[好卷]北师大版七年级下册数学期末模拟试卷 C

合集下载

七年级下册数学期末模拟试卷新北师大版附答案

七年级下册数学期末模拟试卷新北师大版附答案

2013七年级下册数学期末模拟试卷(新北师大版附答案)玉龙中学2012—2013学年下学期期末模拟一七年级数学试卷一、细心填一填(每小题2分,共计20)1.计算:=;=.2.如果是一个完全平方式,那么的值是.3.如图,两直线a、b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a、b的位置关系是.4.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.5.一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是.6.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.7.现在规定两种新的运算“﹡”和“◎”:a﹡b=;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]=.8.某物体运动的路程s(千米)与运动的时间t(小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为千米.二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)9.下列运算正确的是()A.B.C.D.10.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°11.观察一串数:0,2,4,6,….第n个数应为()A.2(n-1)B.2n-1C.2(n+1)D.2n+112.下列关系式中,正确的是()A.B.C.D.13.如右图,ΔABC,AB=AC,AD⊥BC,垂足为D,E是AD上任一点,则有几对全等三角形()A.1B.2C.3D.414.如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产D.1月至3月每月产量不变,4、5两月均停止生产15.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.线段C.钝角D.直角三角形16.长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为()A.1B.2C.3D.4三、精心算一算17题4分,18题6分,共计10分)17.;18.先化简,再选取一个你喜欢的数代替x,并求原代数式的值.四、认真画一画(19题4分,24题4分,共计8分)19.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是:.20.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)五、请你做裁判(第21题小6分,第22小题6分,共计12分)21.在“五四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?22.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?六、生活中的数学(第23小题6分,第24小题7分,共计13分)23.下面是我县某养鸡场2001~2006年的养鸡统计图:(1)从图中你能得到什么信息.(2)各年养鸡多少万只?(3)所得(2)的数据都是准确数吗?(4)这张图与条形统计图比较,有什么优点?24.某种产品的商标如图所示,O是线段AC、BD的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:在△ABO和△DCO中你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程.七、探究拓展与应用(第25小题6分,第26小题10分,共计16分)25.如图所示,要想判断AB是否与CD平行,我们可以测量那些角;请你写出三种方案,并说明理由.26.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达).(4)运用你所得到的公式,计算下列各题:①②八、信息阅读题(10分)27.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?玉龙中学2012—2013学年下学期期末检测一七年级数学试卷参考答案及评分标准一、细心填一填(每题2分,共计20)1.;2a.2.±2.3.平行.4.3.397×1075.6.26或22㎝7.AC=AE(或BC=DE,∠E=∠C,∠B=∠D)8.-209.4510.B6395二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)题号11121314151617181920选项DCCDDABBDC三、精心算一算(21题3分,22题5分,共计8分)21.解:==……3分22.解:==…3分当x=0时,原式=2……5分四、认真画一画(23题4分,24题4分,共计8分)23.解:理由是:垂线段最短.……2分作图……2分24.解每作对一个给1分五、请你做裁判!(第25题小4分,第26小题6分,共计10分)25.解:不会同意.……2分因为转盘中有两个3,一个2,这说明小丽去的可能性是,而小丽去的可能性是,所以游戏不公平.……2分26.解:根据小王的设计可以设宽为x米,长为(x+5)米,根据题意得2x+(x+5)=35解得x=10.因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.……2分根据小赵的设计可以设宽为x米,长为(x+2)米,根据题意得2x+(x+2)=35解得x=11.因此小王设计的长为x+2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).……2分六、生活中的数学(第27小题4分,第28小题5分,共计9分)27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可)………(每小题1分)28.解:小明的思考过程不正确.…1分添加的条件为:∠B=∠C(或∠A=∠D、或符合即可) (3)分在△ABO和△D CO中……5分(答案不唯一)七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29.(1)∠EAB=∠C;同位角相等,两直线平行.(2)∠BAD=∠D;内错角相等,两直线平行(3)∠BAC+∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分.30.(1).(2),,.(3)=.(4):评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元;(2)(3) (2)答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆.……第(1)问和答各1分,(2)、(3)各2分.。

北师大版数学七年级下册期末考试试题含答案

北师大版数学七年级下册期末考试试题含答案

北师大版数学七年级下册期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列银行标志中,是轴对称图形的是()A. B. C. D.【答案】D2.下列运算正确的是()A.236x x x ⋅=B.824x x x ÷= C.()2224x x = D.()32626x x =【答案】C3.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.明天一定是晴天C.经过有交通信号灯的路口,遇到红灯D.今天是星期三,明天是星期四【答案】D4.如图,AOB ∠是一个任意角,在边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M ,N 重合,过顶点O 与角尺顶点C 的射线OC 便是AOB ∠的平分线.这样的作法所运用的原理是三角形全等的判定,该判定方法是()A.SASB.SSSC.ASAD.AAS【答案】B5.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【答案】B6.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯是目前世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000034毫米,将数0.00000034用科学记数法表示为()A.93410-⨯B.83410-⨯C.83.410-⨯D.73.410-⨯【答案】D7.如图,点D ,E ,F 分别在ABC ∆的边BC ,AB ,AC 上,连接DE ,DF ,在下列给出的条件中,不能判定//AB DF 的是()A.2180A ∠+∠=︒B.1A∠=∠ C.14∠=∠ D.3A ∠=∠【答案】B8.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【答案】C9.如图,在ABC ∆中,点D 在边AC 上,AB AC =,AD BD =,36A ∠=︒,则下列结论正确的是()A.BD 是ABC ∠的平分线B.BD 是AC 边上的中线C.BD 是AC 边上的高D.ABD ∆与BDC ∆的面积相等【答案】A10.在数学课上,老师让每个同学拿一张三角形纸片ABC ,AB AC =,设B C x ∠=∠=︒,要求同学们利用所学的三角形全等的判定方法,剪下两个全等的三角形.下面是四位同学的裁剪方法,如图,剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片的有()A.1种B.2种C.3种D.4种【答案】C二、填空题(本大题共5小题,每小题3分,共15分)11.已知整式x 2+kx+9是完全平方式,则k=_____.【答案】±6.12.已知:a 2+a=4,则代数式a (2a+1)﹣(a+2)(a ﹣2)的值是_____.【答案】813.如图,在ABC 中,DM ,EN 分别是边AB 和AC 的垂直平分线,垂足分别是M ,N ,分别交BC 于点D ,E ,若40DAE ∠=︒,则BAC ∠的度数=_____.【答案】110︒14.某市出租车的收费标准如下:行驶路程在3千米以内,收费8元;行驶路程超过3千米时,超过3千米的按2.6元/千米收费(不满1千米,按1千米计算).小明乘坐出租车到距离14千米的少年宫,他所付的车费是______元.【答案】36.615.如图,ABC ∆的三条边相等,三个内角也相等,D 是AC 上的一点.连接BD ,以BD 为边在BD 上方作BDE ∆,使得BDE ∆的三条边相等,三个内角也相等,连接AE .若6AC =,2AD =,则ABE ∆与ABC ∆的面积之比为______.【答案】2:3三、解答题(本大题共8小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.计算:(1)()()210.25216 3.14π--⨯-÷--;(2)()()22224x y x y y ⎡⎤+--÷⎣⎦.【答案】(1)0;(2)2x .17.先化简,再求值:()()()()243433423x y x y x x y y +---+-,其中12x =,13y =.【答案】246x xy +,2.18.如图,在ABC ∆中,A B ∠=∠,点D ,E 是边AB 上的点,//DG AC ,//EF BC ,DG 与EF 相交于点H .(1)HDE ∠与HED ∠是否相等?并说明理由.下面是王亮同学的解答过程,请你在“_____”上补全过程,在“()”内加注理由.解:HDE HED ∠=∠.理由如下:∵//DG AC ,(已知)∴①A =∠.(②)∵//EF BC ,(已知)∴HED ∠=③.又∵A B ∠=∠,(已知)∴④=⑤.(⑥).(2)如果90C ∠=︒,DG 与EF 有怎样的位置关系?并仿照(1)中的解答方法,说明理由.【答案】(1)①HDE ∠;②两直线平行,同位角相等;③B Ð;④HDE ∠;⑤HED ∠;(④⑤位置可互换)⑥等量代换.(2)DG EF ⊥,证明见解析.19.在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的数量分别应是多少?【答案】(1)12,33;(2)5个和2个20.如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的格点上(格点就是指网格中小正方形的顶点),点E 在BC 边上,且点E 在小正方形的格点上,连接AE .(1)在图中画出AEF ,使AEF 与AEB △关于直线AE 对称,点F 与点B 是对称点;(2)求AEF 与四边形ABCD 重叠部分的面积.【答案】(1)图见解析;(2)6.21.如图,//AD BC ,BE 平分ABC ∠.(1)尺规作图:作BAD ∠的平分线交BE 于点F ;(2)在(1)的条件下,ABF ∆按角分类时,它是什么三角形,请说明理由.【答案】(1)图见解析;(2)直角三角形,证明见解析.22.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人)50010001500200025003000…y (元)3000-2000-1000-010002000…(1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润.【答案】(1)每月的乘车人数x ,每月的利润y ;(2)2000;(3)3000;(4)24000y x =-,4500人.23.综合与实践问题情境:如图1,在ABC ∆中,AB AC =,90BAC ∠=︒,ABC BCA ∠=∠,点D 在直线BC 上运动,以AD 为边作ADE ∆,使得AD AE =,90DAE ∠=︒,ADE AED ∠=∠.连接CE .当点D 在BC 边上时,试判断线段CE ,CD 及BC 之间的数量关系.探究展示:勤奋小组发现,BC CE CD =+,并展示了如下论述过程:理由如下:∵在ABC ∆和ADE ∆中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在DAB ∆与EAC ∆中,,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴DAB EAC ∆≅∆(依据1).∴BD CE =(依据2)∵BC BD DC =+,∴BC CE CD =+.反思交流:(1)上述证明过程中的“依据1”,“依据2”分别是什么?(2)如图2,缜密小组在勤奋小组的基础上继续探究,当点D 在CB 延长线上时,线段CE ,CD 及BC 之间的数量关系是BC CD CE =-,且CE 与BD 的位置关系是CE BD ⊥;请判断缜密小组的说法是否正确,若正确,请说明理由;若不正确,请把你发现的结果写出并说明理由;(3)如图3,当点D 在边BC 的延长线上且其他条件不变时,(2)中BC ,CE ,CD 之间存在的关系是否成立?如不成立,请直接写出BC ,CE ,CD 之间存在的数量关系,并证明.=-,【答案】(1)依据1是SAS,依据2是全等三角形的对应边相等;(2)正确,证明见解析;(3)BC CE CD ⊥CE BC。

