浙江专升本高等数学真题试卷及答案解析

合集下载

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

2022-2023学年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)

2022-2023学年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)

2022-2023学年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.下列广义积分收敛的是A.A.B.C.D.2.3.()。

A.B.C. D.4.5.6.7.()。

A. B. C.D.8.A.A.B.C.D.9.10.若事件A发生必然导致事件B发生,则事件A和B的关系一定是( )。

A.B.C.对立事件D.互不相容事件11.()。

A.3B.2C.1D.2/312.13.14. A.2h B.α·2α-1 C.2 αln 2D.015.16.17.18.19.20.A.A.-1B.-2C.1D.221.22.23.24.25.()。

A.B.C.D.26.27.A.A.B.C.D.28.29.A.A.arcsinx+CB.-arcsinx+CC.tanx+CD.arctanx+C30.A.A.在(-∞,-1)内,f(x)是单调增加的B.在(-∞,0)内,f(x)是单调增加的C.f(-1)为极大值D.f(-1)为极小值二、填空题(30题)31. 设函数f(x)=e x+lnx,则f'(3)=_________。

32.33.34.35.36.37.38.39.40.41.若tanx是f(x)的一个原函数,则________.42.43.44.45.46.47.48. 设函数y=1+2x,则y'(1)=_______。

49.50.51.52.53. 曲线y=2x2+3x-26上点M处的切线斜率是15,则点M的坐标是_________。

54.55.56.57.58.59.60.三、计算题(30题)61.62.63.64.65.求函数f(x)=x3-3x+1的单调区间和极值.66.67.68.69.70.求函数f(x,y)=4(x-y)-x2-y2的极值.71.72.73.74.75.76.77.78.79.80.81.82.83.求函数f(x,y)=x2+y2在条件2x+3y=1下的极值.84.85.86.87.88.89.设函数y=x4sinx,求dy.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题) 101.计算102.103.104.105.106.107.108.109.110.已知函数y=f(x)满足方程e xy+sin(x2y)=y,求y=f(x)在点(0,1)处的切线方程.六、单选题(0题)111.A.0.4B.0.3C.0.2D.0.1参考答案1.D2.D3.B4.B5.A6.B7.A8.A9.D10.A本题考查的知识点是事件关系的概念.根据两个事件相互包含的定义,可知选项A正确。

