电容ESR研究

合集下载

电容的ESR

电容的ESR

电容的ESRESR,是Equivalent Series Resistance三个单词的缩写,翻译过来就是“等效串联电阻”。

电容的ESR是指电容的等效串联电阻(或阻抗)。

理想的电容,是没有电阻的。

但是实际上,任何电容都有电阻,这个电阻值和电容的材料、结构有关系。

在开关电源技术之前,普遍采用线性电源(现在经常使用的LDO,就属于这种技术),电源电路都工作在低频直流状态,通过滤波整流电路把交流转换成直流。

在低频直流电源中,电容的容量对滤波效果起决定作用,电容的串联阻抗作用可以忽略。

但是低频电源效率低,体积大的缺点非常明显。

后来发展了开关电源技术,大大地提高了电源的转换效率,也减小了电源的体积。

开关电源的工作频率越高,电源的体积也可以越小。

开关电源的工作频率从几十KHz到几MHz不等。

在开关电源中,电容的ESR直接影响电容的效果,它比电容的容量还重要(事实上,我们所说的电容容量一般都是在120Hz下测量的值,当工作频率提高时,电容容量会急剧降低,甚至根本不能启动电容的作用)。

一般而言,我们应该选择ESR小店电容。

在不同的电容类别中,电解电容的ESR通常最大,钽电容次之,陶瓷电容最佳。

当然,即使是电解电容中,也分普通电解电容和低ESR的电解电容。

用在开关电源输出滤波的应该采用低ESR的电解电容。

在维修中,如果用普通电解电容替换低ESR的电解电容,开关电源可能短时间能工作,但是寿命肯定不长。

弄不好,电容很快因为损耗太大而爆裂甚至爆炸,所以更换电容应该小心。

同样容量同样耐压的电解电容,体积大的往往ESR小。

同样容量不同耐压的电解电容,耐压高度往往ESR小。

同样耐压同样容量的电容,105度比85度的ESR要小。

当然,这也不是绝对的,对于同一厂家同一系列的电解电容,基本上成立。

电容ESR

电容ESR

ESR:等效串联电阻理论上,一个完美的电容,自身不会产生任何能量损失,但是实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗,各种原因导致电容变得不“完美”。

这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就起了个名字叫做“等效串联电阻”。

比如,我们认为电容上面电压不能突变,当突然对电容施加一个电流,电容因为自身充电,电压会从0开始上升。

但是有了ESR,电阻自身会产生一个压降,这就导致了电容器两端的电压会产生突变。

无疑的,这会降低电容的滤波效果,所以很多高质量的电源啦一类的,都使用低ESR的电容器。

同样的,在振荡电路等场合,ESR也会引起电路在功能上发生变化,引起电路失效甚至损坏等严重后果。

所以在多数场合,低ESR的电容,往往比高ESR的有更好的表现。

不过事情也有例外,有些时候,这个ESR也被用来做一些有用的事情。

比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较慢,并且电容器的体积/容量受到严格限制的时候。

这种情况见于一些使用mos管做调整管的三端稳压或者相似的电路中。

这时候,太低的ESR反而会降低整体性能。

实际上,需要更低ESR的场合更多,而低ESR的大容量电容价格相对昂贵,所以很多开关电源采取的并联的策略,用多个ESR相对高的铝电解并联,形成一个低ESR的大容量电容。

牺牲一定的PCB空间,换来器件成本的减少,很多时候都是划算的。

和ESR类似的另外一个概念是ESL,也就是等效串联电感。

早期的卷制电容经常有很高的ESL,而且容量越大的电容,ESL一般也越大。

ESL经常会成为ESR的一部分,并且ESL也会引发一些电路故障,比如串联谐振等。

但是相对容量来说,ESL的比例太小,出现问题的几率很小,再加上电容制作工艺的进步,现在已经逐渐忽略ESL,而把ESR作为除容量之外的主要参考因素了。

电容esr(CapacitanceESR)

电容esr(CapacitanceESR)

