信号与系统MATLAB实验(教师版)

合集下载

信号与系统matlab实验报告

信号与系统matlab实验报告

信号与系统MATLAB实验报告实验目的本实验旨在通过MATLAB软件进行信号与系统的相关实验,探究信号与系统的特性与应用。

实验步骤1. 准备工作在正式进行实验之前,我们需要做一些准备工作。

首先,确保已经安装好MATLAB软件,并且熟悉基本的操作方法。

其次,准备好实验所需的信号与系统数据,可以是已知的标准信号,也可以是自己采集的实际信号。

2. 信号的生成与显示使用MATLAB编写代码,生成不同类型的信号。

例如,可以生成正弦信号、方波信号、三角波信号等。

通过绘制信号波形图,观察不同信号的特点和变化。

t = 0:0.1:10; % 时间范围f = 1; % 信号频率s = sin(2*pi*f*t); % 正弦信号plot(t, s); % 绘制信号波形图3. 系统的建模与分析根据实验需求,建立相应的系统模型。

可以是线性时不变系统,也可以是非线性时变系统。

通过MATLAB进行模型的建立和分析,包括系统的时域特性、频域特性、稳定性等。

sys = tf([1, 2], [1, 3, 2]); % 系统传递函数模型step(sys); % 绘制系统的阶跃响应图4. 信号与系统的运算对于给定的信号和系统,进行信号与系统的运算。

例如,进行信号的卷积运算、系统的响应计算等。

通过MATLAB实现运算,并分析结果的意义与应用。

x = [1, 2, 3]; % 输入信号h = [4, 5, 6]; % 系统响应y = conv(x, h); % 信号的卷积运算plot(y); % 绘制卷积结果的波形图5. 实验结果分析根据实验数据和分析结果,对实验进行结果总结与分析。

可以从信号的特性、系统的特性、运算结果等方面进行综合性的讨论和分析。

实验总结通过本次实验,我们学习了如何在MATLAB中进行信号与系统的实验。

通过生成信号、建立系统模型、进行运算分析等步骤,我们深入理解了信号与系统的基本原理和应用方法。

通过实验数据和结果分析,我们对信号与系统有了更深刻的认识,并掌握了MATLAB在信号与系统实验中的应用技巧。

信号与系统matlab实验及答案

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。

n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。

观察并分析a 和0t 的变化对波形的影响。

t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。

抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。

请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。

可能用到的函数为plot, stem, hold on 。

fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。

信号与系统,MATLAB实验

信号与系统,MATLAB实验

y = func(t − d (1)) + func(t _ d ( 2) + ...
从而实现一个周期性脉冲信号的产生。Pulstran 函数的更一般的调用形式为:
y = pulstran(t , d , ' func' , p1, p 2...)
其中的 p1,p2,...为需要传送给 func 函数的额外输入参数值(除时间变量 t 之外) ,如上述的 Rectpuls 函数需要 width 这个额外参数,tripuls 函数需要 width 和 skew 这两个额外参数,即 整个 pulstran 函数的返回值实际上相当于 :
图 1-10 周期性矩形脉冲信号和三角波脉冲信号
2.连续信号的相加、相乘、时移、反转和尺度变换等基本运算
(1)两个连续信号的相加 在 MATLAB 中要实现两个连续信号 f1(t)、f2(t)的相加,可用如下语句: x=symadd(f1,f2) (2)两个连续信号的相乘 在 MATLAB 中要实现两个连续信号 f1(t)、f2(t)的相乘,可用如下语句: x=symmul(f1,f2) (3)连续信号的平移 要实现连续信号 f(t)向右平移 t0,MATLAB 语句格式为: x=subs(f,t,t-t0) (4)连续信号的反转
% x(t)= f(t-t0)

x=f1+f2
% x(t)= f1(t)+f2(t)

x=f1*f2
% x(t)= f1(t) f2(t)
对一个信号 x(t)的反褶运算在数学上表示为:y (t)=x(-t) 使用 MATLAB 内部函数 fliplr()来实现信号的反褶运算。其用法如下:y = fliplr(x):其中 x 为原信号 x(t),而 y 则为 x 的时域反褶。而翻转后的信号的坐标则可由-fliplr(t)得到。 (5)连续信号的尺度变换 要实现连续信号 f(t)的尺度变换,MATLAB 语句格式为: x=subs(f,t,a*t)

信号与系统MATLAB实验

信号与系统MATLAB实验

实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB 表示及其可视化方法。

2. 掌握信号基本时域运算的MATLAB 实现方法。

3. 利用MATLAB 分析常用信号,加深对信号时域特性的理解。

二、实验原理与方法1. 连续时间信号的MATLAB 表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。

