2018届全国高考考前信息卷(三)数学理科

合集下载

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。

2018年高考全国3卷理科数学带答案解析

2018年高考全国3卷理科数学带答案解析

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A 5B .2C 3D 212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分。

2018年全国卷3理科数学试题及参考答案-

2018年全国卷3理科数学试题及参考答案-

绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。

2018年高考理科数学全国卷3含答案

2018年高考理科数学全国卷3含答案

数学试卷第1页(共20页)数学试卷第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A xx =-∣≥,{0,1,2}B =,则A B = ()A .{0}B .{1}C .{1,2}D .{0,1,2}2.()(1i 2i)+-=()A .3i--B .3i-+C .3i-D .3i+3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()ABCD 4.若1sin 3α=,则cos2α=()A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为()A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是()A .[2,6 ]B .[4,8]C.D 7.函数422y x x =-++的图象大致为()ABC D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =()A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =()A .π2B .π3C .π4D .π6毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共20页)数学试卷第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为()A.B.C.D.11.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1|||PF OP =,则C 的离心率为()AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则()A .0a b ab +<<B .ab a b +<<0C .0a b ab+<<D .0ab a b+<<第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ.14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a =.15函数π()cos(3)6f x x =+在[0,π]的零点个数为.16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B两点.若90AMB ∠= ,则k =.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(12分)等比数列{}n a 中,11a =,534a a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.0500.0100.001k3.8416.63510.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第5页(共20页)数学试卷第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++= .证明:FA ,FP ,FB成等差数列,并求该数列的公差.21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分)设函数()211f x x x =++-.(1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7页(共20页)数学试卷第8页(共20页)2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D .3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A .4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+== ,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C .6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =max d ==min d =26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得2x -<或22x 0<<,此时,()f x 递增;令()0f x '<,解得22x -<0或22x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D .8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a,则1sin602ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r =,得r =ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥D ABC-体积的最大值为163⨯=,故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ==,所以1PF ==.在2Rt OPF △中,222cos PF bPF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc+-=⇒=-,则有22223()46c a c a -=-,解得c a =值舍去),即e =.故选C .数学试卷第9页(共20页)数学试卷第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C .∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg 0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B .解法二:易知01a <<,1b -<,∴0ab <,0a b +<,∵0.30.30.311log 0.2log 2log 0.41a b +=+=<,即1a b ab +<,∴a b ab +>,∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=.14.【答案】3-【解析】设(e ))1(xf x ax =+,则()()1e xf x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-.15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =- .∵1()1,M -,90AMB ∠= ,∴0MA MB = ,即1212(2)(2)(1)(1)0y yy y k k+++--= ,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠= ,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==.故答案为:2.三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =.综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-。

2018 年全国 III 卷数学(理)答案及解析

2018 年全国 III 卷数学(理)答案及解析

a1 = 1 ,
an = 2n −1 或 an =
( −2 )
n −1
S = 63 , (2) mn −1 ∴ 当通项公式为 an = 2 时, 1 − 2
(1 − 2 ) = 63
m
,得 m =6
当通项公式为
an =
( −2 )
n −1
1 − ( −2 )m = 63 m −1) 2m = 188 ( + 1 2 时, ,得 ,
− x + x + 2 的图像大致为( 7.函数 y =
4 2

A.
B.
C.
D.
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
,函数在(-∞,
)单调递增, (
,0)
单调递减, (0, )单调递增, ( ,+∞)单调递减,故选 D。
8.某群体中的每位成员使用移动支付的概率都为 体的 10 位成员中使用移动支付的人数, A. 0.7 【答案】B 【考点】二项分布概率与方差 【难易程度】基础题 【解析】使用移动支付符合二项分布, B.0.6
是带卯眼的木构件的俯视图可以是(

A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题
D.
【解析】卯眼的空间立体图如图,同时需要注意在三视图中,看不见的线用虚线表示, 故答案选 A
4、若
,则


