勾股定理相关知识
勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。
具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。
这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。
二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。
几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。
常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。
2. 代数证明另外,勾股定理也可以通过代数方法进行证明。
代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。
通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。
三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。
例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。
勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。
2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。
而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。
这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。
3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。
勾股定理公式知识点总结

勾股定理公式知识点总结一、勾股定理的证明方法勾股定理的证明有许多种方法,下面介绍其中比较常见的几种证明方法:1. 几何法证明几何法证明是最直观的证明方法之一,它利用几何图形和性质进行推理。
一种常见的几何法证明是利用平行四边形的性质,将直角三角形的两个直角边分别构造成平行四边形的边,利用平行四边形的对角线相等性质即可证明勾股定理。
2. 代数法证明代数法证明是利用代数运算推导出勾股定理成立的证明方法。
一种常见的代数法证明是利用两个直角三角形组成一个正方形,通过展开式的数字运算推导出勾股定理成立。
3. 数学归纳法证明数学归纳法是一种数学论证方法,通过证明当n=k时定理成立,再证明当n=k+1时定理也成立,从而得出在一切正整数n上定理成立的论证方法。
勾股定理的证明中也可以使用数学归纳法证明。
4. 数学分析法证明数学分析法是通过数学函数的图像分析证明定理的方法。
通过分析直角三角形和斜边的关系,利用函数的性质进行推导,可以证明勾股定理成立。
以上是勾股定理的几种常见的证明方法,它们都是通过不同的数学思维和方法来证明同一个定理的正确性。
在学习和掌握勾股定理时,可以通过比较不同的证明方法,增加对定理的理解和掌握。
二、勾股定理的应用场景勾股定理是数学中的基础定理,它被广泛地应用于各种实际问题中。
下面将介绍一些勾股定理在实际应用中的具体场景:1. 地理测量在地理测量中,经常需要利用勾股定理来计算直角三角形的边长。
例如,利用直角三角形的边长和角度来计算地球上两点的距离,或者计算某一点的具体位置等。
2. 建筑设计在建筑设计中,经常需要利用勾股定理来设计直角三角形结构的建筑物。
例如,在设计楼梯的高度和跨度,或者在设计房屋的墙角和斜面等方面,都需要用到勾股定理。
3. 机械制造在机械制造中,勾股定理也有广泛的应用。
例如,在设计机械零件的装配结构、角度、长度等方面,都需要用到勾股定理来进行计算和设计。
4. 航空航天在航空航天领域,勾股定理也有重要的应用。
勾股定理(知识点+题型分类练习)

ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。
常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
勾股定理基础知识点

知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。
勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。
其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。
图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。
则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。
(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。
勾股定理还可以解决生产生活中的一些实际问题。
在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。
(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。
勾股定理知识点

勾股定理知识点归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定cb aHG F EDCB A bacbac cabcab a bc c baE D CBA理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。
勾股定理的证明常用拼图的方法。
通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。
2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。
3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。
勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。
勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。
在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。
同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。
勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。
a^2+b^2=c^2$是勾股定理的基本公式。
如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。
勾股定理的实际应用有很多。
例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。
现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。
同时梯子的顶端B下降至B′。
那么BB′的长度是小于1m的(选项A)。
又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。
设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。
(完整版)勾股定理知识点+对应类型