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.下列运算中,结果正确的是()A .33a a a ÷=B .()224ab ab =C .2a a a ⋅=D .()235a a =2.以下是各种交通标志指示牌,其中不是轴对称图形的是()A .B .C .D .3.用科学记数法表示0.000000202是()A .60.20210-⨯B .72.0210⨯C .62.0210-⨯D .72.0210-⨯4.下列算式能用平方差公式计算的是()A .()()a b a b +--B .22()(2)a b a b +-C .(2)(2)x y x y +-D .()()a b c a b c -++-5.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A .4B .5C .9D .146.下列事件中是确定事件的为()A .三角形的内角和是360°B .打开电视机正在播放动画片C .车辆随机经过一个路口,遇到绿灯D .掷一枚均匀的骰子,掷出的点数是奇数7.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB ⊥BC ,BO =OC ,CD ⊥BC ,点A 、O 、D 在同一直线上,就能保证△ABO ≌△DCO ,从而可通过测量CD 的长度得知小河的宽度AB .在这个问题中,判断△ABO ≌△DCO 的最佳依据是()A .SASB .AASC .ASAD .SSS 8.下列说法正确的个数有()①内错角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③同一平面内,过一点有且只有一条直线与已知直线垂直;④等腰三角形的对称轴是角平分线所在直线;⑤一个角的补角一定是钝角;⑥三角形的中线、角平分线都在三角形的内部;⑦三角形三条高相交于一点;⑧若2ADE ∠=∠,则//AD CEA .2个B .3个C .4个D .5个9.已知某海水淡化厂淡水储备量为20吨时,刚开始以每小时10吨的淡化的速度加工生产淡水,2小时后,在继续原速度的生产的前提下,为供给市场以每小时15吨的速度运出淡水,则储备淡水量y (吨)与时间t (时)之间的大致图象为()A .B .C .D .10.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD+CF =BD ;③AE =BG ;④CE =12BF .其中正确的是()A .①②B .①②④C .①②③④D .①③二、填空题11.计算()332x x ÷的结果为__________.12.若某长方体底面积是60(2cm ),高为h(cm),则体积V(3cm )与h 的关系式为_____.13.如图,小明在以A ∠为顶角的等腰三角形ABC 中用圆规和直尺作图,作出过点A 的射线交BC 于点D ,然后又作出一条直线与AB 交于点E ,连接DE ,若ABC 的面积为4,则BED 的面积为________.14.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.15.化简:(x+1)2+2(1-x)=_______________.16.如图,等边△ABC 的边长为1,AB 边上有一点P ,Q 为BC 延长线上的一点,且CQ =PA ,过点P 作PE ⊥AC 于点E ,过P 作PF ∥BQ 交AC 边于点F ,连接PQ 交AC 边于点D ,则DE 的长为_____.三、解答题17.计算:(1)(﹣3)2+(π﹣3.14)0×(﹣1)2019﹣(13)-2(2)2332935(2)a a a a a a ⋅⋅+--÷18.先化简,再求值:2()3(3)2(2)(2)x y x x y x y x y ---++-,其中17x =-,2y =.19.如图,在△ABC 中,∠C =90°,DB ⊥BC 于点B ,分别以点D 和点B 为圆心,以大于二分之一DB 的长为半径作弧,两弧相交于点E 和点F ,作直线EF ,延长AB 交EF 于点G ,连接DG ,下面是说明∠A =∠D 的说理过程,请把下面的说理过程补充完整:因为DB ⊥BC (已知)所以∠DBC =90°()因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC()所以∠A=(______________________________);由作图法可知:直线EF是线段DB的所以GD=GB所以∠1=()因为∠A=∠1(已知)所以∠A=∠D(___________).20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近____________(精确到0.1),估计摸一次球能摸到黑球的概率是_____________;袋中黑球的个数约为_________只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了____________个黑球.21.某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为110,那么需要将多少无奖券改为三等奖券22.(1)如图,已知△ABC,∠C为直角,AC<BC,D为BC上一点,且到A,B两点的距离相等.①用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);②连结AD,若∠B=37°,求∠CAD的度数.(2)已知,在△ABC中,AB=AC,点D、E分别在AB、AC边上,且BD=CE,证明OB=OC.23.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)AP=________cm,BP=__________cm(用含t的代数式表示)(2)若点Q的运动速度与点P的运动速度相等..,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(3)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变......,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.24.如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.(1)求证:∠1+∠2=90°;(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.25.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油实验,并把实验的数据记录下来,制成下表:汽车行驶时间x(h)0123…邮箱剩余油量y(L)100948882…(1)根据上表的数据,请写出y与x的之间的关系式:__________________________________;(2)如果汽车油箱中剩余油量为46L,则汽车行驶了多少小时?(3)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上均匀行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗?为什么?参考答案1.C【解析】根据同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法计算即可.【详解】A.331a a÷=,故本选项错误;B .()2222224ab a b a b ⨯==,故本选项错误;C .2a a a ⋅=,故本选项正确;D .()23326a a a ⨯==,故本选项错误.故选C .【点睛】此题考查的是幂的运算性质,掌握同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法是解决此题的关键.2.B【解析】根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.【详解】A 、是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项符合题意;C 、是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项不符合题意.故选B .【点睛】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形是图形两部分沿对称轴折叠后可重合的图形是解题的关键.3.D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.000000202 2.0210-=⨯.故选:D .【点睛】本题考查了用科学记数法表示较小的数,解题的关键是是掌握一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D【解析】【分析】根据平方差公式进行的特点对每一选项进行分析即可.