太阳能发电基础科技知识

合集下载

太阳能发电原理及工作过程

太阳能发电原理及工作过程

太阳能发电原理及工作过程太阳能发电是利用太阳光直接或间接转化为电能的过程。

太阳能发电系统主要由太阳能光电转换设备、电能储存设备和电能管理控制装置组成。

其工作原理是利用光电效应将太阳光能转换为电能,通过光伏组件收集太阳光能,然后转换为直流电,最终通过逆变器转成交流电供电使用。

太阳能发电原理太阳能发电的基本原理是光电效应。

光电效应是指在特定材料表面或内部,光子激发了材料内的电子,使其从价带跃迁到导带,从而产生电荷载流的现象。

光子的能量大于或等于材料的带隙宽度时,才能引发光电效应。

对于硅等半导体材料,太阳光通常能够激发光电效应。

太阳能发电工作过程1.太阳光进入太阳能光伏组件。

2.光伏组件中的光子被材料吸收,产生电子-空穴对。

3.电子被释放到导体中,形成电流。

4.通过金属导线将电流传输到逆变器中。

5.逆变器将直流电转换为交流电,可供家庭或工业用电。

太阳能发电系统优势1.环保:太阳能发电过程中无排放污染物,减少对环境的破坏。

2.可再生:太阳能是不会枯竭的能源,能源可持续。

3.经济:一次性投资、长期受益,减少能源开支。

4.自给自足:可分布式建设,使建筑物自己产生所需电力。

太阳能发电系统应用太阳能发电系统已广泛应用于住宅、商业和工业领域。

特别是在偏远地区、岛屿或山区,太阳能发电成为一种理想的能源解决方案。

此外,政府部门也在不断支持太阳能发电应用,出台相关政策鼓励太阳能发电的普及和应用,促进可持续发展。

总的来说,太阳能发电作为一种清洁、可再生的能源,具有巨大的潜力和发展前景。

随着技术的不断进步和成本的下降,太阳能发电系统将在未来得到更广泛的应用和推广,为人类提供更清洁、可持续的能源。

光伏发电知识科普

光伏发电知识科普

光伏发电知识科普随着全球对清洁能源需求的不断增长,光伏发电作为一种可再生能源,逐渐成为能源领域的热门话题。

光伏发电利用太阳能将光能转化为电能,具有环保、可再生、零排放等优势。

本文将从光伏发电的基本原理、技术类型、应用领域等方面进行科普,以提高公众对光伏发电的了解。

一、光伏发电的基本原理光伏发电的基本原理是利用光生电效应,即某些材料在光照射下能够产生电流。

主要包括以下几个步骤:光照射:太阳光中含有丰富的能量,其中的光子具有一定能量。

光子击中半导体:光子被太阳能电池板上的半导体材料(通常是硅)吸收,导致半导体中的电子被激发并跃迁。

电子跃迁:被激发的电子从半导体的价带跃迁到导带,形成电子-空穴对。

电子流动:电子和空穴分别在半导体中流动,形成电流。

电流输出:通过电流的流动,光伏电池产生的电能被输出到电路中供电使用。

二、光伏发电的技术类型光伏发电技术主要分为单晶硅、多晶硅、非晶硅和薄膜光伏等几种类型。

单晶硅光伏:制作单晶硅太阳能电池需要高纯度的硅材料,通过单晶体生长技术制成单晶硅棒,再切割成薄片制成太阳能电池板。

具有高转换效率,但制造成本较高。

多晶硅光伏:多晶硅是由多个小晶体组成的,制造成本较单晶硅低,但转换效率稍低。

多晶硅光伏是目前市场上应用最广泛的技术。

非晶硅光伏:非晶硅光伏利用非晶硅材料制造,具有制造成本低、灵活性高的优势,但转换效率相对较低。

薄膜光伏:利用薄膜材料制造太阳能电池板,如铜铟镓硒(CIGS)薄膜电池、非晶硅薄膜电池等。

薄膜光伏具有轻薄、柔韧性强的特点,适用于一些特殊应用场景。

三、光伏发电的应用领域光伏发电在各个领域都有广泛的应用,其中主要包括:居民和商业用途:家庭屋顶、商业建筑屋顶等场所安装太阳能电池板,通过光伏发电为居民和商业用户提供清洁能源。

