小结_平面向量的数量积的坐标表示、摸、夹角-优质公开课-人教A版必修4精品

合集下载

人教A版《必修4》“2.4.2平面向量的数量积的坐标表示、模、夹角”导学案-精选教育文档

人教A版《必修4》“2.4.2平面向量的数量积的坐标表示、模、夹角”导学案-精选教育文档

高一数学《必修4》导学案2.4.2平面向量的数量积的坐标表示、模、夹角【课前导学】(一)复习引入:1.平面向量数量积(内积)的定义: __________a b ⋅=,其中||cos a θ叫做_________________.2.两个向量的数量积的重要性质:(1)________a b ⊥⇔;(2)__________a a a ⋅==或||;(3)cos __________θ= 3.探究:已知两个非零向量11()a x ,y =,22()b x ,y =,试用a 和b 的坐标表示a b ⋅.提示:若直角坐标系中,x 轴方向的单位向量为i ,y 轴方向上的单位向量为j ,则向量,a b 用,i j 可以表示为a = ,b = ;其中i i = ,j j = ,i j = 故:a b ⋅=(二)新课学习 (阅读课本P106~107后,完成下列内容)1、平面两向量数量积的坐标表示:若两个非零向量11()a x ,y =、22()b x ,y =,则_________a b ⋅=即,两个向量的数量积等于它们对应坐标的________________.2. 平面内两点间的距离公式:(1)设()a x,y =,则2_____________||_________a a ===,故.(2)如果11()A x ,y 、22()B x ,y ,那么_____________,AB = A 、B 间的距离||___________________AB = (平面内两点间的距离公式)3、 向量垂直的判定:设11()a x ,y =、22()b x ,y =,则a ⊥b ⇔_________________a b ⋅=⇔.4、两向量夹角的余弦:已知两个非零向量11()a x ,y =,22()b x ,y =,a 与b 之间的夹角为θ,则cos θ=_____________________.【预习自测】1、已知(34)a ,=-,(5,2)b =,则_________a b ⋅=,||_______a =,||_______b =.2、已知(32)a ,=,(2,3)b =,a 与b 之间的夹角为θ,则cos θ=______.3、若(22)BA ,=-,C (11)B ,=,则ABC ∠=_________.【典例分析】 例1、(3,4),(6,8),a b =-=-已知求 ()()a b a b +⋅-及a b -||的值. 例2、已知(1,4),(5,2),(3,4)A B C --,先作图观察△ABC 的形状,然后给出证明.变式:若(34),12)_______.a ,b a b x,3x b =⊥=,且的起点坐标为(,,终点坐标为(),则 例3、(1)(13)(223)a ,b ,a b ==-已知,,求与的夹角.(2)(12)(23)2a ,b ,c a b ==--=+设,,又,d a mb =+,且45c d ︒与的夹角为,求实数m 的值. 【总结提升】1、掌握平面向量数量积的坐标表示,即两个向量的数量积等于它们对应坐标的乘积之和;2、要学会运用平面向量数量积的坐标表示解决有关长度、角度及垂直问题.【课后作业】1、(2,3),(2,4),(1,2)a b c ==-=--已知,则 (1)______,______b a b =⋅=;(2)求()()()a b a b a b c +⋅-⋅+,. 2、求证:(1,0),(5,2),(8,4),(4,6).A B C D -为顶点的四边形是一个矩形3、(1)3,//.a b a b a =已知||=(1,2),且,求的坐标.(提示:设a x,y 的坐标为())(2)(4,2),.a a e =已知求与垂直的单位向量的坐标4、(选做)课本P108 B 组 第2题。