平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.【详解】解:A .该式子中两项均为相反项,不能用平方差公式计算,故本选项不符合题意.B .该式子中只有一个相同项,没有相反项,不能用平方差公式计算,故本选项不符合题意.C .该式子中既没有相同项,也没有相反项,不能用平方差公式计算,故本选项不符合题意.D .()()[()][()]a b c a b c a b c a b c -++-=--+-,既有相同项,也有相反项,能用平方差公式计算,故本选项符合题意.故选:D .【点睛】本题考查了平方差公式,运用平方差公式计算时,解题的关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.C【解析】【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,故104104-<<+第三边,便可找到答案.【详解】解:根据题意,有:104104-<<+第三边即:614<<第三边综合选项,故本题选择C .【点睛】本题考查三边关系,关键在于掌握两边之和大于第三边,两边之差小于第三边是关键.6.A【解析】【分析】根据确定事件和随机事件的定义对各选项逐一分析即可.【详解】解:A 、三角形的内角和是360°是不可能事件,即确定事件,符合题意;B 、打开电视机正在播放动画片为不确定事件,即随机事件,故不符合题意;C 、车辆随机经过一个路口,遇到绿灯为不确定事件,即随机事件,故不符合题意;D 、掷一枚均匀的骰子,掷出的点数是奇数为不确定事件,即随机事件,故不符合题意;故选:A .【点睛】本题考查了确定事件和随机事件的定义,解决本题的关键是要明确事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.C【解析】【分析】直接利用全等三角形的判定方法得出符合题意的答案.【详解】解:AB BC ⊥ ,CD BC ⊥,90ABO OCD ∴∠=∠=︒,在ABO ∆和DCO ∆中,ABO DCO BO CO BOA COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABO DCO ASA ∴∆≅∆,则证明ABO DCO ∆≅∆的依据的是ASA ,故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是正确掌握全等三角形的判定方法.8.A【解析】【分析】根据平行线的性质对①进行判断;根据点到直线的距离的定义对②进行判断;根据垂直公理对③进行判断;根据等腰三角形的性质对④进行判断;利用特例对⑤进行判断;根据三角形中线、角平分线的定义对⑥进行判断;利用钝角三角形的高所在的直线相交于一点可对⑦进行判断;利用没有对应的图形可对⑧进行判断.【详解】解:两直线平行,内错角相等,所以①错误;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,所以②错误;同一平面内,过一点有且只有一条直线与已知直线垂直,所以③正确;等腰三角形的对称轴是顶角的平分线所在直线,所以④错误;一个角的补角不一定是钝角,如150︒的补角为30°,所以⑤错误;三角形的中线、角平分线都在三角形的内部,所以⑥正确;三角形三条高所在的直线相交于一点,所以⑦错误;若2ADE ∠=∠,则//AD CE ,没有图形,所以⑧错误.故选:A .【点睛】本题考查了对称的性质、轴对称图形、等腰三角形的性质、平行线的判定,解题的关键是掌握相关的概念,对称的性质:如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.9.D【解析】【分析】根据题意,可以写出各段对应的函数解析式,从而可以解答本题.【详解】解:由题意可得,当02x时,1020y x =+,当2x >时,201015(2)550y x x x =+--=-+,当0y =时,10x =,故选:D .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B【解析】【分析】由等腰直角三角形的性质可得BD CD =,利用ASA 判定DFB DAC ∆∆≌,可得DF AD =,BF AC =.则CD CF AD =+,即AD CF BD +=;再利用ASA 判定()Rt BEA Rt BEC ASA ≌,得出12CE AE AC ==,可得1122F AC CE B ==,连接CG .因为BCD ∆是等腰直角三角形,即BD CD =.又因为DH BC ⊥,那么DH 垂直平分BC .即BG CG =.在Rt CEG △中,CG 是斜边,CE 是直角边,所以CE CG <.即AE BG <.【详解】解:CD AB ⊥ ,45ABC ∠=︒,BCD ∴∆是等腰直角三角形.BD CD ∴=.故①正确;在Rt DFE △和Rt DAC V 中,90DBF BFD ∠=︒-∠,90DCA EFC ∠=︒-∠,且BFD EFC ∠=∠,DBF DCA ∴∠=∠,在DFB ∆和DAC ∆中,90DBF DAC BD CD BDF CDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()DFB DAC ASA ∴∆≅∆,BF AC ∴=,DF AD =,CD CF DF =+ ,AD CF BD ∴+=;故②正确;BE 平分ABC ∠,ABE CBE ∴∠=∠.在Rt BEA V 和Rt BEC △中,90ABE CBE BE BE BEA BEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()Rt BEA Rt BEC ASA ∴ ≌,12CE AE AC ∴==.又BF AC = ,1122CE AC BF ∴==;故④正确;连接CG .BCD ∆ 是等腰直角三角形,BD CD∴=又DH BC ⊥,DH ∴垂直平分BC ,BG CG ∴=,在Rt CEG △中,CG 是斜边,CE 是直角边,CE CG ∴<,CE AE = ,B AE G ∴<.故③错误.故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是熟练运用全等三角形的判定方法.11.2272x 或213.5x 【解析】【分析】先计算积的乘方,再进行单项式除以单项式的运算即可得到答案.【详解】()3322732=2722x x x x x ÷÷=,故答案为:2272x 或213.5x .【点睛】此题主要考查了积的乘方和单项式除以单项式,熟练掌握运算法则是解答此题的关键.12.60V h=【解析】【分析】根据长方体的体积=底面积⨯高得出60V h =即可.【详解】解:根据题意得:60V h =,故答案为:60V h =.【点睛】本题考查了函数关系式、长方体的体积,解题的关键是熟记长方体的体积公式.13.1【解析】【分析】根据三角形的中线平分三角形的面积解决问题即可.【详解】解:由作图可知,AD 平分BAC ∠,AB AC = ,BD DC ∴=,122ABD ABC S S ∆∆∴==,由作图可知,AE EB =,112BED ABD S S ∆∆∴==.故答案为:1.【点睛】本题考查作图-复杂作图,等腰三角形的性质的性质等知识,解题的关键是理解三角形的中线平分三角形的面积.14.13【解析】【详解】分析:根据概率公式用女生人数除以总人数即可得结论.详解:所有等可能结果共有6种,其中女生有2种,∴恰好是女生的概率为2163=.故答案为13.点睛:本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.15.x 2+3【解析】【详解】分析:先用完全平方公式和乘法分配律展开,然后合并同类项即可.详解:原式=x 2+2x+1+2-2x=x 2+3.故答案为x 2+3.点睛:本题考查了整式的混合运算.熟练掌握相关运算法则是解题的关键.16.12【解析】【分析】通过求证PFD ∆和QCD ∆全等,推出FD CD =,再通过证明APF ∆是等边三角形和PE AC ⊥,推出AE EF =,即可推出AE DC EF FD +=+,可得12ED AC =,即可推出ED 的长度.【详解】解://PF BQ ,Q FPD ∴∠=∠,等边ABC ∆,60APF B ∴∠=∠=︒,60AFP ACB ∠=∠=︒,APF ∴∆是等边三角形,AP PF ∴=,AP CQ = ,PF CQ ∴=,在PFD ∆和QCD ∆中,FPD Q PDF QDC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PFD QCD AAS ∴∆≅∆,FD CD ∴=,PE AC ⊥ 于E ,APF ∆是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12ED AC ∴=,1AC = ,12DE ∴=.故答案为:12.