在MATLAB 中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。

从严格意义上来说,MATLAB 并不能处理连续时间信号,在MATLAB 中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。

表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。

例如一个正弦信号可以表示如下:>> t=0:0.01:10; >> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。

如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。

例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t); >> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形012345678910-1-0.8-0.6-0.4-0.200.20.40.60.81Time(seconds)图1 利用向量表示连续时间信号-6-4-20246-1-0.50.51t图 2 利用符号对象表示连续时间信号sin(t)常用的信号产生函数 函数名 功能 函数名 功能 heaviside 单位阶跃函数 rectpuls 门函数sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波sinc sinc 函数 sawtooth周期锯齿波或三角波 exp 指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。

信号与系统 MATLAB综合实验

信号与系统    MATLAB综合实验

信号与系统MATLAB综合实验一、实验目的:1、学习MATLAB语言的编程方法及熟悉MATLAB指令。

2、掌握连续时间信号的卷积运算方式,分析建立信号波形间的联系。

3、通过使用MATLAB函数研究线性时不变离散时间系统的时域特性,以加深对线性时不变离散时间系统的时不变性的理解。

二、实验仪器1、计算机2、MATLAB 软件三、实验原理一个离散时间系统是将输入序列变换成输出序列的一种运算。

若以T[•]表示这种运算,则一个离散时间系统可由图1-1来表示,即→∙→(1-1)x n T y n()[]()图1-1 离散时间系统离散时间系统中最重要的、最常用的是“线性时不变系统”。

时不变系统系统的运算关系T[•]在整个运算过程中不随时间(也不随序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。

这个性质可用以下关系表示:若输入)(ny,则将输入序列移动任意位后,其输出序列除了跟着x的输出为)(n移位外,数值应保持不变,即若)ynm[mT--(m为任意整数)=(xn(()]()][nT=,则)yxn满足以上关系的系统就称为时不变系统。

四、实验内容及结论1、连续时间系统的时域分析已知微分方程: )(2)(3)(2)(3)(t f t f t y t y t y +'=+'+'',1)0(-='-y , 2)0(=-y 若激励信号为)()(t u t f =,利用阶跃响应函数step(sys,t) 求解画波形;利用零状态响应函数lsim 求解画波形;利用卷积函数求解画波形;比较结果。

程序如下:dt=0.001;t1=0:dt:10;f1=-1*exp(-t1)+4*exp(-2*t1);t2=t1;f2=u(t2);f=conv(f1,f2);f=f*dt;t3=0:dt:20;subplot(311)plot(t3,f);xlabel('时间(t)');ylabel('y(t)');title('零状态响应(卷积法)');b=[3 2];a=[1 3 2];sys=tf(b,a);t=0:0.01:10;x=stepfun(t,0);y=lsim(sys,x,t);subplot(312)plot(t,y);xlabel('时间(t)');ylabel('y(t)');title('零状态响应(阶跃函数求法)');sys=tf(b,a);t=0:0.1:10;y=step(sys,t);subplot(313)plot(t,y);xlabel('时间t)');ylabel('y(t)');title('阶跃响应');结论:上述三种方法求得的都是输入为阶跃函数时候的零状态响应,也为阶跃响应,通过图形我们可以看出,利用卷积法求出的零状态和另外两种方法求出的零状态响应图形有一点差别,三者在0到10区间上响应都一致,而利用卷积法求的响应却在下面的区间内发生了变化,我试图修改程序,无论怎么改,发现只要调用了卷积函数,求得的图形就像上述的卷积法求的图形一样,不得解。