人教A版高中数学必修四平面向量数量积的坐标表示、模、夹角导学案

人教A版高中数学必修四平面向量数量积的坐标表示、模、夹角导学案

§2.4.2平面向量数量积的坐标表示、模、夹角1. 在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);2. 理解模长公式与解析几何中两点之间距离公式的一致性.一、课前准备(预习教材P106—P107)复习:1.向量a 与b 的数量积a b ⋅= .2.设a 、b 是非零向量,e 是与b 方向相同的单位向量,θ是a 与b 的夹角,则①a b a b ⊥⇔⋅= ;②a = ;③cos θ= .二、新课导学※ 探索新知探究:平面向量数量积的坐标表示问题1:已知两个非零向量()()1122,,,a x y b x y ==,怎样用a 与b 的坐标表示a b ⋅呢?1. 平面向量数量积的坐标表示已知两个非零向量()()1122a=x ,y ,b=x ,y ,a b=⋅(坐标形式)。

这就是说:(文字语言)两个向量的数量积等于 。

问题2:如何求向量(),a x y =()11,A x y ,()22,B x y 间的距离?2.平面内两点间的距离公式(1)设a=(x,y),则2a =________________或a ________________。

(2)若()11,A x y ,()22,B x y (平面内两点间的距离公式)。

问题3:如何求()()1122,,,a x y b x y ==的夹角θ和判断两个向量垂直?3.两向量夹角的余弦:设θ是a 与b 的夹角,则cos θ=_________=_______________ 向量垂直的判定:设()()1122a=x ,y ,b=x ,y ,则⇔⊥b a _________________※典型例题例1、已知()()(),4,1,2,3,1,2-C B A(1)试判断ABC ∆的形状,并给出证明.(2)若ABDC 是矩形,求D 点的坐标。

例2、已知()()1,3,3,1==b a ,求a 与b 的夹角θ.变式:已知a=(3,0),b=(k,5)a b 且与的夹角为3,k=4π则______________.三、小结反思1、平面向量数量积的坐标表示.2、向量数量积的坐标表示的应用.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1、若()4,3a =-,()5,6b =,则234a a b -⋅=2、已知()3,2a=--,()4,b k =-,若()()5355a b b a -⋅-=-,试求k 的值.3、已知,(1,2),(3,2)a b ==-,当k 为何值时, (1)3ka b a b +-与垂直?(2)3ka b a b +-与平行吗?它们是同向还是反向?4、 已知()3,4a =-,()2,b x =,()2,c y =,且//a b ,a c ⊥,求:(1)b c ⋅; (2)b 、c 的夹角.1. 已知点()1,2A 和()4,1B -,问能否在y 轴上找到一点C ,使90ACB ∠=,若不能,说明理由;若能,求C 点坐标.2. 已知a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32.(1)求证:a⊥b;(2)若存在不同时为0的实数k和t,使x=a+(t-3) b,y=-k a+t b,且x⊥y,试求函数关系式k=f(t);(3)求函数k=f(t)的最小值.。

人教A版高中数学必修四教案平面向量数量积的坐标表示、模、夹角

人教A版高中数学必修四教案平面向量数量积的坐标表示、模、夹角

2.4.2平面向量数量积的坐标表示、模、夹角 教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.教学重点:平面向量数量积及运算规律. 教学难点:平面向量数量积的应用 教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质: 设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a|cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a||b|;当a 与b 反向时,a ⋅b = -|a||b|. 特别的a ⋅a = |a|2或a a a ⋅=||4︒cos θ =||||b a ba ⋅ ; 5︒|a ⋅b| ≤ |a||b|3.练习:(1)已知|a|=1,|b|=2,且(a-b)与a 垂直,则a 与b 的夹角是( ) A.60° B.30° C.135° D.45°(2)已知|a|=2,|b|=1,a 与b 之间的夹角为3π,那么向量m=a-4b 的模为( ) A.2 B.23 C.6 D.12 二、讲解新课:探究:已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 和b 的坐标表示b a ⋅?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x += 2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x 两向量夹角的余弦(πθ≤≤0)cos θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=二、讲解范例:例1 已知A(1, 2),B(2, 3),C(-2, 5),试判断△ABC 的形状,并给出证明. 例2 设a = (5, -7),b = (-6, -4),求a·b 及a 、b 间的夹角θ(精确到1o) 分析:为求a 与b 夹角,需先求a·b 及|a |·|b |,再结合夹角θ的范围确定其值. 例3 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22=⋅⋅b a b a 又∵0≤θ≤π,∴θ=4π评述:已知三角形函数值求角时,应注重角的范围的确定. 三、课堂练习:1、P107面1、2、3题2、已知A(3,2),B(-1,-1),若点P(x ,-21)在线段AB 的中垂线上,则x= .四、小结: 1、b a ⋅2121y y x x +=2、平面内两点间的距离公式 221221)()(||y y x x a -+-=3、向量垂直的判定:设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x五、课后作业:《习案》作业二十四。