【点睛】本题考查了等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,解题的关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.17.(1)1-;(2)68a 【解析】【分析】(1)根据有理数的乘方法则、零指数幂和负整数指数幂的运算法则计算即可;(2)根据单项式乘单项式的运算法则、单项式除以单项式的运算法则、积的乘方法则计算.【详解】解:(1)原式91(1)9=+⨯--919=--1=-;(2)原式66654a a a =+-68a =.【点睛】本题考查了实数的运算、整式的运算,解题的关键是掌握有理数的乘方法则、零指数幂和负整数指数幂的运算法则、单项式乘单项式的运算法则、单项式除以单项式的运算法则.18.277y xy -+,30-【解析】【分析】根据整式的运算法则即可化简求解.【详解】解:原式=222222392(4)x xy y x xy x y -+-++-=2222223928x xy y x xy x y -+-++-=277xy y -其中17x =-,2y =原式=217(2727⨯-⨯-⨯=-2-28=-30【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法公式.19.垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D ∠,等边对等角,等量代换.【解析】【分析】利用垂线的定义,平行线的判定和性质,线段的垂直平分线的性质等知识求解即可.【详解】解:因为DB BC ⊥(已知),所以90DBC ∠=︒(垂线的定义).因为90C ∠=︒(已知),所以∠=∠DBC C (等量代换).所以//DB AC (内错角相等两直线平行).所以1A ∠=∠(两直线平行同位角相等).由作图法可知:直线EF 是线段DB 的垂直平分线,所以GD GB =.所以1D ∠=∠(等边对等角).因为1A ∠=∠(已知),所以A D∠=∠(等量代换).故答案为:垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D∠,等边对等角,等量代换.【点睛】本题考查作图-复杂作图,平行线的判定和性质,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)0.4,0.4;20;(2)25【解析】【分析】(1)根据统计图找到摸到黑球的频率稳定到的常数即为摸到黑球的概率;用总数乘以摸到黑球的频率即可得到黑球的个数;(2)设向袋子中放入了x个黑球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【详解】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4.袋中黑球的个数约为50×0.4=20(只).(2)设放入黑球x个,根据题意得:20 50xx+=+0.6,解得:x=25,经检验:x=25是原方程的根.故答案为:25.【点睛】本题考查了概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解答本题的关键.21.(1)11000;(2)7125;(3)500【解析】【分析】任取一张有1万种情况,其中抽到一等奖有10种情况,二等奖有50种情况,三等奖有500种情况,利用概率公式进行计算即可.【详解】解:(1)获一等奖的概率是101100001000=,(2)获奖的概率是1050500710000125++=,(3)设需要将x 无奖券改为三等奖券,则:50011000010x +=,解得:500x =.【点睛】本题考查了利用概率公式求概率,解题的关键是掌握如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=,难度适中.22.(1)①见解析;②16︒;(2)见解析【解析】【分析】(1)①作线段AB 的垂直平分线交BC 于点D ,连接AD 即可.②求出DAB ∠,CAB ∠,可得结论.(2)证明()ABE ACD SAS ∆≅∆,推出ABE ACD ∠=∠,再证明OBC OCB ∠=∠,即可解决问题.【详解】解:(1)①如图,点D 即为所求.②MN 垂直平分线段AB ,DA DB ∴=,37DAB B ∴∠=∠=︒,90C ∠=︒ ,903753CAB ∴∠=︒-︒=︒,16CAD CAB DAB ∴∠=∠-∠=︒.(2)AB AC = ,BD CE =,AD AE ∴=,在ABE ∆和ACD ∆中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,()ABE ACD SAS ∴∆≅∆,ABE ACD ∴∠=∠,ABC ACB ∠=∠ ,OBC OCB ∴∠=∠,OB OC ∴=.【点睛】本题考查作图-复杂作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(1)2t ,72t -;(2)CAP PBQ ∆≅∆,PC PQ ⊥,理由见解析;(3)2()AP BQ cm ==,2x cm /s =;20/7x cm s =,P 在线段AB 中点,5()BQ cm =.【解析】【分析】(1)根据路程=时间⨯速度求解.(2)利用三角形全等的判定条件,判断两个三角形是否全等.(3)此处判断两个三角形全等用SAS ,需要分情况讨论对应边.【详解】解:(1)P 点运动速度为2/cm s ,运动()t s 走的路程为2()t cm ,AB 长度为7,(72)()BP t cm =-,故答案为2t ,72t -.(2)CAP PBQ ∆≅∆,PC PQ ⊥.证明: 点Q 的运动速度与点P 的运动速度相等,∴当1t =时,2()AP BQ cm ==,725()BP cm =-=,5()AC cm = ,90A B ∠=∠=︒,()CAP PBQ SAS ∴∆≅∆,ACP BPQ ∴∠=∠,90ACP CPA ∠+∠=︒ ,90BPQ CPA ∴∠+∠=︒,PC PQ∴⊥(3)CAB DBA ∠=∠,ACP ∆与BPQ ∆全等,需要满足下面条件之一:①AC PB =,AP BQ =,即5AC PB ==,752()AP BQ cm ==-=,2()AP t cm = ,()BQ xt cm =,2()AP BQ cm ∴==,2x cm /s =,②AC BQ =,AP PB =,即5AC BQ ==,7()2AP PB cm ==,72()2AP t cm ==,74t s ∴=,5()BQ xt cm == ,20/7x cm s ∴=,P 在线段AB 中点,5()BQ cm =.【点睛】本题考查了三角形全等的判定和性质和动点相结合,解题的关键是全等知识点熟练应用和动点的情况分析.24.(1)证明见解析(2)证明见解析【解析】【分析】(1)过点O作OM∥AB,根据平行线的性质得出∠1=∠EOM,求出OM∥CD,根据平行线的性质可求解;(2)根据平行线的性质得出∠AEH+∠CHE=180°,根据角平分线的性质和平行线的判定可求解.【详解】(1)方法一:过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;方法二:过点F作FN∥OE交AB于N,则∠1=∠ANF,∠EOF+∠OFN=180°,∵OE⊥OF,∴∠EOF=90°,∴∠OFN=180°-∠EOF=90°,∵AB∥CD,∴∠ANF=∠NFD,∴∠1=∠NFD,∵∠1+∠OFN+∠NFD=180°,∴∠1+∠2=180°-∠OFN=90°;(2)∵AB∥CD,∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH,∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°,∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.25.y=100-6x【解析】【详解】分析:(1)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;(2)求汽车油箱中剩余油量为46L,则汽车行驶了多少小时即是求当Q=46时,t的值;(3)先求出汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间,乘以6求出用油量,再与36L比较大小即可判断.详解:(1)y=100-6x(2)令y=46,则46=100-6x,解得x=9.(3)700÷100=7h,7⨯6=42L,42>36,在中途不加油的情况下不能从高速公路起点开到高速公路终点.点睛:本题主要考查了一次函数的应用,由表格中数据求函数解析式可以根据等量关系列出或者利用待定系数法去求,理清汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间7小时,是第三个问题的突破点.。