2019年浙江省专升本高等数学真题参考答案

2019年浙江省专升本高等数学真题参考答案

2019年专升本<<高等数学>>真题答案解析一、选择题:本题共有5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的.1.D【解析】极限精确定义,若存在a x n n =∞→lim ,则对于ε<->∃>∀a x N n a n ,,0.2.A【解析】B 应改为0→h ,C 是可导的必要条件,D 改为∞→h .3.B【解析】原式=⎰∑+=⋅+=∞→101sin 11sin1limdx x n n i ni n ππ4.B【解析】A.条件收敛B.0cos lim 2≠∞→n n 发散C.2=x 为瑕点,D.令t x tan =,则()20323arctan 442sin 2(22cos 1sec 11123arctan 23arctan 23arctan 2322+-=-=+==+⎰⎰⎰∞+ππππt t dt t dt tdx x 5.C 【解析】由044=+'-''y y y ,特征方程0442=+-r r ,即()022=-r ,所以()xe x c c y 221+=二、填空题:本大题共10小题,每小题4分,共40分.6.解:ee e e nn nnn nn n n n n n n n ====+=+∞→∞→⋅⋅⋅∞→∞→111sin lim1sin lim 1sin 1sin 1)1sin 1(lim 1sin 1(lim 7.解:10)5(,2)(-='-='h t t h 8.解:x e a e a x xe a x x x x x x x x 2lim )(21lim )()1ln(cos 1lim 032030-=-=-+-→→→极限存在且不等于0,且02lim 0=→x x ,1,01)(lim 0=∴=-=-∴→a a e a xx ,且212lim 0-=-→x e a x x .362122arcsin41212πππ=-==-⎰x dx x9.t t t t t t dtdx dt dx dy d dx y d ttt dx dy t dt dx t dt dy 33222cos 1sec cos sec cos )tan ((tan cos sin ,cos ,sin -=-=-='-==-=-==-=解:10.解:222011000sin ()sin lim lim lim lim (0,)xn n n n x x x x t dt g x x x C x xnx nx --→→→→====≠≠∞⎰所以12,3n n -==即.11.解:由定积分的几何意义可得,定积分为41圆的面积,211144ππ=⋅⋅=⎰.12.解:方程两边分别对x 求导得,(1)()0x yey y xy +''+-+=所以x yx y y e y e x ++-'=-,所以dy dx ++--==--x y x y y e y xy e x xy x.13.解:(),x ∈-∞+∞236,66,y x x y x '''=+=+令0,1y x ''==-解得当1,0x y ''<-<时;1,0x y ''>->时所以,拐点为(1,2)-.14.解:222221111322x V dx xdx x ππππ====⎰⎰.15.解:2()39,9(ln 9)9(2ln 3)====x x n x n x ny y 三、计算题:本大题共8小题,其中16—19小题每小题7分,20—23小题每小题8分,共60分.16.解:原式00011(1)11111lim lim lim 222(1)2x x x x x x x x x →→→-+--++====-+.17.解:()ln(2cos )x y x x x π=++=ln ln(2cos )xx x e π++ln ln(2cos )x xx e π=++ln sin (ln 1)2cos x x x y e x x πππ-'=+++sin (ln 1)2cos x xx x xπππ-=+++(1)1y '=1(1)x dyy dx dx ='==.18.解:2,,2t x t dx tdt===则sin 22(cos )2(cos cos )2(cos sin )+Ct tdt td t t t tdt t t t =⋅=-=--=--⎰⎰⎰原式sin C =-+.19.解:当02x π≤<时,000()()cos sin sin x x xp x f t dt tdt tx ====⎰⎰;当2x ππ≤<时,222000221()()cos sin 2x x p x f t dt tdt tdt tt πππππ==+=+⎰⎰⎰221128x π=+-;22sin ,[0,)2()()11,[,]282ππππ⎧∈⎪⎪∴==⎨⎪+-⎪⎩⎰xx x p x f t dt x 20.解:距离为8s =⎰2,1,2u t u dt udu ==-=则,当0,1;8,3t u t u ====时当时283320113313=26(1)16()403s udu u duu u u =⋅=-=-=⎰⎰⎰(u -1)物体运动到8秒时离开出发点的距离为40米.21.解:2lim ()lim ()x x f x x a a --→→=+=0lim ()lim (1)0ax x x f x e ++→→=-=若2,0()1,0axx a x f x e x ⎧+≤=⎨->⎩在0x =处可导,则它在0x =处一定连续,所以0lim ()x f x -→=0lim ()(0)x f x f +→=,所以(0)0f a ==200()(0)(0)lim lim 0x x f x f x f x x ---→→-'===00()(0)0(0)lim lim 0x x f x f f xx +++→→-'===所以当0a =时,(0)0f '=,也就是函数2,0()1,0axx a x f x e x ⎧+≤=⎨->⎩在0x =处可导.22.解:平面1π的法向量为(1,1,1)=-1n ,平面2π的法向量为2(1,0,1)=-n ,所求直线的方向向量为111211⨯=-=++-12i j ks =n n i j k 又已知所求直线过点(1,0,2)A ,所以,所求直线方程为12121x y z --==.22.解:11lim lim 11n n n n n nu x nx u n x +-→∞→∞=⋅=<+收敛区间为(-1,1)当1=x 时,级数11n n ∞=∑发散;当1-=x 时,级数11(1)n n n -∞=-∑收敛;所以,收敛域为)1,1[-令111()n n S x x n ∞-==∑,则11()nn x S x xn∞=⋅=∑111(())1n n x S x x x∞-='⋅==-∑0001()ln(1)1ln(1)0()0ln(1)(0)lim ()lim1ln(1),[1,0)(0,1)()1,0xx x x S x dt x tx x S x xx x S S x xx x S x xx →→∴⋅==-----∴≠==--===--⎧∈-⋃⎪=⎨⎪=⎩⎰当时,当时,由和函数在收敛域内连续可导得,综上,11111()2ln 222-∞=⎛⎫∴== ⎪⎝⎭∑n n S n 四、综合题:本大题共3小题,每小题10分,共30分.24.解:32(4)1,(),()263OBPMBPN xy x S x S f t dt y x +'=⋅==+⎰322()41()263()4()()22214()()x f x x x f t dt f x x x f x f x f x f x x x x+⋅+=++'+-='-=-⎰由题意,化简,即,1124()(())4((1))dxdx xxf x ex e dx c xx dx c x ---⎰⎰=-+=-+⎰⎰224()4(2)0,4()44=++=++=∴=-∴=-+ 又x x c xx cx f c f x x x 25.解:成本为32()2123021c x x x x =-++323222()60()()()60(2123021)2123021,(0)()624306(45)()0,51r x x y x r x c x x x x x x x x x y x x x x x x y x x x ==-=--++=-++-≥'=-++=---'===-收入为利润为令得:或(舍)x (0,5)5(5,+∞)()y x '+0-()y x 179所以,5x =是利润()y x 的极大值点,又因为5x =是()y x 的唯一驻点,所以5x =是利润()y x 的最大值点.(5)179=y .因此公司应生产5千件产品时,公司取得最大利润,并且最大利润为179万元.26.解:(1)2()()(0)(0),02f f x f f x x x ξξ'''=++<<(2)证明:()[1,1]f x M m ''- 在上有最大值和最小值,[][]2111211111()()1()(0)21,1()()()()(0)0233(),1,1()333()33m f x Mf f x f x x f f f f x dx f xdx x dx m f x M x m f M m Mf x dx ξξξξξ----''∴≤≤'''=+-'''''''=+=+=''≤≤∈-''∴≤≤∴≤≤⎰⎰⎰⎰而由()知对上式进行积分即而(3)证明:由(2)可知11()33m Mf x dx -≤≤⎰,所以113()m f x dx M-≤≤⎰[][]11()1,1()3(),1,1f x f f x dx ηη--''∴=∈-⎰ 在上只有二阶连续导数,由介值定理知,。