高中人教A版数学必修4:第25课时 平面向量的数量积的坐标表示、模、夹角 Word版含解析

高中人教A版数学必修4:第25课时 平面向量的数量积的坐标表示、模、夹角 Word版含解析

第25课时 平面向量的数量积的坐标表示、模、夹角1.掌握向量数量积的坐标表示,会进行向量数量积的坐标运算.2.会用坐标运算求向量的模,并会用坐标运算判断两个向量是否垂直.3.能运用数量积的坐标求出两个向量夹角的余弦值.1.若a =(x 1,y 12212122.若有向线段AB →,A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2;若AB →=(x ,y ),则|AB →|=x 2+y 2.3.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4.两向量a =(x 1,y 1),b =(x 2,y 2),则求两向量的夹角θ的公式为 cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.一、选择题1.设向量a =(x,1),b =(4,x ),且a ⊥b ,则x 的值是( )A .±2B .0C .-2D .2答案:B解析:由a ⊥b ,得a ·b =0,即4x +x =0,解得x =0,故选B.2.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( )A. 3 B .3C .- 3D .-3答案:D 解析:向量a 在b 方向上的投影为a ·b |b |=-62=-3.选D. 3.已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 的值为( )A .-92B .0C .3 D.152答案:C解析:∵2a -3b =(2k -3,-6).又(2a -3b )⊥c ,∴(2a -3b )·c =0,即(2k -3)×2+(-6)=0,解得k =3.4.若A (1,2),B (2,3),C (-3,5),则△ABC 为( )A .直角三角形B .锐角三角形C .钝角三角形D .不等边三角形答案:C解析:∵A (1,2),B (2,3),C (-3,5),∴AB →=(1,1),AC →=(-4,3),cos A =AB →·AC →|AB →||AC →|=1×(-4)+1×32×25=-15 2<0,∴∠A 为钝角,△ABC 为钝角三角形. 5.若向量a =(x +1,2) 和向量b =(1,-1)平行,则|a +b |=( )A.10B.102C. 2D.22答案:C 解析:由题意得,-(x +1)-2×1=0得x =-3.故a +b =(-1,1).∴|a +b |=(-1)2+(-1)2= 26.如图,在等腰直角三角形AOB 中,设OA →=a ,OB →=b ,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,设P 为垂线上任意一点,OP →=p ,则p ·(b -a )=( )A .-12 B.12C .-32 D.32答案:A 解析:因为在等腰直角三角形AOB 中,OA →=a ,OB →=b ,OA =OB =1,所以|a |=|b |=1,a ·b =0.由题意,可设OP →=-14(b -a )+λ·12(b +a ),λ∈R , 所以p ·(b -a )=-14(b -a )·(b -a )+λ2(b +a )·(b -a ) =-14(b -a )2+λ2(|b |2-|a |2) =-14(|a |2+|b |2-2a ·b ) =-14(1+1-0) =-12. 二、填空题7.已知a =(1,2),b =(x,4),且a ·b =10,则|a -b |=________.