北师大版七年级下学期期末考试模拟卷经典(附详细答案)

北师大版七年级下学期期末考试模拟卷经典(附详细答案)

七年级数学第二学期期末考试模拟卷初一年级 数学考试考试时间:90分钟 试卷满分:100分姓名: 分数:一. 选择题(共12小题,满分36分,每小题3分)1.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )A B C D 2.下列运算正确的是( )A .235a a a ⋅= B .()22ab ab = C .()239aa = D .632a a a ÷=3.如图在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()222a b a b a ab b +-=++4.若要使21464x mx ++成为一个两数差的完全平方式,则m 的值应为( ) A .12± B .12- C .14± D .14-5.如图,已知∠1=110°,则∠2的度数为( )A .55°B .70°C .50°D .不能确定6.如图所示,直线a ∥b ,△ABC 是直角三角形,∠A=90°,∠ABF=25°,则∠ACE 等于( )A .25°B .55°C .65°D .75°7.两个不相等的正数满足2a b +=,1ab t =-,设()2S a b =-,则S 关于t 的函数图象是( )A .射线(不含端点)B .线段(不含端点)C .直线D .抛物线的一部分 8.一辆汽车由A 地匀速驶往相距300千米的B 地,汽车的速度是100千米/小时,那么汽车距离A 地的路程S (千米)与行驶时间t (小时)的函数关系用图象表示为( )A B C D9.下列事件中,是不可能事件的是()10.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()11.已知三角形的两边a=3,b=7,第三边是c,且a<b<c,则c的取值范围是()12.下列说法正确的是()二.填空题(共4小题,满分12分,每小题3分)13.一台计算机每秒可作3×1012次运算,它工作了2×102秒可作_________次运算.14.已知△ABC三边分别为a、b、c,若a=3,b=4,则c的取值范围是_________;已知四边形ABCD四边分别为a、b、c、d,若a=3,b=4,d=10,则c的取值范围是_________.15.下列能判断两个三个角形全等的条件是_________①已知两角及一边对应相等②已知两边及一角对应相等③已知三条边对应相等④已知直角三角形一锐角及一边对应相等⑤已知三个角对应相等.16.下列是三种化合物的结构式及分子式,(1)请按其规律,写出后一种化合物的分子式_________.(2)每一种化合物的分子式中H的个数m是否是C的个数n的函数?如果是,写出关系式_________.三.解答题(共7小题,满分52分) 17.(6分)计算:18.(6分)探究发现:阅读解答题:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试比较20142015×20142012与20142014×20142013的大小.解:设20142014=a ,x =20142015×20142012,y =20142014×20142013那么x =(a +1)(a ﹣2),那么y =a (a ﹣1) ∵x ﹣y = _________∴x _________ y (填>、<).填完后,你学到了这种方法吗?不妨尝试一下,相信你准行! 问题:计算(m +22.2014)(m +14.2014)﹣(m +18.2014)(m +17.2014).19.(7分)计算:(1)()()234a b a a b --+-+⎡⎤⎣⎦ (2)()()22a b a ab b +-+20.(7分)在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF . (1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE=30°,求∠ACF 的度数.21.(8分)如图,这是反映爷爷每天晚饭后从家中出发去元宝山公园锻炼的时间与距离之间关系的一幅图.(1)如图反映的自变量、因变量分别是什么?(2)爷爷每天从公园返回用多长时间?(3)爷爷散步时最远离家多少米?(4)爷爷在公园锻炼多长时间?(5)计算爷爷离家后的20分钟内的平均速度.22.(8分)将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中,摇匀后甲、乙二人做如下游戏:每人从袋子中各摸出一个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜.请问:这样的游戏规则对甲、乙双方公平吗?请用概率的知识说明理由.(非课改区)某校九年级一班数学调研考试成绩绘制成频数分布直方图,如图(得分取整数).请根据所给信息解答下列问题:(1)这个班有多少人参加了本次数学调研考试?(2)60.5~70.5分数段的频数和频率各是多少?(3)请你根据统计图,提出一个与(1),(2)不同的问题,并给出解答.23.(10分)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.(1)若AB=AC,∠BAC=90°那么①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是_________(直接写出结论)②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.模拟卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.D2.A3.A4.B这两个数的平方,那么中间一项为减去或加和±.)﹣,+mx+﹣5.D6.C7.B8.B9.D10.D11.B12.D的面积是×的面积是二.填空题(共4小题,满分12分,每小题3分)13.6×101414.1<c<7;3<c<17.15.①③④16.(1)C H.(2)m=2n+2.三.解答题(共7小题,满分52分)17.18.19.20.,21.22.所以甲获胜的概率为,乙获胜的概率为23.。

【精品】北师大版七年级下册数学期末模拟试卷 C

【精品】北师大版七年级下册数学期末模拟试卷 C

第2题图nmba70°70°110°第3题图CBA2112第六题图DCBA 北师大版七年级下册数学期末模拟试卷 C一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。

4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。

5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。

6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。

7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如则=na 。

8、已知412+-kx x 是一个完全平方式,那么k 的值为 。

9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。

10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。

二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷- C. 226)3(x x = D. 222)(y x y x +=+第1页 共4页DCBA DC B A FEDCB A EDCBA12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61 C. 51 D. 31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④876954521第2页 共4页乙甲BA OEDCBA三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。

北师大七年级下数学期末模拟检测试题(有答案)

北师大七年级下数学期末模拟检测试题(有答案)