第二章勾股定理、平方根专题第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.若△ABC的三边a、b、c,满足a:b:c=1: 1: ,试判断△ ABC的形状 2
解三角形:设未知数求长度
郑凯想知道学校旗杆的高,他发现旗杆顶端的 绳子垂到地面还多1米,当他把绳子的下端 拉开5米后,发现下端刚好接触地面,你能 帮他算出来吗?
A
x米
(X+1)米
C
5米
B
荷花问题
印度数学家什迦逻(1141年-1225年)曾提出过“荷花 问题”: “平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”, C 请用学过的数学知识回答这个问题。
勾股定理相关 知识
美丽的勾股树
概念
1.直角三角形有哪些性质?
2.如何判断三角形是直角三角形?
•古埃及人曾用下面的方法得到直角:
用13个等距的结,把一根绳子分成等长的12段, 然后以3个结,4个结,5个结的长度为边长, 用木桩钉成一个三角形,其中一个角便是直角。
按照这种做法真能得到一个 直角三角形吗?
B
图1
A
图2
C
2.如图2,互相垂直的两条公路从A、B两村穿过,A村到路 口C的距离为9千米,B村到路口C的距离为12千米.现要在 AB间修一条公路,若此种公路的造价为50元/米,则这条公 路的总投资最少为 75 万元.
例 6
1.如图1,隔湖有两点B、C,从与CB成直角的CA方向上的点A 处测得AB=130m,AC=120m,则B、C两点的距离为 50 m. 2.如图2,厂房屋顶人字架(等腰三角形)的跨度BC为12m, 中柱AD为2.5m,中柱AD⊥BC于D,为防雨需在厂房顶部铺上 油毡,已知厂房长10m,需用油毡 130 m2 .
A
C
B
图1-3
C
A
B
图1-4
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
议一议
(1)你能用三 角形的边长表示 正方形的面积吗? 2)你能发现直 角三角形三边长 度之间存在什么 关系吗?与同伴 进行交流。
(
A
C
B
图1-3
C
A
B
图1-4
(3)分别以5厘米、12厘米为直角边作出一 个直角三角形,并测量斜边的长度。(2)中 的规律对这个三角形仍然成立吗?
C
B A B 图1-2 (图中每个小方格代表一个单位面积)
图1-1
(3)你能发现图1-1 中三个正方形A,B, C的面积之间有什么 关系吗?
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
做一做
你是怎样得 到表中的结 果的?与同 伴交流交流。
A C
B
图1-3
C
(1)观察图 1-3、图1-4, 并填写右表:
长 16 ,面积为 192 .
例 3
1.如图1,已知正方形ABCD的面积为12,AE=2ED,则AE=
4 .
2.如图2,已知△ABC中,AB=AC=10,BD是AC边上的高, DC=2,则BD的长为 6 .
A E D
A D
B
图1
C
B
图2
C
例 4
1.在锐角△ABC中,AD⊥BC,垂足为D,AB=13,AD=12,
D.6,2,3
B.n2+1,n2-1,2n D.m2-n2,,m2+n2
3.在下列长度的三条线段中不能组成直角三角形的是【 C 】
例11
如图,在四边形ABCD中,∠A=90°,AB=24,BC=20, CD=15,DA=7.求∠C的度数和四边形ABCD的面积. 解:连接BD, 在Rt△ABD中,AB=24,DA=7 根据勾股定理,得BD=25 D 又因为BC=20,CD=15, 所以, BC2+CD2=BD2 . A 所以△CBD是直角三角形. 所以∠C=90°. S四边形ABCD的面积=S△ABD+S△CBD=234 .
5 3
4 请同学们观察,这个三角形的三条边有什么关系吗?
3
2 +
4
2
= 5
2
常见的直角三角形
2
1
1
1
2
5 3
3
13 7
4
25
5 24 12 41 9
40
勾股定理的逆命题
如果三角形的三边长a、b、c满足
2 a
+
2 b
=
2 c
那么这个三角形是直角三角形。
勾股定理
互逆命题
如果直角三角形两直角边分别为a,b, 斜边为c,那么有 a2 + b2 = c2
基本方法
比 一 比 看 看 谁 算 得 快 !
求下列直角三角形中未知边的长: 5 8 17
x
20
16
x
12
x