农业光伏:在农田、温室等农业用地上建设光伏电站,既能发电又能保护农作物,实现农业与光伏的双赢。

工业和公用事业:大规模的光伏电站用于工业和公用事业,为工厂和城市提供清洁能源。

光伏发电重要知识点总结

光伏发电重要知识点总结

光伏发电重要知识点总结一、光伏发电原理光伏发电主要依靠光电效应来实现太阳能转换为电能。

光电效应是指在半导体材料中,当光线照射到材料表面时,光子与材料中的电子发生作用,使得电子从价带跃迁到导带,产生电荷载流,最终形成电流。

光伏电池是将光能直接转换为电能的装置,其工作原理主要有两种:一种是晶体管效应,一种是PN结效应。

1. 晶体管效应晶体管效应是指利用多晶硅、单晶硅等半导体材料制成太阳能电池,当太阳光照射到光伏电池表面时,光子与电池中的原子发生作用,使得电子跃迁到导带,形成电子空穴对(正电荷和负电荷)。

在电场的作用下,电子和空穴被分离,形成电压差,最终产生电流。

2. PN结效应PN结效应是指利用硅、镓、砷化镓等半导体材料制成太阳能电池,其结构类似于二极管。

当阳光照射到PN结表面时,光子与材料中的原子发生作用,使得电子从价带跃迁到导带,形成电子空穴对。

在PN结处存在电场,电子和空穴被分离,形成电压差,最终产生电流。

二、光伏组件种类光伏组件是光伏发电系统的核心部件,其主要包括多晶硅电池、单晶硅电池、非晶硅电池和薄膜太阳能电池等类型。

1. 多晶硅电池多晶硅电池是目前应用最广泛的一种光伏电池,其制备成本相对较低,效率较高。

多晶硅电池的外观呈蓝色,表面呈现出晶粒的纹理。

多晶硅电池的光电转换效率通常在15%~20%之间。

2. 单晶硅电池单晶硅电池是采用单晶硅片制成的光伏电池,其外观呈黑色,表面光滑均匀。

单晶硅电池的光电转换效率较高,通常在20%~25%之间。

由于制备工艺复杂,成本相对较高。

3. 非晶硅电池非晶硅电池是采用非晶硅材料制成的光伏电池,其外观呈黑色,表面光滑均匀。

非晶硅电池的制备工艺简单,成本较低,但光电转换效率相对较低,通常在10%~15%之间。

4. 薄膜太阳能电池薄膜太阳能电池是利用非晶硅、铜铟镓硒、氧化铟锡等薄膜材料制成的光伏电池,其外观呈灰色或棕色。

薄膜太阳能电池的制备工艺极其简单,成本较低,但光电转换效率较低,通常在5%~10%之间。

儿童科普:发现太阳能的发电原理

儿童科普:发现太阳能的发电原理

儿童科普:发现太阳能的发电原理
引言:大家好!今天我要和大家分享一个神奇的能源——太阳能。

太阳能是一种非常环保和可再生的能源,而且它来自我们的太阳。

让我们一起来了解一下太阳能发电的原理吧!
正文:
1. 太阳能的起源:太阳是我们的星球最重要的能源来源之一。

太阳通过核聚变反应在其核心产生巨大的能量,并将这些能量以光和热的形式释放出来。

2. 太阳能电池板的作用:太阳能电池板在太阳光的照射下发挥作用。

太阳能电池板通常由许多小型的太阳能电池组成。

每个太阳能电池都由两片硅晶体组成,这些晶体内部被掺杂了不同类型的杂质,从而形成了p-n结。

3. 光生电效应:当太阳光照射到太阳能电池上时,光子 太阳光的基本粒子)会与太阳能电池中的硅原子发生相互作用。

光子的能量被吸收并转移到硅晶体中的电子上,使其获得足够的能量跃迁到导电层。

4. 电子流动:导电层是太阳能电池中的一层材料,它能够传导电
子。

当电子跃迁到导电层时,它们会开始在太阳能电池板内部流动,形成一个电流。

这个电流可以通过导线传送出来,供我们使用。

5. 储存和使用电能:当太阳能电池板产生电流时,我们可以将这些电能存储起来,以备不时之需。

常见的方法是使用电池或储能系统。

储存的电能可以用来给家庭电器供电,比如灯泡、电视等。

结论:太阳能发电利用了太阳的能量,将其转化为电能。

这种能源无限可供利用,并且非常环保。

随着技术的不断发展,太阳能发电已经成为越来越受欢迎的能源选择,希望大家也能通过学习太阳能发电原理,更加关注和支持可持续发展。