第二学期期末模拟测试题七 年 级 数 学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下是回收、绿色包装、节水、低碳四个标志,其中是轴对称图形的是2. 二元一次方程组324x y x +=⎧⎨=⎩的解是A.21x y =⎧⎨=-⎩B.25x y =⎧⎨=⎩C.25x y =⎧⎨=-⎩D.21x y =⎧⎨=⎩3. 已知∠A =60°,则∠A 的补角是A .160°B .120°C .60°D .30° 4. 在△ABC 中,∠C =60°,∠B =70°,则∠A 的度数是A.70°B. 55°C. 50°D. 40°5. 如图,直线l 1∥l 2,若∠1=50°,则∠2的度数是A .40°B .50°C .90°D .130° 6.下列长度的三条线段,不能组成三角形的是 A.3,8,4B.4,9,6C.15,20,8D.9,15,87.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 A. AB =ACB. ∠B =∠CC. BD =CDD. ∠BDA =∠CDA8.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74︒,则∠B 的度数为 A . 68︒ B .32︒ C . 22︒ D .16︒9. 已知两数、y 之和是10,比y 的3倍大2,则下面所列方程组正确的是 A. 1032x y y x +=⎧⎨=+⎩B.1032x y y x +=⎧⎨=-⎩C. 1032x y x y +=⎧⎨=+⎩D. 1032x y x y +=⎧⎨=-⎩10.如图,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD 、CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ;上述结论一定正确的是 A .①②③B .②③④C .①③⑤D .①③④11.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M , 交AC 于N ,若BM +CN =9,则线段MN 的长 A . 6B . 7C . 8D . 912. 如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为A. 11B. 5.5C. 7D. 3.5第Ⅱ卷(非选择题 共84分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.不按以上要求做答,答案无效.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.) 13. 如图,∠AOB = 90°,∠BOC = 30°,则∠AOC = 度.14. 若、y 满足方程组3735x y x y +=⎧⎨+=⎩,则-y 的值等于 .15.如图所示,AB =DB ,∠ABD =∠CBE ,请你添加一个适当的条件__________________,使△ABC ≌△DBE .(只需添加一个即可)16.如图,在直角△ABC 中,90BAC ∠=︒,CB =10,AC =6,DE 是AB 边的垂直平分线,垂足为D ,交BC 于点E ,连接AE ,则△ACE 的周长为 .17.如图,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影拼成一个长方形,这个拼成的长方形的长为30,宽为20,则右图中Ⅱ部分的面积是 .18.如图,已知∠AOB =α,在射线OA 、OB 上分别取点A 1、B 1,使OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2B 2……按此规律继续下去,记∠A 2B 1B 2=α1,∠323A B B =α2……∠n+11A n n B B +=αn ,则αn = .三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.) 19(1) (本小题满分3分)解方程组254x y x y +=⎧⎨-=⎩19(2) (本小题满分4分)如图,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,求∠A 的度数.20.(本小题满分5分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .21.(本小题满分6分)已知:如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB •于E ,DB =10. 求∠ADC 的度数和边AC 的长.22.(本小题满分7分)为了改善全市中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?23.(本小题满分7分)如图为一机器零件,∠A=36°的时候是合格的,小明测得∠BDC=98°,∠C=38°,∠B=23°.请问该机器零件是否合格并说明你的理由.24.(本小题满分8分)如图,AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF.EG⊥FG于点G,∠BEM=50°.求∠CFG的度数.25.(本小题满分8分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l.(1)求作点A关于直线l的对称点A1;(2)P为直线l上一点,连接BP,AP,求△ABP周长的最小值.26.(本小题满分9分)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE. 点F是AE的中点,FD的延长线与AB的延长线相交于点M,连接MC.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?说明你的理由.27.(本小题满分9分)如图,△ABC、△ADC、△AMN均为等边三角形,AM>AB,AM与DC交于点E,AN与BC交于点F.(1)求证:△ABF≌△ACE;(2)猜测△AEF的形状,并证明你的结论;(3)请直接指出当F点在BC何处时,AC⊥EF.参考答案与评分标准一、选择题13. 60° 14. -115. BC =BE (或∠D =∠BAC ;或∠E =∠C ) 16. 16 17. 10018. (21)1802n n α-⋅︒+或90°+45°+……+1802n ︒+2n α三、解答题19.解:(1) 解:①+②得3=9, ··················· 1分 ∴=3. ······························ 2分 把=3代入②得3-y =4 ∴y =-1∴方程组的解为31x y =⎧⎨=-⎩. ······················ 3分(2)解:∵AB ∥CD (已知)∴∠B=∠BCD (两直线平行,内错角相等) ·············· 1分 ∵∠B =30°∴∠BCD =30°(等量代换) ···················· 2分 ∵CB 平分∠ACD (已知)∴∠BCD =∠ACB =30°(角平分线定义) ·············· 3分 ∴∠A ==180°-∠ACB -∠B =180°-30°-30°=120°(三角形内角和定理)4分 20. 证明:∵AF =DC ,(已知)∴AF +FC =FC +DC ,(等式的性质) ················· 1分 即AC =DF ,又∵AB =DE ,∠A =∠D ,(已知)∴△ACB ≌△DEF (SAS ) ····················· 3分 ∴∠ACB =∠DFE ,(全等三角形的对应角相等) ············ 4分 ∴BC ∥EF .(内错角相等,两直线平行) ··············· 5分 21. 解:∵DE 为AB 的垂直平分线,DB =10 (已知)∴AD=BD=10(线段垂直平分线定理) ················· 1分 ∴∠B =∠BAD=15°,(等边对等角) ················· 2分 ∴∠ADC =15°+15°=30°(三角形外角定理) ············· 4分 ∵∠C =90°(已知) ∴AC=12AD =12×10=5(直角三角形中30°角所对直角边等于斜边的一半) ································· 6分 22. 解:设购买一块电子白板需元,设购买一台投影机需y 元, ····· 1分 2340004344000x y x y -=⎧⎨+=⎩························ 4分 ①+②得6=48000,=8000, ····························· 5分 把=8000代入①得2×8000-3y =4000, 解得y =4000,∴⎩⎪⎨⎪⎧x =8000,y =4000 ························· 6分 答:购买一台电子白板需8000元,一台投影机需4000元. ········ 7分 23.解:不合格 ·························· 1分 连接AD 并延长, ························· 2分 ∴∠BDE =∠B +∠BAD (三角形外角定理)∠CDE =∠C +∠CAD (三角形外角定理) ············· 4分 ∴∠BDE +∠CDE =∠B +∠BAD +∠C +∠CAD ,(等式的性质)即∠BDC =∠B +∠C +∠BAC , ·················· 5分∵∠BDC=98°,∠C=38°,∠B=23°∴∠BAC=98°-38°-23°=37°·················6分所以该机器零件不合格.······················7分24.解:∵AB∥CD,∴∠AEF+∠CFE=180°,(两直线平行,同旁内角互补)········1分∵∠AEF=∠BEM=50°,(对顶角相等)···············2分∴∠CFE=130°,·························3分∵EG平分∠AEF,(已知)∴∠GEF=12∠AEF=25°(角平分线定义),··············4分∵EG⊥FG,(已知)∴∠EGF=90°,(垂直定义)····················5分∴∠GFE=90°-∠GEF=65°,(直角三角形两锐角互余)·······7分∴∠CFG=∠GFE=65°(等量代换).·················8分25.(1)略····························4分(2)连接B A1交于P,连接AP···················5分则AP=P A1····························6分△ABP的周长的最小值为AB+AP+BP= AB+P A1+BP=4+B A1=4+6=10 ··8分26.解:(1)证明:∵△ADE是等腰直角三角形,F是AE的中点.∴DF⊥AE,DF=AF=EF. ·····················1分又∵∠ABC=90°,∠DCF、∠AMF都与∠MAC互余,∴∠DCF=∠AMF. ························2分又∵∠DFC=∠AFM=90°,∴△DFC≌△AFM(ASA). ····················3分∴CF=MF. ····························4分∴∠FMC=∠FCM. ························5分(2)AD⊥MC.理由如下:如图,延长AD交MC于点G.由(1)知∠MFC=90°,FD=FE,FM=FC.∴∠FDE=∠FMC=45°,·····················6分∴DE//CM. ···························7分∴∠AGC=∠ADE=90°,·····················8分∴AG⊥MC,即AD⊥MC. ·····················9分27.证明:(1)∵△ABC、△ADC均为等边三角形,(已知)∴AB=AC,,∠B=∠BAC =∠DAC=∠ACD=60°(等边三角形的性质) ·································1分∴∠BAC-∠FAC=∠DAC-∠FAC,(等式的性质)··········2分即∠BAF=∠CAE∴△ACE≌△ABF(AAS)·····················3分(2)△AEF为等边三角形·····················4分∵△ABC≌△ABC∴AE=AF(全等三角形的对应边相等)···············5分∵△AMN为等边三角形,∴∠MAN=60°(等边三角形的性质) ·················6分∴△AEF为等边三角形(有一个角为60°的等腰三角形是等边三角形) ···7分(3)当点F为BC中点AC⊥EF···················9分。

北师大版七年级下册数学期末模拟测试卷及答案1.doc

北师大版七年级下册数学期末模拟测试卷及答案1.doc

①解=(10+0.3)(10-0.3)=19.993.01022=-玉龙中学下学期期末模拟一七年级 数学试卷一、细心填一填(每小题2分,共计下学期期末检测一 七年级数学试卷参考答案及评分标准 一、细心填一填(每题2分,共计20)1. 5x ;2a . 2.±2. 3.平行. 4.3.397×1075.836.26或22㎝7. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D )8.-209. 45 10.B6395二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)三、精心算一算(21题3分,22题5分,共计8分)21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- …3分 当x=0时,原式=2 ……5分四、认真画一画(23题4分,24题4分,共计8分)23.解:理由是: 垂线段最短 . ……2分 作图……2分24.解每作对一个给1分五、请你做裁判!(第25题小4分,第26小题6分,共计10分)25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的. ……2分根据小赵的设计可以设宽为x 米,长为(x +2)米,根据题意得2x +(x +2)=35 解得x=11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C (或∠A=∠D 、或符合即可)…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB CB ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分.30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -.(4):评分标准:每空1分,(4)小题各1分 八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.】题号 11 12 13 14 15 16 17 18 19 20 选项DCCDDABBDC321c ba 第3题第二种 第一种 第24题第三种第四种第23题M②解=[2m +(n -p )][2m -(n -p )] =()()22p n 2m -- =222p 2np n 4m -+-七年级数学参考答案 第1页(共2页)七年级数学参考答案 第2页(共2页)。