方法小结: 可用勾股定理建立方程.
基本方法
2.求下列图中表示边的未知数x、y、z的值. 144 81 144 ① 169 ②
z
625
576
③
基础练习
1.若△ABC的三边a、b、c,满足(a-b) (a2+b2-c2)=0,则△ABC是( ) A.等腰三角形; B.直角三角形; C.等腰三角形或直角三角形; D.等腰直角三角形。
B
A B 中柱 D 跨度 图2 C
C
A 图1
例 9
如图,折叠长方形的一边AD,使点D落在BC边的点F处, 已知AB=8cm,AD=10cm,求EC的长. 解:由折叠可知: AF=AD=10, AB=8,在Rt△ABF中,根据勾股 定理,得BF=6 所以,FC=10-6=4 设EC=x ,则DE=EF= 8-x 在Rt△EFC中,根据勾股定理,得 x2+42=(8-x)2 解得: x=3cm
A A
′
b
C
c
B
b
′
在△ ABC和△ A’B’C’中 BC=a=B’C’
B′
CA=b=C’A’ AB=c=A’B’
C a a 证明: ∵ ∠ C’=900 ∴ A’B’2= a2+b2 ∵ a2+b2=c2
∴ △ ABC ≌△ A’B’C’(SSS) ∴ ∠ C= ∠ C’=90° 则 △ ABC是直角三角形 (直角三角形的定义)
A 8 10 D 8- x E 8- x x C F 4
10
6
B
例10
1.下列线段能组成直角三角形的是 【 D 】 A.2,3,5 C.1,2,5 A.3,4,5 B.1,2,3 D.12,16,20
4 B.1,3
2.下列线段不能组成直角三角形的是 【 D 】
5 ,3
C.9,12,15
A.8,15,17 C.a,2a,3a
分析:先来判断a,b,c三边哪条最长, 可以代m,n为满足条件的特殊值来试, m=5,n=4.则a=9,b=40,c=41,c最大。 解: a b (m n ) (2mn) (m n ) c
2 2 2 2 2 2 2 2 2
2
∴△ABC是直角三角形
赵爽弦图
c
b
a
印度婆什迦罗的证明
自主探索二
你还能数出图 中正方形A、B、 C各占多少个 小格子吗?完 成表格,探究 规律。 图1 图2
A的面积 (单位面积) 图1 图2 A、B、C 面积 关系
B的面积 (单位面积)
C的面积 (单位面积)
16 4
9 9
25 13
直角三角形 三边数量关系
SA+SB=SC
a2+b2=c2
C A
(2)在图1-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
请你数一数图中正方形A、B、C各占多少个小格子?完成表 格,探究规律。
A的面 B的面积 积(单位 (单位 面积) 面积)
图1
自主探索一
C的面 积(单位 面积)
图 1 图2
图2 图3
A、B、 C 面积 关系
1 4 9
1 4 9
2 8 18
SA+SB=SC
图3
直角三 角形三 边数量 关系
a2+b2=c2
(三)归纳结论
勾股定理:
直角三角形两直角边的平方和等于斜边的平方。
如果用 a 、 b 、 c 分别表示直角三角形的两直角 边和斜边,那么a2+b2=c2。
A
勾 广 三 股 修 四 径 隅 五 股 弦
b C
c
勾
《周髀算经》
a
B
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么 c 2 2 2 a
c b a
c2 = b2 + a2
直接观察验证
a2
a2 c2 b2 a 2 + b 2 = c2
总统法
a
b
cca源自b华罗庚:青朱出入图
青出
青 入
青方
青 出
朱入
朱 朱方 出
青入
青出
华罗庚:青朱出入图
④
⑤
b
c
a
③
①
②
数学小故事
相传两千多年前,古希腊著名的数学家毕达哥拉 斯去朋友家做客。在宴席上,其他的宾客都在尽情欢 乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来。 原来,朋友家的地是用一块块直角三角形形状的砖铺 成的,黑白相间,非常美观大方。主人看到毕达哥拉 斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉 斯突然恍然大悟的样子,站起来,大笑着跑回家去了。 原来,他发现了地砖上的三个正方形存在某种数学关 系。
1.Rt△ABC中,两条直角边的长分别是16和30,则斜边的长 应为【 A 】 A.34 B.40 C.45 D.50