太阳能如何产生电能

太阳能如何产生电能

太阳能如何产生电能太阳能是一种清洁、可再生的能源,被广泛应用于发电、供暖、照明等领域。

太阳能产生电能的过程主要通过光伏发电技术实现,下面将详细介绍太阳能如何产生电能的原理和过程。

一、光伏发电原理光伏发电是利用光电效应将太阳能直接转化为电能的过程。

光电效应是指当光线照射到半导体材料表面时,光子能量被半导体吸收,激发出电子,从而产生电流。

光伏发电系统由光伏电池组成,光伏电池是将光能转化为电能的核心部件。

二、光伏电池结构光伏电池通常由硅等半导体材料制成,其结构主要包括P型半导体层、N型半导体层和P-N结。

P型半导体层富含正电荷,N型半导体层富含负电荷,P-N结是P型半导体层和N型半导体层的结合部分。

当光线照射到P-N结上时,光子被吸收,激发出电子和空穴,形成电荷分离,从而产生电流。

三、光伏发电过程1. 光伏电池吸收光能:太阳能光线照射到光伏电池表面,光子被半导体吸收。

2. 电荷分离:光子激发出电子和空穴,电子被推向N型半导体层,空穴被推向P型半导体层,形成电荷分离。

3. 电荷流动:电子和空穴在P-N结中流动,形成电流。

4. 电流输出:通过金属导线将电流输出至外部电路,实现电能的传输和利用。

四、光伏发电系统组成光伏发电系统主要由光伏电池组件、逆变器、支架、电缆等组成。

光伏电池组件负责将太阳能转化为电能,逆变器将直流电转化为交流电,支架用于支撑光伏电池组件,电缆用于连接各部件。

五、太阳能发电优势1. 清洁环保:太阳能发电过程无二氧化碳排放,不会产生污染物,对环境友好。

2. 可再生资源:太阳能属于可再生能源,不会因消耗而枯竭,具有持续性。

3. 分布广泛:太阳能资源分布广泛,几乎遍布全球各地,具有普遍性。

4. 维护成本低:光伏发电系统维护成本低,运行稳定可靠,具有长期经济效益。

六、太阳能发电应用领域1. 居民家庭:太阳能发电可用于家庭供电、热水供应等,降低能源消耗成本。

2. 商业建筑:商业建筑可利用太阳能发电系统实现自给自足,减少能源开支。

太阳能光伏发电必须掌握的基础知识

太阳能光伏发电必须掌握的基础知识

太阳能光伏发电必须掌握的基础知识1、太阳能光伏系统的组成和原理太阳能光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。

太阳能光伏系统具有以下的特点:- 没有转动部件,不产生噪音;- 没有空气污染、不排放废水;- 没有燃烧过程,不需要燃料;- 维修保养简单,维护费用低;- 运行可靠性、稳定性好;- 作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25年以上;根据需要很容易扩大发电规模。

光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。

应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。

随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。

光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0。

3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站,如3。

75kWp家用型屋顶发电设备、敦煌10MW 项目。

其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用.尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同.图4—1是一个典型的供应直流负载的光伏系统示意图。