2019年浙江专升本高等数学真题与答案解析(详细)

2019年浙江专升本高等数学真题与答案解析(详细)

浙江省2019年高职高专毕业生进入本科学习统一考试高等数学一、选择题(本大题共5小题,每小题4分,共20分) 1、设lim x→0x n =a 则说法不正确的是( )A 、对于正数2,一定存在正整数N ,使得当n >N 时,都有|x n −a |<2.B 、对于任意给定的无论多么小的正数ε,总存在整数N ,使得当n >N 时,不等于|x n −a |<ε成立.C 、对于任意给定的a 的邻域(a −ε,a +ε), 总存在整数N ,使得当n >N 时,所有的x n 都落在(a −ε,a +ε)内,而只有有限个(至多只有N 个)在这个区间外.D 、可以存在某个小的正数ε0,使得有无穷多个点ε0落在区间(a −ε0,a +ε0)外. 2、设在点x 0的某邻域内有定义,则在点x 0处可导的一个充分条件是( ) A 、lim ℎ→0f (x 0+2ℎ)−f(x 0)ℎ存在 B 、lim ℎ→0−f (x 0)−f(x 0−ℎ)ℎ存在C 、limℎ→0f (x 0+ℎ)−f(x 0−ℎ)ℎ存在 D 、lim ℎ→+∞ℎ[f (x 0+1ℎ)−f (x 0)]存在3、limx→+∞1n[√1+sin πn +√1+sin 2πn +⋯+√1+sinnπn]等于( )A 、∫√sin πx dx 10B 、∫√1+sin πx dx 10 C 、∫√1+sin x dx 10 D 、π∫√1+sin x dx 10 4、下列级数或广义积分发散的是( ) A 、∑(−1)n−1n+100∞n=1 B 、∑cos 2n ∞n=1 C 、∫√21D 、∫1(1+x 2)2dx +∞15、微分方程y ′′−4y ′+4y =0的通解为( ) A 、y =c 1x +c 2e −2x B 、y =(c 1+c 2x)e −2x C 、y =(c 1+c 2x)e 2x D 、y =(c 1+c 2x)xe −2x二、填空题(只要在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)6、极限lim x→∞(1+sin 1n )n =7、设一雪堆的高度ℎ与时间t 的关系为ℎ(t )=100−t 2,则雪堆的高度在时刻t =5时的变化率等于8、当a = 时,极限lim x→01−cos xln (1+x 3)(a −e x )存在且不等于0.9、设 ,则d 2ydx 2=10、设g (x )=∫sin t 2dx x0,且当x →0时,g (x )与x n 是同阶无穷小,则n = 11、定积分∫√1−x 2dx 10 =12、设函数y =y (x )由方程e x+y −xy =0确定,则dydx = 13、曲线y (x )=x 3+3x 2的拐点是14、由曲线y =√x ,x =1 ,x =2及x 轴围成的曲边梯形绕x 轴旋转一周而成的旋转体体积等于15、设y =32x ,则y (n)=三、计算题(本大题共8小题,其中16-19题每小题7分,20-23小题每小题8分,共60分) 16、求极限lim x→0ln (1+x )−xx 2.17、设y (x )=ln(2+cos πx)+x x ,求函数y (x )在x =1处的微分.18、求不定积分∫sin √x dx .19、设f (x )= ,求p (x )=∫f(t)xdt 在[0,π]上的表达式.x =sin t y =cos tcos x ,x ∈[0,π)x ,x ∈[π,π]20、一物体由静止到以速度v (t )=3t√t+1(m/s)作直线运动,其中t 表示运动的时间,求物体运动到8秒时离开出发点的距离。