电容esr(Capacitance ESR)低电阻电阻表介绍随着电解电容器的老化,它们的内阻-等效串联电阻(ESR)-增加和最终。

导致电路操作错误。

这种装置可以测量ESR &也可以用来测量小尺寸。

电阻..电路描述IC1a配置为振荡器。

ic2a将该信号2确保50 / 50马克/空间比。

端交换机之间的5伏和¨5volt从而施加交流方波电流约2毫安的电容器待测CX。

iC3b / 1,2指示正半周期C9和iC3b / 3,消极的指示的C10。

R4、C9和C10作为低通滤波器来衰减100千赫Cx的两端电压的交流分量。

C9和C10的电荷直流分量是成正比的ESR。

C9保持正向电压在负半周期和C10持有负电压在正半周期。

IC4的放大差分直流信号可以显示在数字万用表(在200mV的规模)。

10欧姆将由100毫伏表示,1欧姆10 MV,等。

校准调整小一获得100 TP3千赫。

探针连接在一起在IC4的调整/ 6 0mV P4。

分离探针。

设置P2以平衡R2的正电流和负电流,如下所示。

使用- 5V 至TP2。

连接TP4和B、注电流之间的万用表(约2 Ma)。

转移到TP1和TP2 - 5V的调整P2直到获得相同的电流(幅度,忽略信号)。

从TP1删除- 5V。

在A和B之间连接万用表。

将探头应用到一个10欧姆电阻上并调整P3直到多用表。

读100毫伏。

带电电容器的保护。

在测试其ESR之前,始终确保被测试的电容器放电。

然而,事故会发生,所以R3,D1和D2保护充电至少20伏的电容器。

R4,D3和D4的至少32伏。

如果电压是大于这些,这些组件的生存将取决于存储在电容器上的能量。

关于电压和电容。

Len考克斯林山澳大利亚血沉及低电阻测试仪简介电解电容器的年龄,他们的内部阻力-等效串联电阻(ESR)-增加和最终导致电路故障该装置可以测量的ESR及也可以用来测量小。

电阻..电路描述IC1A配置为振荡器。

ic2a这2分,以确保信号50 / 50 /空间比例马克。

电容的ESR效应

电容的ESR效应

ESR,是Equivalent Series Resistance三个单词的缩写,翻译过来就是“等效串联电阻”。

理论上,一个完美的电容,自身不会产生任何能量损失,但是实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗,各种原因导致电容变得不“完美”。

这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就起了个名字叫做“等效串联电阻”。

ESR的出现导致电容的行为背离了原始的定义。

比如,我们认为电容上面电压不能突变,当突然对电容施加一个电流,电容因为自身充电,电压会从0开始上升。

但是有了ESR,电阻自身会产生一个压降,这就导致了电容器两端的电压会产生突变。

无疑的,这会降低电容的滤波效果,所以很多高质量的电源啦一类的,都使用低ESR的电容器。

同样的,在振荡电路等场合,ESR也会引起电路在功能上发生变化,引起电路失效甚至损坏等严重后果。

所以在多数场合,低ESR的电容,往往比高ESR的有更好的表现。

不过事情也有例外,有些时候,这个ESR也被用来做一些有用的事情。

比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较慢,并且电容器的体积/容量受到严格限制的时候。

这种情况见于一些使用mos管做调整管的三端稳压或者相似的电路中。

这时候,太低的ESR反而会降低整体性能。

ESR是等效“串联”电阻,意味着,将两个电容串联,会增大这个数值,而并联则会减少之。

实际上,需要更低ESR的场合更多,而低ESR的大容量电容价格相对昂贵,所以很多开关电源采取的并联的策略,用多个ESR相对高的铝电解并联,形成一个低ESR的大容量电容。

牺牲一定的PCB空间,换来器件成本的减少,很多时候都是划算的。

和ESR类似的另外一个概念是ESL,也就是等效串联电感。

早期的卷制电容经常有很高的ESL,而且容量越大的电容,ESL一般也越大。

电容ESR表(二)电容ESR表的设计、制作、调试

电容ESR表(二)电容ESR表的设计、制作、调试

电容ESR表(⼆)电容ESR表的设计、制作、调试3 设计构思及最终完成的电路⼀、⽅案选择在设计制作之前,最重要的决定是动⼿的⽅向。

⼏经考虑和权衡,笔者决定采⽤指针式ESR表的⽅案。

原因有三:⼀是指针式ESR表的测量更便捷。

指针表长于定性测量,数字表长于定量测量,这已是很多电⼦爱好者的共识。

如果不需要确切的测量数值,使⽤指针表更为⽅便。

当我们使⽤ESR表测量⼀只电容时,这只电容“正确”的ESR值往往是未知的,需要做的⼯作是,判断此值是否落在⼀个合理的区间内。

因为有刻度的辅助,指针表的指⽰更直观。

根据笔者多年既使⽤指针式万⽤表,⼜使⽤数字式万⽤表的经验,对于这样的模糊判断,指针表明显更快、更省事(前提是你需习惯指针表的使⽤)。

只要看⼀眼指针摆动的⼤致情况,即可作出判别,不⽤像使⽤数字表那样,需在脑海中进⾏数字的读⼊与⽐较。

⼆是指针式ESR表的量程更宽。

⼀个挡位就可以覆盖从0~∞的范围。

只要适当安排好⾼分辨率指⽰区域,就可以满⾜我们检测电解电容(以及部分⾮电解电容)的需要。

若做成数字表形式,⼀个挡位就只能覆盖某⼀个范围。

⽐如,采⽤万⽤表专⽤A/D芯⽚ICL7106。

因其显⽰数值最⼤为1999,若安排最⼩显⽰ 0.01Ω,其最⼤显⽰将变为19.99Ω,在某些场合下使⽤会受到限制,这样就不能⽤于辅助检测那些容量不⼤的⾮电解电容。