A. 【答案】B

2018届全国高三考前密卷(三)数学理科试卷

2018届全国高三考前密卷(三)数学理科试卷

2018届全国高三考前密卷(三)数学理科试卷本试题卷共10页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{A x y ==,集合(){}lg 8B x y x ==-,则A B =I ( )A .{}2x x ≤ B .{}2x x < C .{}3x x ≤ D .{}3x x < 2.复数23ii+的共轭复数是(),a bi a b +∈R ,i 是虚数单位,则ab 的值是( ) A .6 B .5 C .-1 D .-63.命题p :若向量0a b ⋅<r r ,则a r 与b r的夹角为钝角;命题q :若cos cos 1αβ⋅=,则()sin 0αβ+=.下列命题为真命题的是( )A .pB .q ⌝C .p q ∧D .p q ∨ 4.已知等比数列{}n a 中,52a =,688a a =,则2018201620142012a a a a -=-( )A .2B .4C .6D .85.如图所示的程序框图所描述的算法称为欧几里得辗转相除法,若输入91m =,56n =,则输出m 的值为( )A .0B .3C .7D .146.设不等式组0x y x y y ⎧-≤⎪⎪+≥-⎨⎪≤⎪⎩M,函数y =x 轴所围成的区域为N ,向M 内随机投一个点,则该点落在N 内的概率为( ) A .4π B .8π C .16π D .2π7.某几何体的三视图如图所示,则该几何体的体积是( )A .11B .9C .7D .5 8.把函数sin 46y x π⎛⎫=-⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()f x 的图象,已知函数()()211,1213321,12f x x ag x x x a x ππ⎧-≤≤⎪⎪=⎨⎪--<≤⎪⎩,则当函数()g x 有4个零点时a 的取值集合为( ) A .51713,,1,123121212ππππ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭U U B .51713,,1,123121212ππππ⎡⎫⎡⎫⎡⎫--⎪⎪⎪⎢⎢⎢⎣⎭⎣⎭⎣⎭U UC .51713,,1231212πππ⎡⎫⎡⎫--⎪⎪⎢⎢⎣⎭⎣⎭U D .51,,112312ππ⎡⎫⎡⎫--⎪⎪⎢⎢⎣⎭⎣⎭U 9.若直线()00x ky k +=≠与函数()()()22112sin 21xxx f x --=+图象交于不同的两点,A B ,且点()9,3C ,若点(),D m n 满足DA DB CD +=u u u r u u u r u u u r,则m n +=( )A .kB .2C .4D .610.在平面四边形ABCD 中,2AD AB ==,CD CB ==且A D A B ⊥,现将ABD ∆沿着对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 内的过程中,直线A C '与平面BCD 所成角最大时的正弦值为( ) AC .12 D.211.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,分别过,A B 作准线的垂线,垂足分别为11,A B 两点,以11A B 为直径的圆C 过点()2,3M -,则圆C 的方程为( ) A .()()22122x y ++-= B .()()221117x y +++= C .()()22115x y ++-= D .()()221226x y +++=12.已知函数()3sin 4cos 1f x x x =++,实常数,,p q r 使得()()2018pf x qf x r ++=对任意的实数x ∈R 恒成立,则cos p r q +的值为( ) A .-1009 B .0 C .1009 D .2018第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC ∆中,三顶点的坐标分别为()3,A t ,(),1B t -,()3,1C --,ABC ∆为以B 为直角顶点的直角三角形,则t = .14.已知随机变量X 的分布列如下表,又随机变量23Y X =+,则Y 的均值是 .15.已知22cos a xdx ππ=⎰,则二项式6x ⎛+ ⎝展开式中的常数项是 .16.设数列{}n a 的各项均为正数,前n 项和为n S ,对于任意的2,,,n n n n N a S a +∈成等差数列,设数列{}n b 的前n 项和为n T ,且()2ln nnnx b a=,若对任意的实数(]1,x e ∈(e 是自然对数的底)和任意正整数n ,总有()n T r r N +<∈.则r 的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在ABC ∆中,2AB =,23sin 2cos 20B B --=,且点D 在线段BC 上.(Ⅰ)若34ADC π∠=,求AD 长; (Ⅱ)若2BD DC =,sin sin BADCAD∠=∠ABD ∆的面积.18. 在多面体ABCDEF 中,AF AD ⊥,四边形ABEF 为矩形,四边形ABCD 为直角梯形,90DAB ∠=︒,AB CD ∥,2AD AF CD ===,4AB =. (Ⅰ)求证:平面ACE ⊥平面BCE ; (Ⅱ)求二面角C AF D --的余弦值.19. 大豆,古称菽,原产中国,在中国已有五千年栽培历史。