答案: 5解析:由题意,得a ·b =x +8=10,∴x =2,∴a -b =(-1,-2),∴|a -b |= 5.8.已知点A (4,0),B (0,3),OC ⊥AB 于点C ,O 为坐标原点,则OA →·OC →=________.答案:14425解析:设点C 的坐标为(x ,y ),因为OC ⊥AB 于点C ,∴⎩⎪⎨⎪⎧OC →·AB →=0AC →∥AB →, 即⎩⎪⎨⎪⎧(x ,y )·(-4,3)=-4x +3y =03x +4y -12=0, 解得⎩⎨⎧ x =3625y =4825,∴OA →·OC →=4x =14425. 9.若平面向量a =(log 2x ,-1),b =(log 2x,2+log 2x ),则满足a ·b <0的实数x 的取值集合为________.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <4 解析:由题意可得(log 2x )2-log 2x -2<0⇒(log 2x +1)(log 2x -2)<0,所以-1<log 2x <2,所以12<x <4. 三、解答题10.已知O 为坐标原点,OA →=(2,5),OB →=(3,1),OC →=(6,3),则在线段OC 上是否存在点M ,使得MA →⊥MB →?若存在,求出点M 的坐标;若不存在,请说明理由.解:假设存在点M ,且OM →=λOC →=(6λ,3λ)(0≤λ≤1),∴MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,即45λ2-48λ+11=0,解得λ=13或λ=1115. ∴OM →=(2,1)或OM →=⎝⎛⎭⎫225,115.∴存在M (2,1)或M ⎝⎛⎭⎫225,115满足题意.11.已知平面向量a =(sin α,1),b =(1,cos α),-π2<α<π2. (1)若a ⊥b ,求α;(2)求|a +b |的最大值.解:(1)由已知,得a ·b =0,即sin α+cos α=0,∴tan α=-1.∵-π2<α<π2,∴α=-π4. (2)由已知得|a +b |2=a 2+b 2+2a ·b =sin 2α+1+cos 2α+1+2(sin α+cos α)=3+22sin ⎝⎛⎭⎫α+π4. ∵-π2<α<π2, ∴-π4<α+π4<3π4,∴-22<sin ⎝⎛⎭⎫α+π4≤1,即1<|a +b |2≤3+22,∴1<|a +b |≤1+2,即|a +b |的最大值为1+ 2.12.若a =(1,0),b =(cos θ,sin θ),θ∈⎣⎡⎦⎤-π2,π2,则|a +b |的取值范围是( ) A .[0,2] B .[0,2)C .[1,2]D .[2,2]答案:D解析:|a +b |2=(a +b )2=a 2+2a ·b +b 2=2+2cos θ=2(1+cos θ)∵θ∈⎣⎡⎦⎤-π2,π2,∴cos θ∈[0,1]. ∴2≤2(1+cos θ)≤4.∴2≤|a +b |≤2. 13.已知a =(3,-1),b =(12,32),且存在实数k 和t ,使得x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ,试求k +t 2t 的最小值. 解:由题知,|a |=2,|b |=1,a ·b =3×12-1×32=0,∴a ⊥b . 由x ⊥y 得,[a +(t 2-3)b ]·(-k a +t b )=0,即-k a 2+(t 3-3t )b 2+(t -t 2k +3k )a ·b =0,∴-k |a |2+(t 3-3t )b 2=0.∵|a |=2,|b |=1,∴k =t 3-3t 4. ∴k +t 2t =14(t 2+4t -3)=14(t +2)2-74. 即当t =-2时,k +t 2t 有最小值-74.。