其中包含了光伏系统中的几个主要部件:光伏组件方阵:由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。

蓄电池:将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。

目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。

太阳能发电简介

太阳能发电简介

环保
太阳能发电不产生温室气体排 放,减少对环境的污染。
资源丰富
太阳光照射地球的能量巨大, 只需利用一小部分即可满足人 类能源需求。
低维护成本
太阳能发电系统运行稳定,维 护成本相对较低。
02
太阳能电池板
类型与构造
01
02
03
04
单晶硅电池板
由单晶硅片制成的电池板,效 率较高,但制造成本也较高。
多晶硅电池板
土地资源限制
总结词
土地资源限制是太阳能发电面临的另一 个挑战,需要寻找有效的土地利用方式 。
VS
详细描述
太阳能发电需要大面积的土地资源,尤其 是在光伏发电领域。然而,随着城市化的 进程和土地资源的日益紧张,可用的土地 资源越来越有限。为了解决这个问题,需 要发展高效率的太阳能电池板和优化土地 利用方式,例如发展屋顶光伏和农业光伏 等模式,以减少对土地资源的依赖。
工作原理
光生伏打效应
当太阳光照射在太阳能电池板上时, 光能转换为电能,产生直流电。
储能与逆变器
通过储能装置(如蓄电池)储存电能 ,再通过逆变器将直流电转换为交流 电供家庭或商业使用。
太阳能发电的优势
可再生
太阳光是无限可再生的能源, 长期使用不会枯竭。
长期回报
太阳能发电系统的投资回报期 长,长期运营可获得稳定的收 益。
政策与法规
要点一
总结词
政策与法规是影响太阳能发电发展的重要因素,需要制定 合理的政策和法规来促进其发展。
要点二
详细描述
政府在太阳能发电的发展中起着重要的作用,通过制定合 理的政策和法规可以促进其发展。例如,政府可以提供税 收优惠、补贴和贷款等政策来降低太阳能发电的成本;同 时,政府还可以制定相关法规来规范行业的发展,例如制 定能效标准和并网标准等。此外,政府还可以通过宣传和 教育等途径来提高公众对太阳能发电的认识和接受程度。

太阳能发电基本原理

太阳能发电基本原理

太阳能发电基本原理
太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。

这就是光电效应太阳能电池的工作原理。

一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

(1)光—热——动—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。

前一个过程是光—热转换过程;后一个过程是热—动再转换成电最终转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。

太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。

当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电相比,太阳能电池不会引起环境污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光生伏特效应:假设光线照射在太阳能电池上并且光在界面层被接纳,具有足够能量的光子可以在P型硅和N型硅中将电子从共价键中激起,致使发作电子-空穴对。

界面层临近的电子和空穴在复合之前,将经由空间电荷的电场结果被相互分别。

电子向带正电的N区和空穴向带负电的P区运动。

经由界面层的电荷分别,将在P区和N区之间发作一个向外的可测试的电压。

此时可在硅片的两边加上电极并接入电压表。

对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。

经由光照在界面层发作的电子-空穴对越多,电流越大。

界面层接纳的光能越多,界面层即电池面积越大,在太阳能电池中组成的电流也越大。

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。

这就是光电效应太阳能电池的工作原理。

一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

(1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。

前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。

太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。

当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。

太阳光电系统,也称为光生伏打,简称光伏,是指利用光伏半导体材料的光生伏特效应而将太阳能转化为直流电能的设施。

光伏设施的核心是太阳能电池板。

目前,用来发电的半导体材料主要有:单晶硅、多晶硅、非晶硅及碲化镉等。

由于近年来各国都在积极推动可再生能源的应用,光伏产业的发展十分迅速。

光伏系统可以大规模安装在地表上成为光伏电站,也可以置于建筑物的房顶或外墙上,形成光伏建筑一体化。

光伏发电,其基本原理就是“光伏效应”。

光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。

光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。

它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。

有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。

光伏发电的主要原理是半导体的光电效应。

硅原子有4个电子,如果在纯硅中掺入有5个电子的原子如磷原子,就成为带负电的N型半导体;若在纯硅中掺入有3个电子的原子如硼原子,形成带正电的P型半导体。

当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。

当太阳光照射到P-N结后,空穴由N极区往P极区移动,电子由P极区向N极区移动,形成电流。

多晶硅经过铸锭、破锭、切片等程序后,制作成待加工的硅片。

在硅片上掺杂和扩散微量的硼、磷等,就形成P-N结。

然后采用丝网印刷,将精配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂一层防反射涂层,电池片就至此制成。