信号与系统-MATLAB综合实验课程设计

信号与系统-MATLAB综合实验课程设计

信号与系统-MATLAB综合实验课程设计一、课程设计的目的和意义在信号与系统学习中,MATLAB是非常重要的工具。

本课程设计主要目的是让学生通过实验,掌握使用MATLAB进行信号与系统分析和处理的方法和技巧。

同时,课程设计还能够加深学生对信号与系统理论知识的理解和掌握,提高其综合运用能力。

二、课程设计的内容和要求1. 实验一:信号的生成和绘制本实验主要包括以下内容:•生成几种基本信号(如正弦信号、方波信号、三角波信号等)。

•通过MATLAB绘制生成的信号,并加上合适的标注。

要求学生能够掌握信号的生成方法和MATLAB的绘图函数的使用。

2. 实验二:信号的运算与变换本实验主要包括以下内容:•对已有信号进行运算(如加、减、乘、除等)。

•对信号进行卷积、相关等线性变换操作。

•对信号进行傅里叶变换,并绘制幅度谱、相位谱等图形。

要求学生能够掌握信号的运算、变换方法和MATLAB的相应函数的使用。

3. 实验三:系统的分析和建立本实验主要包括以下内容:•对系统进行零极点分析,并绘制零极点图。

•对已有系统进行时域和频域分析(如阶跃响应、冲击响应、幅频响应等)。

要求学生能够掌握系统的分析方法和MATLAB的相应函数的使用。

4. 实验四:信号的滤波和降噪本实验主要包括以下内容:•对信号进行数字滤波(如低通滤波、高通滤波、带通滤波、带阻滤波等)。

•对信号进行去噪处理(如中值滤波、小波变换去噪等)。

要求学生能够掌握信号滤波、降噪方法和MATLAB的相应函数的使用。

三、课程设计的实施流程1.分组。

依据班级人数以及教学设备的数量,安排学生分为若干个小组,每个小组3-4人。

2.模拟分配实验。

询问小组成员们的意见,模拟分配每个小组所要完成的课程设计任务。

3.实验操作。

每个小组根据分配到的实验课程设计,使用MATLAB进行模拟操作。

4.结果展示。

每个小组进行结果展示,介绍自己的设计思路,并展示实验结果。

其他小组成员以及教师进行现场互相交流和讨论。

信号与系统matlab实验四

信号与系统matlab实验四

实验四 连续时间信号的傅立叶变换一、实验目的(1)掌握连续信号傅立叶变换与逆变换的计算方法(2)掌握利用MATLAB 实现连续时间信号傅立叶变换的方法二、实验内容1利用fourier()命令求解如下信号的傅立叶变换,给出)(t f 的波形图以及)(ωj F 的表达式和幅度频谱图:(1) 钟形脉冲:∞<<∞-=-t e t f t ,)(2)2(;(2)符号函数:⎩⎨⎧<->=0101)(t t t f)(ωF 的表达式:(1)22)(ωπω-=e F(2)ωωi F 2)(-=函数一程序如下:syms t v w x;x=exp(-(t/2)*(t/2));F=fourier(x);subplot(211);ezplot(x);subplot(212);ezplot(F);函数二:syms t v w x;x=Heaviside(t)-Heaviside(-t);F=fourier(x);subplot(211);ezplot(x,[-1,1]);subplot(212);ezplot(abs(F));运行结果如图:(1)(2)2求解如下信号的傅立叶变换,绘出信号的时域波形及幅度频谱图:(1) 升余弦脉冲:10)],cos(1[21)(≤≤+=t t t f π;(2)⎪⎩⎪⎨⎧><-=20221)(t t t t f)(ωF 的表达式:(1)()()[]πωπωωω++-+=Sa Sa Sa F 21)()( (2)()()222sin 22)(ωωωω==Sa F函数一:R=0.02;t=-1:R:1;f=1/2*(1+cos(pi*t));N=200;k=0:N;W=2*pi*k/(10*N*R);F=R*f*exp(-j*t'*W);F=real(F);W=[-fliplr(W),W(2:N+1)];F=[fliplr(F),F(2:N+1)];subplot(2,1,1);plot(t,f);xlabel('t');ylabel('f(t)');title('f(t)=u(t+1)-u(t-1)');axis([-1,1,-0.1,1.1]);subplot(2,1,2);plot(W,F);xlabel('w');ylabel('F(w)');title(' f(t)的傅氏变换F(w)');axis([-30,30,-0.1,1.1]);函数二:R=0.01;t=-2:R:2;f=(1-abs(t)/2);N=400;k=0:N;W=2*pi*k/(10*N*R);F=R*f*exp(-j*t'*W);F=real(F);W=[-fliplr(W),W(2:N+1)];F=[fliplr(F),F(2:N+1)];subplot(2,1,1);plot(t,f);xlabel('t');ylabel('f(t)');title('f(t)=(1-abs(t)/2)*[u(t+2)-u(t-2)]');axis([-2,2,-0.1,1.1]);subplot(2,1,2);plot(W,F);xlabel('w');ylabel('F(w)'); title('f(t)的傅氏变换F(w)'); axis([-25,25,-0.1,2.1]);运行结果如图:(1)(2)3已知)(1t f 的波形如下图所示且)()(11ωj F t f ↔;设)()(*)()(11ωj F t f t f t f ↔=,试用MATLAB 给出)(1t f 、)(t f 、)(1ωj F 及)(ωj F ,并验证时域卷积定理。

信号与系统MATLAB实验

信号与系统MATLAB实验

《信号与系统及MATLAB实现》实验指导书前言长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MATLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。

MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。

MATLAB究竟有那些特点呢?1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来;2.完备的图形处理功能,实现计算结果和编程的可视化;3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握;4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具;MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。

正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。

通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。

另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统实验指导书及实验报告册班级:姓名:学号:目录实验一、基本信号在MATLAB中的表示和运算实验二、离散信号与系统的时域分析实验三、连续时间LTI系统的时域分析实验四、傅里叶变换、系统的频域分析实验五、信号抽样与恢复实验六、信号与系统复频域分析实验一基本信号在MATLAB中的表示和运算一、实验目的1.学会用MA TLAB表示常用连续信号的方法;2.学会用MA TLAB进行信号基本运算的方法;二、实验原理1.连续信号的MATLAB表示MATLAB提供了大量的生成基本信号的函数,例如指数信号、正余弦信号。

表示连续时间信号有两种方法,一是数值法,二是符号法。

数值法是定义某一时间范围和取样时间间隔,然后调用该函数计算这些点的函数值,得到两组数值矢量,可用绘图语句画出其波形;符号法是利用MATLAB 的符号运算功能,需定义符号变量和符号函数,运算结果是符号表达的解析式,也可用绘图语句画出其波形图。

例1-1指数信号 指数信号在MATLAB 中用exp 函数表示。

如atAe t f =)(,调用格式为 ft=A*exp(a*t) 程序是A=1; a=-0.4;t=0:0.01:10; %定义时间点ft=A*exp(a*t); %计算这些点的函数值plot(t,ft); %画图命令,用直线段连接函数值表示曲线 grid on; %在图上画方格例1-2 正弦信号 正弦信号在MATLAB 中用 sin 函数表示。

调用格式为 ft=A*sin(w*t+phi) A=1; w=2*pi; phi=pi/6;t=0:0.01:8; %定义时间点ft=A*sin(w*t+phi); %计算这些点的函数值 plot(t,ft); %画图命令 grid on; %在图上画方格例1-3 抽样信号 抽样信号Sa(t)=sin(t)/t 在MA TLAB 中用 sinc 函数表示。

定义为 )/(sin )(πt c t Sa =t=-3*pi:pi/100:3*pi; ft=sinc(t/pi); plot(t,ft); grid on;axis([-10,10,-0.5,1.2]); %定义画图范围,横轴,纵轴 title('抽样信号') %定义图的标题名字例1-4 三角信号 三角信号在MATLAB 中用 tripuls 函数表示。

调用格式为 ft=tripuls(t,width,skew),产生幅度为1,宽度为width ,且以0为中心左右各展开width/2大小,斜度为skew 的三角波。

width 的默认值是1,skew 的取值范围是-1~+1之间。

一般最大幅度1出现在t=(width/2)*skew 的横坐标位置。

t=-3:0.01:3;ft=tripuls(t,4,0.5); plot(t,ft); grid on; axis([-3,3,-0.5,1.5]);例1-5 虚指数信号 调用格式是f=exp((j*w)*t) t=0:0.01:15;w=pi/4;X=exp(j*w*t);Xr=real(X); %取实部Xi=imag(X); %取虚部Xa=abs(X); %取模Xn=angle(X); %取相位subplot(2,2,1),plot(t,Xr),axis([0,15,-(max(Xa)+0.5),max(Xa)+0.5]),title('实部');subplot(2,2,3),plot(t,Xi),axis([0,15,-(max(Xa)+0.5),max(Xa)+0.5]),title('虚部');subplot(2,2,2), plot(t,Xa),axis([0,15,0,max(Xa)+1]),title('模');subplot(2,2,4),plot(t,Xn),axis([0,15,-(max(Xn)+1),max(Xn)+1]),title('相角');%subplot(m,n,i) 命令是建立m行n列画图窗口,并指定画图位置i例1-6复指数信号调用格式是f=exp((a+j*b)*t)t=0:0.01:3;a=-1;b=10;f=exp((a+j*b)*t);subplot(2,2,1),plot(t,real(f)),title('实部')subplot(2,2,3),plot(t,imag(f)),title('虚部')subplot(2,2,2),plot(t,abs(f)),title('模')subplot(2,2,4),plot(t,angle(f)),title('相角')例1-7 矩形脉冲信号矩形脉冲信号可用rectpuls函数产生,调用格式为y=rectpuls(t,width),幅度是1,宽度是width,以t=0为对称中心。