2018年高考数学全国卷三理科试题(附答案)

2018年高考数学全国卷三理科试题(附答案)

2018年高考数学全国卷三理科试题(附答案) 2018年高考数学全国卷三理科考试已经落下帷幕,本试卷为考生带来了挑战,让大家从中更加深入的了解数学知识,本试卷的答案让大家从中收获了成长。

2018年高考数学全国卷三理科试题2018年高考数学全国卷三理科试题出炉,考生们做好了准备,及时解决遇到的问题,取得优异的成绩。

本次全国卷三包括4个部分组成,分别是选择题、填空题、解答题和分析题。

如下:一、选择题1. 若集合A={x|-2≤x≤2},集合B={x|x2<4},则A∩B= (A) {-2,2} (B) {-2,0,2} (C) {-1,1} (D) {0,2}2. 若平面上的两个点的坐标分别A(2,3),B(4,-3),那么它们之间的距离是(A)2(B)5(C)7(D)63. 若复数z1=1-i,z2=1+i,则z1、z2的共轭复数分别为(A)1-i,1+i(B)1+i,1-i(C)-1+i,-1-i(D)-1-i,-1+i4. 若函数y=3x3-6x2+9x+3在x=2处取得极值,则极大值为(A)-12(B)-9(C)15(D)185. 若两个圆O1,O2的半径分别是6,9,则O1, O2相切的条件是(A)r1=r2(B)r1+r2=15(C)r1-r2=3(D)r1+r2=3二、填空题1. 下列各式中,(1+√5)5次方的展开式中,常数项为a_1r_1+a_3r_3+a_5r_5,其中a_1,a_3,a_5分别为______,_______,_______。

答案:a_1=5 ; a_3=-5 ; a_5=12.函数f (x)=2x2+8x+9,x≤1时的最大值为_________。

答案:13三、解答题1.求实数a,b满足等式|a-3|-|b+3|=4的解。

答:解得a=-1、b=-72.曲线y=x3+3x2+3x+c的图象经过点(1,1),求参数c的值。

答:设y=x3+3x2+3x+c设点P(1,1)在曲线上,即1=1+3+3+cc=0四、分析题1.已知实数x,y满足约束条件2x+y≤12,x,y≥0,求此约束条件下的最大值。