2022年浙江省湖州市成考专升本高等数学二自考真题(含答案)

2022年浙江省湖州市成考专升本高等数学二自考真题(含答案)

2022年浙江省湖州市成考专升本高等数学二自考真题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.下列极限计算正确的是【】A.B.C.D.2.3.称e-x是无穷小量是指在下列哪一过程中它是无穷小量【】A.x→0B.x→∞C.x→+∞D.x→∞4.【】A.0B.1C.0.5D.1.55.A.A.0B.-1C.-1D.16.f(x)=|x-2|在点x=2的导数为A.A.1B.0C.-1D.不存在7. ()。

A.0B.1C.e-1D.+∞8.9.10.()。

A.-1B.0C.1D.211.A.A.2x+1B.2xy+1C.x2+1D.x212.当x→0时,若sin2与x k是等价无穷小量,则k=A.A.1/2B.1C.2D.313.()。

A.B.C.D.14. 设?(x)具有任意阶导数,且,?ˊ(x)=2f(x),则?″ˊ(x)等于().A.2?(x)B.4?(x)C.8?(x)D.12?(x)15.A.A.B.C.D.16.17.A.x=-2B.x=-1C.x=1D.x=018.()。

A.1/2B.1C.2D.319.20.21. A.1/2 B.1 C.3/2 D.222.23.24.设f(x)的一个原函数为Xcosx,则下列等式成立的是A.A.f'(x)=xcosxB.f(x)=(xcosx)'C.f(x)=xcosxD.∫xcosdx=f(x)+C25.设函数f(x)=xlnx,则∫f'(x)dx=__________。

A.A.xlnx+CB.xlnxC.1+lnx+CD.(1/2)ln2x+C26.函数曲线y=ln(1+x2)的凹区间是A.A.(-1,1)B. (-∞,-1)C.(1,+∞)D. (-∞,+∞)27. A.2x+cosy B.-siny C.2 D.028.29.30.二、填空题(30题)31.32.33.34.35.36.37.设函数y=xsinx,则y"=_____.38.39.40. 设函数y=f(-x2),且f(u)可导,则dy=________。

2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)

2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)

2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.()。

A.-1/4B.-1/2C.1/4D.1/22.3.4.5.下列定积分的值等于0的是()。

A.B. C. D.6.7.8.9.10.11.函数y=lnx在(0,1)内()。

A.严格单调增加且有界B.严格单调增加且无界C.严格单调减少且有界D.严格单调减少且无界12. 设?(x)=In(1+x)+e2x, ?(x)在x=0处的切线方程是().A.3x-y+1=0B.3x+y-1=0C.3x+y+1=0D.3x-y-1=013.14.A.A.-1B.-2C.1D.215.16.下列结论正确的是A.A.B.C.D.17.()。

A.0B.1C.2D.318.19.A.0B.e-1C.2(e-1)D.20.A.A.B.C.D.21.已知事件A和B的P(AB)=0.4,P(A)=0.8,则P(B|A)=A.A.0.5B.0.6C.0.65D.0.723.()。

A.B.C.D.24.25.A.A.有1个实根B.有2个实根C.至少有1个实根D.无实根26.27.()。

A.B.C.D.28.29.当x→0时,无穷小量x+sinx是比x的【】A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小30.A.2x+3yB.2xC.2x+3D.二、填空题(30题)31.32.33.34.35.36.37.38.39.40.41.42.43.44.45. 设y=3sinx,则y'__________。

46.47.48.49.50.51.52.53.54.设函数y=x n+2n,则y(n)(1)=________。

55.56.57.58.59.60.三、计算题(30题)61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题)101.102.103.104. (1)求曲线y=1-x2与直线y-x=1所围成的平面图形的面积A。

2022-2023学年浙江省绍兴市成考专升本高等数学二自考真题(含答案带解析)

2022-2023学年浙江省绍兴市成考专升本高等数学二自考真题(含答案带解析)

2022-2023学年浙江省绍兴市成考专升本高等数学二自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.A.A.0B.1C.2D.33.()。

A.-1/4B.-1/2C.1/4D.1/24.A.A.B.C.D.5.设事件A,B相互独立,A,B发生的概率分别为0.6,0.9,则A,B都不发生的概率为()。

