装,又称FBGA(Fine-pitch Ball Grid Array)目前的主流显卡基本上是用TSOP和MBGA封装,其中又以TSOP封装居多.速度显存速度一般以ns(纳秒)为单位。
常见的显存速度有7ns、6ns、5.5ns、5ns、4ns,3.6ns、2.8ns、2.2ns、1.1ns等,越小表示速度越快\越好。
显存的理论工作频率计算公式是:额定工作频率(MHz)=1000/显存速度×n得到(n因显存类型不同而不同,如果是SDRAM显存,则n=1;DDR显存则n=2;DDRII显存则n=4)。
频率显存频率一定程度上反应着该显存的速度,以MHz(兆赫兹)为单位。
显存频率随着显存的类型、性能的不同而不同:SDRAM显存一般都工作在较低的频率上,一般就是133MHz和166MHz,此种频率早已无法满足现在显卡的需求。
DDR SDRAM显存则能提供较高的显存频率,因此是目前采用最为广泛的显存类型,目前无论中、低端显卡,还是高端显卡大部分都采用DDR SDRAM,其所能提供的显存频率也差异很大,主要有400MHz、500MHz、600MHz、650MHz等,高端产品中还有800MHz 或900MHz,乃至更高。