2018年高中高考全国3卷理科数学带答案

2018年高中高考全国3卷理科数学带答案

2018年一般高等学校招生全国一致考试理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。

2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需变动,用橡皮擦洁净后,再选涂其余答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:此题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1.已知会合 A x|x 1≥0,B 0,1,2,则AIBA. 0 B.1 C.1,2 D.0,1,22.1 i 2 iA. 3 i B. 3 i C.3 i D.3 i3.中国古建筑借助榫卯将木构件连结起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右侧的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图能够是4.若sin1,则cos23A.8778 B.C.D.99995.x225的睁开式中x4的系数为xA.10B.20C.40D.806.直线x y20分别与x轴,y轴交于A,B两点,点P在圆x 222上,则ABP面积的2y取值范围是A.2,6B.4,8C.,D.22,32 2327.函数y x4x22的图像大概为1/108.某集体中的每位成品使用挪动支付的概率都为p ,各成员的支付方式互相独立,设X 为该集体的10位成员中使用挪动支付的人数, DX,PX 4PX6,则pA .0.7B .0.6C .0.4D .0.39.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC 的面积为a 2b 2c 2 ,则C4A .πB .πC .πD .π234610.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为A .123B .183C .243D .543F 1 ,F 2x2y2OF 211.设 是双曲线 C :a 2 b 2 1(a0,b 0)的左,右焦点, 是坐标原点.过作C 的一条渐近线的垂线,垂足为 P .若PF 16OP ,则C 的离心率为A .5B .2C .3D .212.设alog ,blog 2,则A .abab0B .abab0C .ab0abD .ab0ab二、填空题:此题共 4小题,每题 5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届全国高考考前信息卷(三)数学(理科)本试题卷共10页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A={x|x<2},B={y|y=2x﹣1},则A∩B=()A.(﹣∞,3)B.[2,3) C.(﹣∞,2)D.(﹣1,2)2.若(i为虚数单位,a,t∈R),则t+a等于()A.﹣1 B.0 C.1 D.23.已知圆锥曲线mx2+y2=1的一个焦点与抛物线x2=8y的焦点重合,则此圆锥曲线的离心率为()A.2 B.C.D.不能确定4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.2 B.3 C.4 D.55.定义在R上的函数f(x)=2|x﹣m|﹣1为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则()A.a<b<c B.a<c<b C.c<a<b D.c<b<a6.已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25 B.27 C.50 D.547.如图是某个几何体的三视图,则该几何体的体积是()A.B.2 C.3 D.48.若对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),|3x﹣4y+a|+|3x﹣4y﹣9|的取值与x,y无关,则实数a的取值范围是()A.a≤﹣4 B.﹣4≤a≤6 C.a≤﹣4或a≥6 D.a≥69.函数f(x)=cos(ωx+)(ω>0)在[0,π]内的值域为[﹣1,],则ω的取值范围是()A.[,]B.[,] C.[,+∞)D.[,]10.抛物线C:y2=4x的焦点为F,N为准线上一点,M为y轴上一点,∠MNF为直角,若线段MF的中点E在抛物线C上,则△MNF的面积为()A.B.C.D.11.体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是()A.[4π,12π]B.[8π,16π]C.[8π,12π]D.[12π,16π]12.设函数f(x)满足xf′(x)+f(x)=,f(e)=,则函数f(x)()A.在(0,e)上单调递增,在(e,+∞)上单调递减B.在(0,+∞)上单调递增C.在(0,e)上单调递减,在(e,+∞)上单调递增D.在(0,+∞)上单调递减二、填空题(本大题共4小题,每小题5分,共20分)13.(1+2x2)(x﹣)8的展开式中常数项为.14.