A.0.54B.0.04C.0.1D.0.46.7.设函数?(x)=sin(x2)+e-2x,则?ˊ(x)等于()。

A.B.C.D.8.9.A.A.B.C.D.10.若随机事件A与B互不相容,且P(A)=0.4,P(B)=0.3,则P(A+B)=()。

A.0.82B.0.7C.0.58D.0.5211. ()。

A.0B.1C.cos1-2sin1D.cos1+2sin112.下列命题正确的是()。

A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量13.()。

A.0B.1C.nD.n!14.15.设函数y=sin(x2-1),则dy等于().A.cos(x2-1)dxB.-cos(x2-1)dxC.2xcos(x2-1)dxD.-2xcos(x2-1)dx16.17.()。

A.B.C.D.18.()。

A.B.C.D.19.()。

A.B.C.D.20.21.下列广义积分收敛的是A.A.B.C.D.22.23.【】A.高阶无穷小B.低阶无穷小C.等价无穷小D.不可比较24.25.26.27.()。

A.0B.1C.㎡D.28.29.30.A.A.B.C.D.二、填空题(30题)31.设函数y=x2Inx,则y(5)=__________.32.33.设曲线y=ax2+2x在点(1,a+2)处的切线与y=4x平行,则a=______.34.35.五人排成一行,甲、乙二人必须排在一起的概率P=__________.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.曲线y=2x2在点(1,2)处的切线方程y=______.57.58.59.60. 函数y=lnx,则y(n)_________。

专升本高数试题及详解答案

专升本高数试题及详解答案

专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。

A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。

A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。

A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。

A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。

2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。

3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。

4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。

5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。

三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。

2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。

3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试
高等数学
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

1.)
)
A.3.)
A.C.
1211-2⎩=+3
2z y 12A.
6
π
B.
4
π C.
3
π D.
2
π5.在下列级数中,发散的是------------------------------------------------()
A.
)
1ln(1
)1(1
1
+-∑∞
=-n n
n B.
∑∞
=-1
1
3n
n n
C.n
n n 31)
1(1
1
∑∞
=-- D.
∑∞
=-1
1
3n
n n
非选择题部分
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或
6.7.8.9.10.14.函数lnx 在x=1处的幂级数展开式为__________
的交点坐标是
5z 2y 2x 与平面z 2-3
-y 32x 直线.15=++==+_____
三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分。

计算题必须写出必要的计算过程,只写答案的不给分。

)
(f ),0(1
)1(f 16.42
x x x x x x 求设≠+=+
19dx x
x x x 121.3
2⎰+++求
dx
cosx -sinx 22.20
⎰π
计算轴
所围成的平面图形绕()求曲线(y )0b a y b -x 23.2
22>>=+a 旋转一周所得的旋转体体积
⎰--=x
x dt t f t x x x 0
)
(f )()(sin )(f 26.为连续函数,试求设
浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试
高等数学参考答案
选择题部分
一、选择题:本大题共5小题,每小题4分,共20分。

1.B
2.B
3.B
4.C
5.D
6.7.8.9.128
14.]2,0(,1)1()1(0
1
∈+--∑∞
=+x n x n n n 15.
(1,1,1)
四、计算题:本题共有8小题,其中16-19小题每小题7分,20-23
小题每小题8分,共60分。

计算题必须写出必要的计算过程,只写答案的不给分。

解:11)1(f 2
=
=+x ,令t x =+
1
,则f(t)=
1
22
代入得
把’)1,1(,y xy 3y 2y'23-⋅+=y’=1
有相同的公切线 1a 2=+∴1
-b ,1-a ==∴
20.ax x x f -=ln )(令,
a x x f -=
1)(',令)('x f =0,得x=a 1易得x=a
1
是极大值点也为最大值点
(1)当a=e 1
时,一个根;
(2)当0<a<e 1
时,两个根;
C
arctanx ++令令∴∴四、综合题:本大题共3小题,每小题10分,共30分。

24.4
''32
)1(6y 1-x 3-x x y -==x x ,)()(‘
(1).令y´=0,得驻点x=0和x=3以及定义域不存在的点x=1
易得y 在())上单调递减单调递增;在(3 , 1) , 3(; 1 , ∞+∞-,极小值为y(3)=
4
27
,
无极大值。

(2).令y"=0,得驻点x=0和及定义域不存在的点x=1
易得y 在()) , 1(,)1 , 0;凹区间为(0 , 凸区间为∞+∞-,拐点为(0,0)。

(3).易得1=x 是函数的垂直渐近线,
又∞=∞→23x 1-x x lim )
( ,无水平渐近线∴
1
由,得1
)0(',0)0(sin )()("⎩⎨
⎧==-=+f f x x f x f y=)xcosx sinx (21
+。

相关文档
最新文档