t=-2:0.01:2;width=1;ft=2*rectpuls(t,width);plot(t,ft)grid on;例1-8 单位阶跃信号单位阶跃信号u(t)用“t>=0”产生,调用格式为ft=(t>=0) t=-1:0.01:5;ft=(t>=0);plot(t,ft); grid on;axis([-1,5,-0.5,1.5]);例1-9 正弦信号符号算法syms t %定义符号变量ty=sin(pi/4*t) %符号函数表达式ezplot(y,[-16,16]) %符号函数画图命令或者f=sym('sin(pi/4*t)') %定义符号函数表达式ezplot(f,[-16,16])例1-10单位阶跃信号MA TTLAB符号数学函数Heaviside表示阶跃信号,但要画图需在工作目录创建Heaviside的M文件function f=Heaviside(t)f=(t>0);保存,文件名是Heaviside ,调用该函数即可画图,例t=-1:0.01:3;f=heaviside(t);plot(t,f)axis([-1,3,-0.2,1.2])或者y=sym('Heaviside(t)');ezplot(y,[-1,5]);grid on2.信号基本运算的MATLAB实现信号基本运算是乘法、加法、尺度、反转、平移、微分、积分,实现方法有数值法和符号法例1-11 以f(t)为三角信号为例,求f(2t) , f(2-2t)t=-3:0.001:3;ft=tripuls(t,4,0.5);subplot(3,1,1);plot(t,ft); grid on;title ('f(t)');ft1= tripuls(2*t,4,0.5);subplot(3,1,2);plot(t,ft1); grid on;title ('f(2t)');ft2= tripuls(2-2*t,4,0.5);subplot(3,1,3);plot(t,ft2); grid on;title ('f(2-2t)');例1-12 已知f1(t)=sinwt , f2(t)=sin8wt , w=2pi , 求f1(t)+f2(t)和f1(t)f2(t) 的波形图w=2*pi;t=0:0.01:3;f1=sin(w*t);f2=sin(8*w*t);subplot(211)plot(t,f1+1,':',t,f1-1,':',t,f1+f2)grid on,title('f1(t)+f2(t))')subplot(212)plot(t,f1,':',t,-f1,':',t,f1.*f2)grid on,title('f1(t)*f2(t)')符号算法也可实现上述运算,以信号的微积分运算为例说明符号算法应用微分的调用格式为diff(function,’variable’,n)积分的调用格式为int(function,’variable’,a,b)式中function 表示要微分或积分的函数,variable 表示运算变量,n 表示求导阶数,默认值是求一阶导数,a 是积分下限,b 是积分上限,a b 默认是求不定积分。

例1-13 求一阶导数的例题,已知)sin(21ax y =,x x x y ln sin 2= clearsyms a x y1 y2 %定义符号变量a , x ,y1, y2 y1=sin(a*x^2); %符号函数y1 y2=x*sin(x)*log(x); %符号函数y2dy1=diff(y1,’x’) %无分号直接显示结果 dy2=diff(y2) %无分号直接显示结果例1-14 求积分的例题,dx x ax x )2(5+-⎰,⎰+102)1(dx x xe xclearsyms a x y3 y4y3=x^5-a*x^2+sqrt(x)/2; y4=(x*exp(x))/(1+x)^2; iy3=int(y3,'x') iy4=int(y4,0,1) 三、上机实验内容 1. 验证实验原理中程序 2. 画出信号波形(1))()2()(2t u e t f t--=解: t=0:0.001:15; f1=(2-exp(-2*t)); f2=(t>=0); f3=f1.*f2; plot(t,f3)(2))]2()()[cos 1()(--+=t u t u t t f π 解: t=-2:0.01:5; f1=1+cos(pi*t); f2=(t>=0)-(t>=2); ft=f1.*f2; plot(t,ft);3.信号)()2()(2t u et f t--=,求)2(t f 、)2(t f -波形3解:syms t ;ft=heaviside(t); f1=(2-exp(-2*t))*ft; subplot(3,1,1);ezplot(f1,[-2*pi,2*pi]); grid on ; title ('f(t)'); f2=subs(f1,t,2*t); subplot(3,1,2);ezplot(f2,[-2*pi,2*pi]); grid on ;title ('f(2t)'); f3=subs(f1,t,2-t);subplot(3,1,3);ezplot(f3,[-2*pi,2*pi]); grid on;title('f(2-t)');实验二 离散信号与系统的时域分析一、实验目的1.学会用MA TLAB 表示常用离散信号的方法; 2.学会用MA TLAB 实现离散信号卷积的方法; 3. 学会用MA TLAB 求解离散系统的单位响应; 4. 学会用MA TLAB 求解离散系统的零状态响应; 二、实验原理1.离散信号的MA TLAB 表示表示离散时间信号f(k)需要两个行向量,一个是表示序号k=[ ],一个是表示相应函数值f=[ ],画图命令是stem 。

相关文档
最新文档