已知向量||=2,与(﹣)的夹角为30°,则||最大值为.15.不等式组表示的平面区域为Ω,直线x=a(a>1)将Ω分成面积之比为1:4的两部分,则目标函数z=ax+y的最大值为.16.如图,在直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形(阴π()2dx=x3|影部分)绕x轴旋转一周得到一个圆锥,圆锥的体积V圆锥==.据此类比:将曲线y=x3(x≥0)与直线y=8及y轴所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=.三、解答题(本大题共5小题,共70分)17.数列{a n}的前n项和为S n,S n=(2n﹣1)a n,且a1=1.(1)求数列{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和T n.18.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.(Ⅰ)求进入决赛的人数;(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记X表示两人中进入决赛的人数,求X的分布列及数学期望;(Ⅲ)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.19.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.20.如图,椭圆C : =1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1、F 2,过点A 且斜率为的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点P 且斜率大于的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S△PAM:S △PBN =λ,求实数λ的取值范围.21.已知函数f (x )=axln (x +1)+x +1(x >﹣1,a ∈R ).(1)若,求函数f (x )的单调区间;(2)当x ≥0时,不等式f (x )≤e x 恒成立,求实数a 的取值范围.【选修4-4:参数方程与极坐标系】 22.已知曲线C 1的参数方程为(t 为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.( I )求曲线C 2的直角坐标系方程;( II )设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值.【选修4-5:不等式选讲】23.设函数f (x )=|x +|+|x ﹣2m |(m >0). (Ⅰ)求证:f (x )≥8恒成立;(Ⅱ)求使得不等式f (1)>10成立的实数m 的取值范围.2018届全国高考考前信息卷(三)数学(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A={x|x<2},B={y|y=2x﹣1},则A∩B=()A.(﹣∞,3)B.[2,3) C.(﹣∞,2)D.(﹣1,2)【考点】1E:交集及其运算.【分析】运用指数函数的值域,化简集合B,再由交集的定义,即可得到所求.【解答】解:集合A={x|x<2},由x∈R,2x>0,可得B={y|y=2x﹣1}={y|y>﹣1},则A∩B={m|﹣1<m<2}=(﹣1,2).故选:D.2.若(i为虚数单位,a,t∈R),则t+a等于()A.﹣1 B.0 C.1 D.2【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得t,a 的值,则答案可求.【解答】解:∵=,∴,解得.则t+a=﹣1,故选:A.3.已知圆锥曲线mx2+y2=1的一个焦点与抛物线x2=8y的焦点重合,则此圆锥曲线的离心率为()A.2 B.C.D.不能确定【考点】K8:抛物线的简单性质.【分析】求出抛物线的焦点坐标,然后求解m,即可求解圆锥曲线的离心率即可.【解答】解:抛物线x2=8y的焦点(0,2),圆锥曲线mx2+y2=1的一个焦点与抛物线x2=8y的焦点重合,可知圆锥曲线是焦点坐标在y轴上的双曲线,可得:=4,解得m=,则双曲线a=1,b=,c=2,离心率为:2.故选:A.4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.2 B.3 C.4 D.5【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.5.定义在R上的函数f(x)=2|x﹣m|﹣1为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则()A.a<b<c B.a<c<b C.c<a<b D.c<b<a【考点】3L:函数奇偶性的性质.【分析】由f(x)为偶函数便可得出f(x)=2|x|﹣1,从而可求出a,b,c的值,进而得出a,b,c的大小关系.【解答】解:f(x)为偶函数;∴m=0;∴f(x)=2|x|﹣1;∴a=f(log0.53)=,,c=f(0)=20﹣1=0;∴c<a<b.故选C.6.