北师大版七年级数学下册期末试卷及答案

北师大版七年级数学下册期末试卷及答案

七年级数学下册期末模拟试卷一、细心填一填(每小题2分,共计20) 1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方式,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是 .4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到万元,这个数据用科学记数法可表示为 万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 . '7. 如图,已知∠BAC =∠DAE =90°,AB =AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .(8.现在规定两种新的运算“﹡”和“◎”:a ﹡b =22b a +;a ◎b =2ab ,如(2﹡3)(2◎3)= (22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t =3小时时,物体运动所经过的路程为 千米. …10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示, 则该汽车的号码是 .二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分) 11.下列图形中不是..正方体的展开图的是( )<A B C D 12. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =- 13. 下列结论中,正确..的是( ) A.若22b a ,b a ≠≠则 B.若22b a , b a >>则C.若b a ,b a 22±==则 D.若b1a 1, b a >>则14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若(【第5题3 2 1 c ;a第3题E D CBA第7t (小时)~O 30S (千米)第9题 E D》BA△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) ° ° ° ° 15. 由四舍五入得到近似数万( )A.精确到万位,有1个有效数字B. 精确到个位,有1个有效数字 】C.精确到百分位,有3个有效数字D. 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为( ) (n -1) -1 (n +1) +1 17.下列关系式中,正确..的是( ) A.()222b a b a -=- B.()()22b a b a b a -=-+C.()222b a b a +=+ D.()222b 2ab a b a +-=+18. 如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( )月至3月每月产量逐月增加,4、5两月产量逐月减小月至3月每月产量逐月增加,4、5两月产量与3月持平 月至3月每月产量逐月增加,4、5两月产量均停止生产 D. 1月至3月每月产量不变,4、5两月均停止生产)19.下列图形中,不一定...是轴对称图形的是( )A.等腰三角形B.线段C.钝角D.直角三角形 20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )C. 3 三、精心算一算(21题3分,22题5分,共计8分) 21.计算()()3426y y 2-;—22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.}四、认真画一画(23题4分,24题4分,共计8分) 23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)、理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种(至少设计四种)*五、请你做裁判(第25题小4分,第26小题4分,共计8分)25.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示. 游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗为什么"26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际 按照他的设计,鸡场的面积是多少&六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27. 下面是我县某养鸡场2001~2006年的养鸡统计图:(1)从图中你能得到什么信息.(2)各年养鸡多少万只(3)所得(2)的数据都是准确数吗 (4)这张图与条形统计图比较,有什么优点—28.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD .小明认为图中的两个三角形全等,他的思考过程是: 在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC"你认为小明的思考过程正确吗如果正确,他用的是判定三 角形全等的哪个条件如果不正确,请你增加一个条件,并 说明你的思考过程.】七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29.如图所示,要想判断AB 是否与CD说明理由.30.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式); (2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达). ,(4)运用你所得到的公式,计算下列各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+八、信息阅读题(6分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示,结合图像回答下列问题: (1)农民自带的零钱是多少(2)降价前他每千克土豆出售的价格是多少(3)降价后他按每千克元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆—)参考答案一、细心填一填(每题2分,共计20) 1. 5x ;2a . 2.±2. 3.平行.5.83或22㎝ 7. AC =AE (或BC =DE ,∠E =∠C ,∠B =∠D ) 9. 45 二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分) 三、精心算一算(21题3分,22题5分,共计8分) 21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- …3分`当x =0时,原式=2 ……5分 四、认真画一画(23题4分,24题4分,共计8分) 23.解:理由是: 垂线段最短 .作图……2分|24.解每作对一个给1分¥五、请你做裁判!(第25题小4分,第26小题6分,共计10分)25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分26.解:根据小王的设计可以设宽为x 米,长为(x +5)米, 根据题意得2x +(x +5)=35 解得x =10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的. ……2分根据小赵的设计可以设宽为x 米,长为(x +2)米, 根据题意得2x +(x +2)=35 解得x =11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分 添加的条件为:∠B =∠C (或∠A =∠D 、或符合即可)…3分 在△ABO 和△DCO 中DCO ABO CD AB DOC AOB CB ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一)七、探究拓展与应用(第29小题4分,第30小题7分,共计11分) 29. (1)∠EAB =∠C ;同位角相等,两直线平行.(2)∠BAD =∠D ;内错角相等,两直线平行(3)∠BAC +∠C =180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -.(4):评分标准:每空1分,(4)小题各1八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元; (2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2题图n m ba70°70°110°第3题图C B A 2112第六题图DCB A北师大版七年级下册数学期末模拟试卷 C一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。

4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。

5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。

6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。

7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…则n。

8、已知412+-kx x 是一个完全平方式,那么k 的值为 。

9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。

10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。

二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷-C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )876954521第1页 共4页DCBA DC B A F EDCBAEDCBA A.91B. 61 C. 51 D. 31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( )A. 1个或4个B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD , 四个结论中成立的是 ( ) A. ① ② ④ B. ① ② ③ C. ② ③ ④ D. ① ③ ④第2页 共4页乙甲BA OEDCBA三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵, 计划今后每年栽果树3000棵。

(1)试用含年数x (年)的式子 表示果树总棵数y (棵); (2)预计到第5年该地区有多少 棵果树? 21、(8分)小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB 上建一个水泵站,向两村供水,用以解决村民生活用水问题。

(1) 如果要求水泵站到甲、乙两村庄的距离相等,水泵站M 应建在河岸AB 上的何处? (2)如果要求建造水泵站使用建材最省,水泵站M 又应建在河岸AB 上的何处?22、(8分)超市举行有奖促销活动:凡一次性购物满300元者即可获得 一次摇奖机会。

摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、 40元。

一次性购物满300元者,如果不摇奖可返还现金15元。

(1)摇奖一次,获一等奖的概率是多少? (2)老李一次性购物满了300元,他是参与摇奖划算 还是领15元现金划算,请你帮他算算。

23、(8分)如图,已知△ABC 中,AB = AC,点D 、E 分别在AB 、AC 上,且BD = CE,如何说明OB=OC 呢?解:∵AB=AC ∴∠A B C =∠A C B ( ) 又∵BD = CE ( ) BC = CB ( )∴△BCD ≌△CBE ( )∴∠( ) = ∠( ) ∴OB = OC ( )。

24、.(10分)(2012·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.(1)图中有哪几对全等三角形,请写出来; (2)试判断OE 和AB 的位置关系,并给予证明.---题---------------无---------------效--------------------第3页 共4页/时25、(8分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题。

(1)玲玲到达离家最远的地方是什么时间?离家多远? (2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?26、(10分)把两个含有45°角的直角三角板如图放置,点D 在AC 上连接AE 、BD ,试判断AE 与BD 的关系,并说明理由。

第4页 共4页北师大版七年级下册数学期末模拟试卷 C19、 7.5 , 29,y x 2123+ 20、x y 300024000+=,390005==y x 时,21、如图:22、P 一等奖=161,60×161+50×81+40×41=20 20﹥15 ∴选择摇奖。