高中数学_平面向量的数量积教学设计学情分析教材分析课后反思

高中数学_平面向量的数量积教学设计学情分析教材分析课后反思

平面向量的数量积教学设计一、教学目标:知识与技能:了解平面向量数量积的物理背景,理解数量积的含义及其物理意义.过程与方法:体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算.情感、态度与价值观通过学习体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力.进行辩证唯物主义思想教育、数学审美教育,提高学生学习数学的积极性.二.重点难点重点:平面向量数量积的概念、用平面向量数量积表示向量的模及夹角;难点:平面向量数量积的定义及运算律的理解,平面向量数量积的应用.三、教材与学情分析本课内容选自普通高中课程标准实验教科书数学必修4(人教A版)§2.4平面向量的数量积的第一课时,本课主要内容是向量的数量积的定义及运算律,本节课让学生了解从特殊到一般再由一般到特殊的这种认识规律和体会概念法则的学习过程.学生学习情况分析:学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法.在功的计算公式和研究向量运算的一般方法的基础上,学生基本上能类比得到数量积的含义和运算律,对于运算律不一定给全或给对,对运算律的证明可能会存在一定的困难,教学中教师要注意引导学生分析判断.四、教学方法问题引导,主动探究,启发式教学.五、课堂结构设计本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

六、教学过程(一)创设问题情境,引出新课1.提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?答:向量的加法、减法及数乘运算.这些运算的结果是向量.2.提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?答:物理模型→概念→性质→运算律→应用.3.新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算.导入课题:平面向量数量积的物理背景及其含义.设计意图:1.明白新旧知识的联系性.2.明确研究向量的数量积这种运算的途径.(二)探究新知活动1:探究数量积的概念1.给出有关材料并提出问题3:(1)如图1所示,一物体在力F的作用下产生位移s,那么力F所做的功:W=|F||s|cosθ.图12)这个公式有什么特点?请完成下列填空:①W(功)是________量,②F(力)是________量,③s(位移)是________量,④θ是________.(3)你能用文字语言表述“功的计算公式”吗?答:功是力与位移的大小及其夹角余弦的乘积.(4)如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?答:两个向量的大小及其夹角余弦的乘积.2.明晰数量积的定义(1)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,我们把数量︱a︱︱b︱cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=︱a︱︱b︱cosθ.(2)定义说明①记法“a·b”中间的“·”不可以省略,也不可以用“×”代替.②“规定”:零向量与任何向量的数量积为零.设计意图:1.认识向量的数量积的实际背景.2.使学生在形式上认识数量积的定义.3.从数学和物理两个角度创设问题情境,使学生明白为什么研究这种运算,从而产生强烈的求知欲望.提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?答:线性运算的结果是向量,而数量积的结果则是数量,这个数量的大小不仅和向量a 与b的模有关,还和它们的夹角有关.4.学生讨论,并完成下表:进一步从细节上理解向量数量积的定义.5.研究数量积的几何意义(1)给出向量投影的概念:如图2,我们把|b|cosθ(|a|cosθ)叫做向量b在a方向上(a在b方向上)的投影,记作:OB1=|b|cosθ.图2(2)提出问题5:数量积的几何意义是什么?答:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.设计意图:这里将数量积的几何意义提前,使学生从代数和几何两个方面对数量积的特征有了更加充分的认识.6.研究数量积的物理意义(1)请同学们用一句话来概括功的数学本质:功是力与位移的数量积.