三是指针式ESR表的制作难度更低。

对于数字式ESR表来说,适⽤的显⽰屏难以购买得到,可⾏的⽅法是利⽤现成的数字万⽤表来改制。

但数字万⽤表体积⼩,内部空间狭窄,元件不易安排,还需对准显⽰屏原来安装的位置,给PCB的制作带来较⼤的困难。

对于指针式ESR表来说,则没有这样的限制。

因此,在国外电⼦爱好者的DIY中,数字式ESR表多是以套件形式供应的,个⼈独⽴制作⼤部分采⽤指针式⽅案。

此外,另⼀个促使笔者下决⼼选定指针表制作⽅案的重要因素是,刚好⼿头有⼀块闲置多年的MF500指针式万⽤表。

这⼀型号的指针表曾经在国内风靡,成为⼀代经典。

电容esr等效电路

电容esr等效电路

电容esr等效电路全文共四篇示例,供读者参考第一篇示例:电容ESR(Equivalent Series Resistance等效电路)是指电容器内部存在的等效电阻。

在理想情况下,电容器只具有电容性质,即可以存储电荷并产生电场,而没有任何损耗。

然而在现实中,电容器的内部结构会导致一定的电阻存在,这就是ESR。

电容的ESR对于电路的性能有着重要的影响,因此在设计电路时需要充分考虑ESR的影响。

ESR是电容器内部电阻的简称,也叫动态电阻。

它由电容器内部的电解液或电极的电阻引起,主要由电解液的电导率决定。

ESR的存在会导致电容器在充电和放电时损耗能量,产生热量,使得电容器效率降低。

ESR还会影响电容器的响应速度和稳定性。

在电路设计中,ESR是一个非常重要的参数。

对于一些对性能要求较高的电路,如功率电源、滤波器等,ESR的影响更加明显。

如果不考虑ESR,可能会影响电路的稳定性、效率和性能。

为了更好地理解ESR的影响,我们可以将电容器和其等效电路进行对比。

电容器的等效电路主要由电容性量element(C)、ESR(R)、电感(L)和介质损耗角(tanδ)四个元素组成。

对于一个实际的电容器,我们可以用一个等效电路来表示其实际情况,如下图所示:[图片描述:电容ESR等效电路图]在这个等效电路中,C是电容器的电容值,R是ESR的电阻值,L 是电容器内部的电感值,tanδ是介质损耗角,表示电容器内部损耗的能量。

将电容器看作这个等效电路,可以更好地理解电容器的实际工作原理。

ESR的大小取决于电容器的类型、材料、尺寸等因素。

一般来说,电容器的ESR越小,其性能越好。

常见的电解电容器和液体电解电容器的ESR相对较高,而固态电容器的ESR较低。

在选择电容器时,需要根据具体的应用场景来选择适合的电容器类型和ESR值。

为了减小ESR的影响,可以采取一些措施。

一是选择ESR较小的电容器,比如固态电容器或专门设计的低ESR电容器。

电容器的等效电阻(ESR)

电容器的等效电阻(ESR)

电容的ESR参数对电路的影响电容器的ESR(等效串联电阻)参数电容器的主要技术指标有电容量、耐压值、耐温值。

除了这三个主要指标外,其他指标中较重要的就是等效串联电阻(ESR)了。

有的电容器上有一条金色的带状线,上面印有一个大大的空心字母“I”,它表示该电容属于LOWESR低损耗电容。

有的电容还会标出ESR值(等效串联电阻),ESR越低,损耗越小,输出电流就越大,电容器的品质越高。

ESR是Equivalent Series Resistance的缩写,即“等效串联电阻”。

理想的电容自身不会有任何能量损失,但实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗。

这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就称为“等效串联电阻”。

和ESR类似的另外一个概念是ESL,也就是等效串联电感。

早期的卷制电感经常有很高的ESL,容量越大的电容,ESL一般也越大。

ESL经常会成为ESR的一部分,并且ESL会引起串联谐振等现象。

但是相对电容量来说,ESL的比例很小,出现问题的几率很小,后来由于电容制作工艺的提高,现在已经逐渐忽略ESL,而把ESR作为除容量、耐压值、耐温值之外选用电容器的主要参考因素了。