电池片排列组合成电池组件,就组成了大的电路板。

一般在组件四周包铝框,正面覆盖玻璃,反面安装电极。

有了电池组件和其他辅助设备,就可以组成发电系统。

为了将直流电转化交流电,需要安装电流转换器。

发电后可用蓄电池存储,也可输入公共电网。

独立光伏发电系统也叫离网光伏发电系统。

主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。

独立光伏发电系统分类1、无蓄电池的直流光伏发电系统无蓄电池的直流光伏发电系统的特点是用电负载是直流负载,对负载使用时间没有要求,负载主要在白天使用。

太阳能电池与用电负载直接连接,有阳光时就发电供负载工作,无阳光时就停止工作。

系统不需要使用控制器,也没有蓄电池储能装置。

无蓄电池的直流光伏发电系统的优点是省去了能量通过控制器及在蓄电池的存储和释放过程中造成的损失,提高了太阳能利用效率。

这种系统最典型的应用是太阳能光伏水泵。

2、有蓄电池的直流光伏发电系统有蓄电池的直流光伏发电系统由太阳能电池、充放电控制器、蓄电池以及直流负载等组成。

有阳光进,太阳能电池将光能转换为电能供负载使用,并同时向蓄电池存储电能。

夜间或阴雨天时,则由蓄电池向负载供电。

这种系统应用广泛,小到太阳能草坪灯、庭院灯,大到远离电网的移动通信基站、微波中转站,边远地区农村供电等。

当系统容量和负载功率较大时,就需要配备太阳能电池方阵和蓄电池组了。

3、交流及交、直流混合光伏发电系统交流及交、直流混合光伏发电系统与直流光伏发电系统相比,交流光伏发电系统多了一个交流逆变器,用以把直流电转换成交流电,为交流负载提供电能。

交、直流混合光伏发电系统即能为直流负载供电,也能为交流负载供电。

4、市电互补型光伏发电系统市电互补型光伏发电系统,就是在独立光伏发电系统中以太阳能光伏发电为主,以普通220V交流电补充电能为辅。

这样光伏发电系统中太阳能电池和蓄电池的容量都可以设计得小一些,基本上是当天有阳光,当天就用太阳能发的电,遇到阴雨天时就用市电能量进行补充。

我国大部分地区多年都有2/3以上的晴好天气,这样形式即减小了太阳能光伏发电系统的一次性投资,又有显著的节能减排效果,是太阳能光伏发电在现阶段推广和普及过程中的一个过度性的好办法。

并网太阳能光伏发电系统是由光伏电池方阵、控制器、并网逆变器组成,不经过蓄电池储能,通过并网逆变器直接将电能输入公共电网。

并网太阳能光伏发电系统相比离网太阳能光伏发电系统省掉了蓄电池储能和释放的过程,减少了其中的能量消耗,节约了占地空间,还降低了配置成本。

值得申明的是,宇翔并网太阳能光伏发电系统很大一部分用于政府电网和发达国家节能的案件中。

并网太阳能发电是太阳能光伏发电的发展方向,是21世纪极具潜力的能源利用技术。

并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。

但这种电站投资大、建设周期长、占地面积大,因而没有太大发展。

而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。

把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。

风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。

风力发电所需要的装置,称作风力发电机组。

这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。

(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵)风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。

当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。

桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。

(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。

为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。

铁塔是支承风轮、尾舵和发电机的构架。

它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。

铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。

发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。

风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。

小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。

风力发电机由机头、转体、尾翼、叶片组成。

每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

多大的风力才可以发电一般说来,三级风就有利用的价值。

但从经济合理的角度出发,风速大于每秒4米才适宜于发电。

据测定,一台55千瓦的风力发电机组,当风速为每秒9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒6米时,只有16千瓦;而风速每秒5米时,仅为9.5千瓦。

可见风力愈大,经济效益也愈大。

在我国,现在已有不少成功的中、小型风力发电装置在运转。

我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。

在这些地区,发展风力发电是很有前途的。

风力发电的输出风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。

然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。

通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。

目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。

功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。

在内地,小的风力发电机会比大的更合适。

因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。

当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率输出。

尽管风力发电机多种多样,但归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。

相关文档
最新文档