已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25 B.27 C.50 D.54【考点】84:等差数列的通项公式.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.7.如图是某个几何体的三视图,则该几何体的体积是()A.B.2 C.3 D.4【考点】L!:由三视图求面积、体积.【分析】作出棱锥的直观图,根据三视图数据代入计算即可.【解答】解:几何体为四棱锥,作出直观图如图所示:其中侧面PAB⊥底面ABCD,底面ABCD是直角梯形,PA=PB,由三视图可知,AB∥CD,AB=BC=2,CD=1,侧面PAB中P到AB的距离为h=,∴几何体的体积V===.故选A.8.若对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),|3x﹣4y+a|+|3x﹣4y﹣9|的取值与x,y无关,则实数a的取值范围是()A.a≤﹣4 B.﹣4≤a≤6 C.a≤﹣4或a≥6 D.a≥6【考点】7B:二元一次不等式(组)与平面区域;J9:直线与圆的位置关系.【分析】由题意可得故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作点P到直线m:3x﹣4y+a=0与直线l:3x﹣4y﹣9=0距离之和的5倍,,根据点到直线的距离公式解得即可.【解答】解:设z=|3x﹣4y+a|+|3x﹣4y﹣9|=5(+),故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作点P到直线m:3x﹣4y+a=0与直线l:3x﹣4y﹣9=0距离之和的5倍,∵取值与x,y无关,∴这个距离之和与P无关,如图所示:可知直线m平移时,P点与直线m,l的距离之和均为m,l的距离,即此时与x,y的值无关,当直线m与圆相切时,=1,化简得|a﹣1|=5,解得a=6或a=﹣4(舍去),∴a≥6故选:D.9.函数f(x)=cos(ωx+)(ω>0)在[0,π]内的值域为[﹣1,],则ω的取值范围是()A.[,]B.[,] C.[,+∞)D.[,]【考点】H7:余弦函数的图象.【分析】根据余弦函数的图象与性质,结合题意得出π≤ωπ+≤,从而求出ω的取值范围.【解答】解:函数f(x)=cos(ωx+)(ω>0),当x∈[0,π]时,f(x)∈[﹣1,],∴﹣1≤cos(ωx+)≤,画出图形如图所示;则π≤ωπ+≤,解得≤ω≤,∴ω的取值范围是[,].故选:D.10.抛物线C:y2=4x的焦点为F,N为准线上一点,M为y轴上一点,∠MNF 为直角,若线段MF的中点E在抛物线C上,则△MNF的面积为()A.B.C.D.【考点】K8:抛物线的简单性质.【分析】根据抛物线的性质和直角三角形的性质可知NE∥x轴,从而可得E点坐标,求出M、N的坐标,计算MN,NF即可求出三角形的面积.【解答】解:准线方程为x=﹣1,焦点为F(1,0),不妨设N在第三象限,∵∠MNF为直角,E是MF的中点,∴NE=MF=EF,∴NE∥x轴,又E为MF的中点,E在抛物线y2=4x上,∴E(,﹣),∴N(﹣1,﹣),M(0,﹣2),∴NF=,MN=,==.∴S△MNF故选C.11.体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是()A.[4π,12π]B.[8π,16π]C.[8π,12π]D.[12π,16π]【考点】LR:球内接多面体.【分析】先求出BC与R,再求出OE,即可求出所得截面圆面积的取值范围.【解答】解:设BC=3a,则R=2a,∵体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,∴=,∴h=,∵R2=(h﹣R)2+(a)2,∴4a2=(﹣2a)2+3a2,∴a=2,∴BC=6,R=4,∵点E为线段BD上一点,且DE=2EB,∴△ODB中,OD=OB=4,DB=6,cos∠ODB=,∴OE==2,截面垂直于OE时,截面圆的半径为=2,截面圆面积为8π,以OE所在直线为直径时,截面圆的半径为4,截面圆面积为16π,∴所得截面圆面积的取值范围是[8π,16π].故选:B.12.设函数f(x)满足xf′(x)+f(x)=,f(e)=,则函数f(x)()A.在(0,e)上单调递增,在(e,+∞)上单调递减B.在(0,+∞)上单调递增C.在(0,e)上单调递减,在(e,+∞)上单调递增D.在(0,+∞)上单调递减【考点】6A:函数的单调性与导数的关系;63:导数的运算;6B:利用导数研究函数的单调性.【分析】首先求出函数f(x),再求导,判断函数的单调性【解答】解:∵[x(f(x)]′=xf′(x)+f(x),∴[xf(x)]′==(+c)′∴xf(x)=+c∴f(x)=+∵f(e)=,∴=即c=∴f′(x)=﹣=﹣=﹣<0∴f(x)在(0,+∞)为减函数.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(1+2x2)(x﹣)8的展开式中常数项为﹣42.【考点】DC:二项式定理的应用.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4214.已知向量||=2,与(﹣)的夹角为30°,则||最大值为4.【考点】9R:平面向量数量积的运算.