(2)尝试练习:一物体质量是10千克,分别做以下运动:①竖直下降10米;②竖直向上提升10米;③在水平面上的位移为10米;④沿倾角为30度的斜面向上运动10米.分别求重力做功的大小.设计意图:通过尝试练习,一方面使学生尝试计算数量积,巩固对定义的理解;另一方面使学生理解数量积的物理意义,明白学科间的联系,同时也为数量积的性质埋下伏笔.活动2:探究数量积的运算性质1.提出问题6:(1)将尝试练习中的①②③的结论推广到一般向量,你能得到哪些结论?(2)比较︱a·b︱与︱a||b︱的大小,你有什么结论?2.请证明上述结论.3.明晰数量积的性质:设a和b都是非零向量,则:(1)a⊥b⇔a·b=0;(2)当a与b同向时,|a·b|=|a||b|;当a与b反向时,|a·b|=-|a||b|,特别地a·a=|a|2或|a|=a·a;(3)|a·b|≤|a||b|.设计意图:将尝试练习的结论推广得到数量积的运算性质,使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识.活动3:探究数量积的运算律1.提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?答:(1)交换律:ab=ba;(2)结合律:(ab)c=a(bc);(3)分配律:(a+b)c=ac+bc.猜想:①a·b=b·a;②(a·b)c=a(b·c);③(a+b)·c=a·c+b·c.2.分析猜想:猜想①的正确性是显而易见的.关于猜想②的正确性,请同学们先讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?答:左边是与向量c共线的向量,而右边则是与向量a共线的向量,显然在向量c与向量a不共线的情况下猜测②是不正确的.设计意图:要求学生通过对过去所学过的运算律的回顾类比得出数量积的运算律,通过讨论纠错来理解不同运算的运算律不尽相同,看到数学的法则与法则间的相互联系与区别,体会法则,学习研究的重要性.3.明晰:数量积的运算律:已知向量a、b、c和实数λ,则:(1)a·b=b·a;(2)(λa)·b=λ(a·b)=a·(λb);(3)(a+b)·c=a·c+b·c.4.学生活动:证明运算律(2)在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:当λ<0时,向量a与λa,b与λb的方向的关系如何?此时,向量λa与b及a与λb的夹角与向量a与b的夹角相等吗?5.师生活动:证明运算律(3)设计意图:学会利用定义证明运算律(1)(2),运算律(3)的图形构造有些困难,先让学生讨论,后根据学生的情况加以指导或共同完成.(三):应用与提高1.学生独立完成:已知|a|=5,|b|=4,a 与b 的夹角θ=120°,求a·b .设计意图:通过计算巩固对定义的理解.2.师生共同完成:已知|a|=6,|b|=4,a 与b 的夹角为60°,求(a +2b )·(a -3b ),并思考此运算过程类似于哪种实数运算?3.学生独立完成:对任意向量a ,b 是否有以下结论:(1)(a +b )2=a 2+2a·b +b 2,(2)(a +b )·(a -b )=a 2-b 2.设计意图:让学生体会解题中运算律的作用,比较向量运算与实数运算的异同.4.师生共同完成:已知|a|=3,|b|=4,且a 与b 不共线,k 为何值时,向量a +k b 与a-k b 互相垂直?并讨论:通过本题,你有什么体会?设计意图:学会利用数量积来解决垂直问题,体会用数量积将几何问题转化为方程来求解,体现向量的工具性.5.反馈练习(1)判断下列各题正确与否:①若a≠0,则对任一非零向量b ,有a·b≠0.②若a≠0,a·b =a·c ,则b =c.(2)已知△ABC 中,AB →=a ,AC →=b ,当a·b<0或a·b =0时,试判断△ABC 的形状.设计意图:1.加强学生的练习.2.通过观察、问答等方式对学生的掌握情况有了进一步的了解和把握.七、课堂小结1.本节课我们学习的主要内容是什么?2.平面向量的数量积有哪些应用?3.我们是按照怎样的思维模式进行概念的归纳和性质的探究的?在运算律的探究过程中,渗透了哪些数学思想?4.类比向量的线性运算,我们还应该怎样研究数量积?八、课后作业1.课时练与测九、教学反思本节课从总体上说是一节概念教学,从数学和物理两个角度创设问题情景来引入数量积概念能激发学生的学习兴趣,课堂上师生主要解决重点、难点、疑点、考点、以及学生学习过程中易忘点等,最后进行当堂检测,以达到提高课堂效率的目的。