串联等效电阻ESR的单位是毫欧(mΩ)。

通常钽电容的ESR通常都在100毫欧以下,而铝电解电容则高于这个数值,有些种类电容的 ESR甚至会高达数欧姆。

ESR的高低,与电容器的容量、电压、频率及温度都有关系,当额定电压固定时,容量愈大 ESR愈低。

同样当容量固定时,选用高的额定电压的品种也能降低 ESR;故选用耐压高的电容确实有许多好处;低频时ESR高,高频时ESR 低;高温也会造成ESR的升高。

现在电子技术正朝着低电压高电流电路的设计方向发展,供应给元器件的电压呈现越来越低的趋势,但对功率的要求却丝毫没有降低。

按P=UI的公式来计算,要获得同样的功率,电压降低了,那就必须得增大电流。

例如INTEL、AMD 的最新款CPU,电压均小于2V,和以前3、 4V的电压相比低得多。

关于陶瓷电容ESR的问题

关于陶瓷电容ESR的问题

关于陶瓷电容ESR的问题似乎所有的硬件工程师谈起电解电容的好坏的时候,最后总是少不了一句,要选择ESR参数低一点的电容云云,公司采购员按这个要求去采购电容的时候,只能选择好品牌,因为采购员心里知道,好品牌的电容ESR参数才低,电解电容的ESR值从不标示出来。

作为开关电源的输出整流滤波电容器,电容量往往是首要的选择,铝电解电容器的电容量完全可以满足要求,而ESR则相对比较高。

可以通过多只并联的方法降低ESR。

也可以选择更大的电容量来降低ESRESR是高频电解电容里面最重要的性能参数,很多电容供应商都强调“LOW ESR”这一性能特征,也就是ESR值很小的意思。

那么,我们如何正确理解LOW ESR的实际意义呢?由于现在电子技术的发展,供应给硬件的电压正呈现越来越低的趋势,例如FPGA、DSP、RAM 系列的供电电压都是很低,有的电路电压小于2V,相比以前动辄3、4V的电压要低得多。

但是,另一方面这些芯片由于晶体管和频率爆增,需求的功耗却是有增无减,因此按P=UI的公式来计算,这些设备对电流的要求就越来越高了。

比如在电脑主板上,例如两颗功耗同样是70W的CPU,前者电压是 3.3V,后者电压是 1.8V。

那么,前者的电流就是I=P/U=70W/3.3V大约在21.2A左右。

而后者的电流就是I=P/U=70W/1.8V=38.9A,达到了前者的近一倍。

在通过电容的电流越来越高的情况下,假如电容的ESR值不能保持在一个较小的范围,那么就会产生比以往更高的涟波电压(理想的输出直流电压应该是一条水平线,而涟波电压则是水平线上的波峰和波谷)。

此外,即使是相同的涟波电压,对低电压电路的影响也要比在高电压情况下更大。

例如对于3.3V的MCU而言,0.2V涟波电压所占比例较小,还不足以形成致命的影响,但是对用于1.8V供电的FPGA、DSP而言,同样是0.2V的涟波电压,其所占的比例就足以造成数字电路的判断失误。

那么ESR值与涟波电压的关系何在呢?我们可以用以下公式表示:V=R(ESR)×I这个公式中的V就表示涟波电压,而R表示电容的ESR,I表示电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容ESR研究
在通过电容的电流越来越高的情况下,假如电容的ESR值不能保持在一个较小的范围,那幺就会产生比以往更高的涟波电压(理想的输出直流电压应该是一条水平线,而涟波电压则是水平线上的波峰和波谷)。

此外,即使是相同的涟波电压,对低电压电路的影响也要比在高电压情况下更大。

例如对于3.3V的CPU而言,0.2V涟波电压所占比例较小,还不足以形成致命的影响,但是对于1.8V的CPU而言,同样是0.2V的涟波电压,其所占的比例就足以造成数字电路的判断失误。

那幺ESR值与涟波电压的关系何在呢?我们可以用以下公式表示:V=R(ESR)&TImes;I 这个公式中的V就表示涟波电压,而R表示电容的ESR,I表示电流。

可以看到,当电流增大的时候,即使在ESR保持不变的情况下,涟波电压也会成倍提高,采用更低ESR 值的电容是势在必行。

这就是为什幺如今的板卡等硬件设备上所用的电容,越来越强调LOW ESR的缘故。

相关文档
最新文档