【分析】由题意画出以||,||为邻边做平行四边形ABCD,然后利用正弦定理求解.【解答】解:以||,||为邻边做平行四边形ABCD,设=,=,则=,由题意∠ADB=30°,设∠ABD=θ,∵||=2,∴在△ABD中,由正弦定理可得,=,∴AD=4sinθ≤4.即||的最大值为4.故答案为:4.15.不等式组表示的平面区域为Ω,直线x=a(a>1)将Ω分成面积之比为1:4的两部分,则目标函数z=ax+y的最大值为9.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,结合已知求得a,得到线性目标函数,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,1).联立,解得B(﹣1,1).∵直线x=a(a>1)将Ω分成面积之比为1:4的两部分,∴,解得a=2.∴目标函数z=ax+y=2x+y,化为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,z有最大值为9.故答案为:9.16.如图,在直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形(阴π()2dx=x3|影部分)绕x轴旋转一周得到一个圆锥,圆锥的体积V圆锥==.据此类比:将曲线y=x3(x≥0)与直线y=8及y轴所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=.【考点】6M:用定积分求简单几何体的体积.【分析】由曲线y=x3(x≥0)求出x=,类比得出旋转体的体积为V=π•dy.【解答】解:根据题意,由曲线y=x3(x≥0)得出x==;类比得出旋转体的体积为V=π•dy=πdy=•=×25=.故答案为:.三、解答题(本大题共5小题,共70分)17.数列{a n}的前n项和为S n,S n=(2n﹣1)a n,且a1=1.(1)求数列{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)将n换为n﹣1,两式相减,可得{a n}是一个以1为首项,为公比的等比数列,运用等比数列的通项公式即可得到;(2)求得b n=na n=n•()n﹣1.再由数列的求和方法:错位相减法,结合等比数列的求和公式即可得到所求和.【解答】解:(1)由,可得(n≥2),两式相减,得,,即,故{a n}是一个以1为首项,为公比的等比数列,所以,n∈N*;(2)b n=na n=n•()n﹣1.T n=b1+b2+b3+…+b n=,①=,②①﹣②,得,所以.18.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.(Ⅰ)求进入决赛的人数;(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记X表示两人中进入决赛的人数,求X的分布列及数学期望;(Ⅲ)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图;CH:离散型随机变量的期望与方差.【分析】(Ⅰ)由频率分直方图求出第6小组的频率,从而求出总人数,进而得到第4、5、6组成绩均进入决赛,由此能求出进入决赛的人数.(Ⅱ)由题意知X的可能取值为0,1,2,进入决赛的概率为,从而X~,由此能求出X的分布列及数学期望.(Ⅲ)设甲、乙各跳一次的成绩分别为x、y米,则基本事件满足的区域为:,由此利用几何概型能求出甲比乙远的概率.【解答】解:(Ⅰ)第6小组的频率为1﹣(0.04+0.10+0.14+0.28+0.30)=0.14,∴总人数为(人).…∴第4、5、6组成绩均进入决赛,人数为(0.28+0.30+0.14)×50=36(人)即进入决赛的人数为36.…(Ⅱ)由题意知X的可能取值为0,1,2,进入决赛的概率为,∴X~,,P(X=1)=,.…∴所求分布列为:,两人中进入决赛的人数的数学期望为.…(Ⅲ)设甲、乙各跳一次的成绩分别为x、y米,则基本事件满足的区域为:,事件A“甲比乙远的概率”满足的区域为x>y,如图所示.…∴由几何概型P(A)==.即甲比乙远的概率为.…19.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【分析】(1)利用勾股定理的逆定理得出AE⊥DE,由AF⊥平面PED得DE⊥AF,故而DE⊥平面PAE,于是DE⊥PA,结合PA⊥AD得出PA⊥平面ABCD;(2)以E为原点建立空间坐标系,求出平面ADF的法向量,则|cos<>|为直线BF与平面AFD所成角的正弦值.【解答】解:(1)连接AE,∵AF⊥平面PED,ED⊂平面PED,∴AF⊥ED,在平行四边形ABCD中,BC=2AB=4,∠ABC=60°,∴AE=2,,∴AE2+ED2=AD2,∴AE⊥ED,又∵AF∩AE=A,AF⊂平面PAE,PA⊂平面PAE,∴ED⊥平面PAE,∵PA⊂平面PAE,∴ED⊥PA,又PA⊥AD,AD∩ED=D,AE⊂平面ABCD,AD⊂平面ABCD,∴PA⊥平面ABCD.(2)以E为坐标原点,以EA,ED为x轴,y轴建立如图所示的空间直角坐标系,则A(0,2,0),,,∵AF⊥平面PED,所以AF⊥PE,又F为PE中点,∴PA=AE=2,∴P(0,2,2),F(0,1,1),∴,,,设平面AFD的法向量为,由,得,,令x=1,得.