23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边。

24、图略 ,(1)农村居民纯收入不断增加,特别是进入2000年后增幅更大;(2)2005年农村人均纯收入达3865元;(3)2005年农村人均纯收入是1990年的5倍多;(供参考)25、(1)12点,30千米 (2)10:30 , 30 分钟 (3)13~15点,15千米/小时(4)10千米/小时26、延长BD 交AE 于F ,证△BCD ≌△ACE ,可得BD=AE ,BD ⊥AE .期末综合检测第一~六章 (90分钟 100分)一、选择题(每小题3分,共24分)1.如图所示,BC ∥DE ,∠1=108°,∠AED=75°,则∠A的大小是( )(A)60° (B)33° (C)30° (D)23° 2.下列运算正确的是( ) (A)3a-(2a-b)=a-b(B)(a 3b 2-2a 2b)÷ab=a 2b-2 (C)(a+2b)(a-2b)=a 2-2b 2 (D)(-12a 2b)3=-18a 6b 33.(2012·武汉中考)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( ) (A)标号小于6 (B)标号大于6 (C)标号是奇数 (D)标号是34.如图,△ABC 的高AD ,BE 相交于点O ,则∠C 与∠BOD 的关系是( )(A)相等 (B)互余 (C)互补(D)不互余、不互补也不相等5.(2012·绵阳中考)图(1)是一个长为2m ,宽为2n(m >n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )(A)2mn (B)(m+n)2(C)(m-n)2(D)m2-n26.根据生物学研究结果,青春期男女生身高增长速度呈现如图规律,由图可以判断,下列说法错误的是( )(A)男生在13岁时身高增长速度最快(B)女生在10岁以后身高增长速度放慢(C)11岁时男女生身高增长速度基本相同(D)女生身高增长的速度总比男生慢7.如图,AB∥CD,CE∥BF,A,E,F,D在一条直线上,BC与AD交于点O且OE=OF,则图中有全等三角形的对数为( )(A)2 (B)3 (C)4 (D)58.(2012·大庆中考)如图所示,将一个圆盘四等分,并把四个区域分别标上Ⅰ、Ⅱ、Ⅲ、Ⅳ,只有区域Ⅰ为感应区域,中心角为60°的扇形AOB绕点O 转动,在其半径OA上装有带指示灯的感应装置,当扇形AOB与区域Ⅰ有重叠(O点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB任意转动时,指示灯发光的概率为( )(A)16(B)14(C)512(D)712二、填空题(每小题4分,共24分)9.如图,直线a,b被直线c所截(即直线c与直线a,b都相交),且a∥b,若∠1=118°,则∠2的度数=____度.10.(2012·泰州中考)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值是____.11.(2012·厦门中考)在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片的数字恰好是奇数的概率是____.12.某市出租车价格是这样规定的:不超过2千米,付车费5元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x>2)千米,付车费y元,则所付车费y元与出租车行驶的路程x千米之间的函数关系为________________.13.(2012·嘉兴中考)在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为____.14.(2012·三明中考)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是__________________.(不再添加辅助线和字母)三、解答题(共52分)15.(10分)(2012·贵阳中考)先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=1.216.(10分)(2012·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD,点O 是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形,请写出来;(2)试判断OE和AB的位置关系,并给予证明.17.(10分)(2012·吉林中考)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是____、____(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.18.(10分)(2012·乐山中考)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1.(要求:A与A1,B与B1,C 与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.19.(12分)甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”“石头”“剪子”“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?答案解析1.【解析】选B.因为BC∥DE,所以∠EDB=∠1=108°.又因为∠EDB=∠A+∠AED,所以∠A=∠EDB-∠AED=108°-75°=33°.2.【解析】选D.A,3a-(2a-b)=a+b,故选项错误; B,(a3b2-2a2b)÷ab=a2b-2a,故选项错误;C,(a+2b)·(a-2b)=a2-4b2,故选项错误;故D正确.3.【解析】选A.A是一定发生的事件,是必然事件,故选项正确;B是不可能发生的事件,故选项错误;C是不确定事件,故选项错误;D是不确定事件,故选项错误.4.【解析】选A.因为△ABC的高为AD,BE,所以∠C+∠OAE=90°,∠OAE+∠AOE=90°,所以∠C=∠AOE ,因为∠AOE=∠BOD(对顶角相等),所以∠C=∠BOD.故选A.5.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.6.【解析】选D.由图可知男生在13岁时身高增长速度最快,故A 选项正确;女生在10岁以后身高增长速度放慢,故B 选项正确;11岁时男女生身高增长速度基本相同,故C 选项正确;女生身高增长的速度不是总比男生慢,有时快,故D 选项错误.7.【解析】选B.①因为CE ∥BF ,所以∠OEC=∠OFB ,又OE=OF ,∠COE=∠BOF ,所以△OCE ≌△OBF ,所以OC=OB ,CE=BF ;②因为AB ∥CD ,所以∠ABO=∠DCO ,∠COD=∠AOB ,因为OC=OB ,故△AOB ≌△DOC ,所以AB=CD ;③因为AB ∥CD ,CE ∥BF ,所以∠ABF=∠ECD ,又因为CE=BF ,AB=CD ,所以△CDE ≌△BAF.8.【解析】选D.如图,因为当扇形AOB 落在区域Ⅰ时,指示灯会发光; 当扇形AOB 落在区域Ⅱ的∠FOC(∠FOC=60°)内部时,指示灯会发光; 当扇形AOB 落在区域Ⅳ的∠DOE(∠DOE=60°)内部时,指示灯会发光.所以指示灯发光的概率为:609060736012++=. 9.【解析】因为a ∥b ,所以∠1=∠3=118°,因为∠3与∠2互为邻补角,所以∠2=62°.答案:6210.【解析】因为x 2+3x+2=(x-1)2+a(x-1)+b=x 2+(a-2)x+(b-a+1).所以a-2=3, b-a+1=2,所以a=5,b=6,所以a+b=5+6=11.答案:1111.【解析】因为有整数1到10的10张卡片,所以随机抽取1张卡片,共有10种等可能的结果.因为该卡片的数字恰好是奇数的有5种情况,所以该卡片的数字恰好是奇数的概率是51102=. 答案:1212.【解析】由题意得,李老师乘出租车行驶了x(x >2)千米, 故可得:y=5+(x-2)×1.6=1.6x+1.8.答案:y=1.6x+1.813.【解析】如图,过D 点作DE ⊥AB 于点E ,则DE 即为所求, 因为∠C=90°,AD 平分∠BAC 交BC 于点D ,所以CD=DE(角的平分线上的点到角的两边的距离相等),因为CD=4,所以DE=4.答案:414.【解析】答案不惟一,如AB=AC 或∠B=∠C 或∠BED=∠CFD 或∠AED=∠AFD 等;理由是:①因为AB=AC ,所以∠B=∠C ,根据ASA 证出△BED ≌△CFD ,即可得出DE=DF ;②由∠B=∠C ,∠BDE=∠CDF ,BD=DC ,根据ASA 证出△BED ≌△CFD ,即可得出DE=DF ;③由∠BED=∠CFD ,∠BDE=∠CDF ,BD=DC ,根据AAS 证出△BED ≌△CFD ,即可得出DE=DF ;④因为∠AED=∠AFD ,∠AED=∠B+∠BDE ,∠AFD=∠C+∠CDF ,又因为∠BDE=∠CDF ,所以∠B=∠C ,即由∠B=∠C ,∠BDE=∠CDF ,BD=DC ,根据ASA 证出△BED ≌△CFD ,即可得出DE=DF.答案:答案不惟一,如AB=AC 或∠B=∠C 或∠BED=∠CFD 或∠AED=∠AFD 等15.【解析】原式=2b 2+a 2-b 2-(a 2+b 2-2ab)=2b 2+a 2-b 2-a 2-b 2+2ab=2ab ,当a=-3,b=12时,原式=2×(-3)×12=-3.16.【解析】(1)△ABC ≌△BAD ,△AOE ≌△BOE ,△AOC ≌△BOD ;(2)OE ⊥AB.理由如下:因为在Rt △ABC 和Rt △BAD 中,AC BD BAC ABD AB BA =⎧⎪∠=∠⎨⎪=⎩,,, 所以△ABC ≌△BAD ,所以∠DAB=∠CBA ,所以OA=OB ,因为点E 是AB 的中点,所以OE ⊥AB.17.【解析】(1)因为情境a :小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③符合,所以只有③符合情境a ;因为情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,所以只有①符合.答案:③ ①(2)图象②是小芳离开家不久,休息了一会儿,又走回了家.18.【解析】(1)如图,△A 1B 1C 1是△ABC 关于直线l 的对称图形.(2)由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4.所以11BB C C S 四边形=12(BB 1+CC 1)×4, =12×(4+2)×4=12.19.【解析】(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31155 . (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84=.147(3)若甲先摸,则“锤子”“石头”“剪子”“布”四种卡片都有可能被摸出. 若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71=;142若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42=;147若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63=;147. 若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514故甲先摸出“锤子”获胜的可能性最大.。

相关文档
最新文档