高二数学平面向量数量积的坐标表示、模、夹角

高二数学平面向量数量积的坐标表示、模、夹角
设两个非零向量
a
=(x1,y1), b=(x2,y2),则
a x1 i y1 j
2
b x2 i y2 j ,
2
a b ( x1 i y1 j ) ( x2 i y2 j ) x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
2 2 2 2
a b 13 20 7
练习:课本P1191、2、3.
例2 已知A(1,2),B(2,3),C(-2,5),
试判断ABC的形状,并给出证明.
y
C(-2,5) 证明 :AB (2 1,3 2) (1,1)
AC (2 1,5 2) (3,3)
三、基本技能的形成与巩固
例1 (1)已知a (1,2 3 ), b (1,1), 求a b, a b, a与b的夹角 .
a b 1 3, a b
a b 2 4 2 3 2(1 3),
1 cos , 0 180 , 60 . ab 2
(2)已知a (2,3), b (2,4), 则(a b) ( a b) .
法一: a b (0,7), a b (4,1) (a b) ( a b) 0 4 7 (1) 7. 法二:(a b) ( a b) a b
一、复习引入
(1) a b a b cos ( 2) a a a 或 a
2
a a; a b a b .
a b a b 0; cos
我们学过两向量的和与差可以转 化为它们相应的坐标来运算,那么怎 样用 a和b的坐标表示 a b呢?

高一数学必修4课件:2-4-2平面向量数量积的坐标表示、模、夹角

高一数学必修4课件:2-4-2平面向量数量积的坐标表示、模、夹角

第二章 平面向量
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习 随堂应用练习 思路方法技巧 课后强化作业 名师辨误做答
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
温故知新 1.若m,n满足:|m|=4,|n|=6,m与n的夹角为135° , 则m· n=________.
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
思路方法技巧
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
命题方向
数量积的坐标运算
平面向量数量积的坐标表示主要解决的问题. 向量的坐标表示和向量的坐标运算实现了向量运算的完 全代数化,并将数与形紧密结合起来. 主要解决以下三方面的问题: (1)求两点间的距离(求向量的模). (2)求两向量的夹角. (3)证明两向量垂直.
π 25,5,5 2, . 4
[答案]
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
新课引入
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
向量的数量积的几何运算为我们展示了一幅美丽的画 卷,它解决了几何中与度量相关的角度,长度(距离)等问 题.通过前面的学习,我们知道向量可以用坐标表示,向量 的加法,减法,数乘运算也可以用坐标表示,那么任意两个 向量a=(x1,y1),b=(x2,y2),其数量积a· b又如何表示呢?你 能给出其推导过程吗?要解决好这几个问题,就让我们一起 进入平面向量数量积的坐标表示、模、夹角的学习吧!

2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)

2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)
2016/10/11
故两个向量的数量积等于它们对应 坐标的乘积的和。即 y A(x ,y )
1 1
a b x1 x2 y1 y2 .
B(x2,y2)
b
j
a
i
o
x
根据平面向量数量积的坐标表示,向 量的数量积的运算可转化为向量的坐标运 算。
2016/10/11
2、向量的模和两点间的距离公式ຫໍສະໝຸດ y A(x ,y ) 1 1
j
B(x2,y2)
b
a
o i
x
设两个非零向量 a =(x1,y1), b =(x2,y2),则
a x1 i y1 j b x2 i y2 j , a b ( x1 i y1 j ) ( x2 i y2 j ) 2 2 x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
29 C ( 3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、D(5,8), 则四边形ABCD的形状是 矩形 .
3、已知 a = (1,2), b = (-3,2),
若k a +2 b 与 2 a - 4
2016/10/11
b 平行,则k = - 1 .
小结
1、理解各公式的正向及逆向运用; 2、数量积的运算转化为向量的坐标运算;
x( x 5) y( y 2) 0 得 2 2 2 2 x y ( x 5 ) ( y 2 )
O
B
X
例5 在△ABC中,AB =(2, 3),AC =(1, k),
且△ABC的一个内角为直角,求k值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档