设直线BF与平面AFD所成的角为θ,则:,即直线BF与平面AFD所成角的正弦值为.20.如图,椭圆C : =1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1、F 2,过点A 且斜率为的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点P 且斜率大于的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S △PAM :S △PBN =λ,求实数λ的取值范围.【考点】KP :圆锥曲线的范围问题;K3:椭圆的标准方程.【分析】(Ⅰ)利用已知条件列出方程组,求解椭圆的几何量,然后求解椭圆C 的方程.(Ⅱ)利用三角形的面积的比值,推出线段的比值,得到.设MN 方程:y=kx ﹣1,M (x 1,y 1),N (x 2,y 2),联立方程,利用韦达定理,求出,解出,将椭圆方程,然后求解实数λ的取值范围.【解答】解:(Ⅰ)因为BF 1⊥x 轴,得到点,所以,所以椭圆C 的方程是.(Ⅱ)因为,所以.由(Ⅰ)可知P(0,﹣1),设MN方程:y=kx﹣1,M(x1,y1),N(x2,y2),联立方程得:(4k2+3)x2﹣8kx﹣8=0.即得(*)又,有,将代入(*)可得:.因为,有,则且λ>2.综上所述,实数λ的取值范围为.21.已知函数f(x)=axln(x+1)+x+1(x>﹣1,a∈R).(1)若,求函数f(x)的单调区间;(2)当x≥0时,不等式f(x)≤e x恒成立,求实数a的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)记g(x)=f(x)﹣e x(x≥0),g(0)=0,求出函数的导数,记h(x)=a[ln(x+1)+1﹣]+1﹣e x,通过讨论a的范围,求出函数的单调性,从而确定a 的具体范围即可.【解答】解:(1)a=时,f(x)=xln(x+1)+x+1,f′(x)= [ln(x+1)+1﹣]+1,∵f′(x)在(﹣1,+∞)递增,且f′(﹣1+)=0,故x∈(﹣1,﹣1+)时,f′(x)<0,f(x)递减,x∈(﹣1+,+∞)时,f′(x)>0,f(x)递减,故f(x)在(﹣1,﹣1+)递减,在(﹣1+,+∞);(2)记g(x)=f(x)﹣e x(x≥0),g(0)=0,则g′(x)=a[ln(x+1)+1﹣]+1﹣e x,记h(x)=a[ln(x+1)+1﹣]+1﹣e x,h′(x)=a[+]﹣e x,h′(0)=2a﹣1,①a≤时,∵ +∈(0,2],e x≥1,∴h′(x)≤0,h(x)在(0,+∞)递减,则h(x)≤h(0)=0,即g′(x)≤0,∴g(x)在(0,+∞)递减,∴g(x)≤g(0)=0恒成立,即f(x)≤e x恒成立,满足题意;②a≥时,h′(x)在(0,+∞)递减,又h′(0)=2a﹣1>0,x→+∞时,h′(x)→﹣∞,则必存在x0∈(0,+∞),使得h′(x0)=0,则x∈(0,x0)时,h′(x)>0,h(x)在(0,x0)递增,此时h(x)>h(0)=0,x∈(0,x0)时,g′(x)>0,∴g(x)在(0,x0)递增,∴g(x)>g(0)=0,即f(x)>e x,不合题意,综上,a≤.【选修4-4:参数方程与极坐标系】22.已知曲线C1的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(I)求曲线C2的直角坐标系方程;(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(Ⅰ)把变形,得到ρ=ρcosθ+2,结合x=ρcosθ,y=ρsinθ得答案;(Ⅱ)由(t为参数),消去t得到曲线C1的直角坐标方程为2x+y+4=0,由M1是曲线C1上的点,M2是曲线C2上的点,把|M1M2|的最小值转化为M2到直线2x+y+4=0的距离的最小值.设M2(r2﹣1,2r),然后由点到直线的距离公式结合配方法求解.【解答】解:(I)由可得ρ=x﹣2,∴ρ2=(x﹣2)2,即y2=4(x﹣1);(Ⅱ)曲线C1的参数方程为(t为参数),消去t得:2x+y+4=0.∴曲线C1的直角坐标方程为2x+y+4=0.∵M1是曲线C1上的点,M2是曲线C2上的点,∴|M1M2|的最小值等于M2到直线2x+y+4=0的距离的最小值.设M2(r2﹣1,2r),M2到直线2x+y+4=0的距离为d,则d==≥.∴|M1M2|的最小值为.【选修4-5:不等式选讲】23.设函数f(x)=|x+|+|x﹣2m|(m>0).(Ⅰ)求证:f(x)≥8恒成立;(Ⅱ)求使得不等式f(1)>10成立的实数m的取值范围.【考点】R5:绝对值不等式的解法;3R:函数恒成立问题.【分析】(Ⅰ)利用绝对值三角不等式、基本不等式证得f(x)≥8恒成立.(Ⅱ)当m>时,不等式即+2m>10,即m2﹣5m+4>0,求得m的范围.当0<m≤时,f(1)=1++(1﹣2m)=2+﹣2m关于变量m单调递减,求得f(1)的最小值为17,可得不等式f(1)>10恒成立.综合可得m的范围.【解答】(Ⅰ)证明:函数f(x)=|x+|+|x﹣2m|(m>0),∴f(x)=|x+|+|x﹣2m|≥|x+﹣(x﹣2m)|=|+2m|=+2m≥2=8,当且仅当m=2时,取等号,故f(x)≥8恒成立.(Ⅱ)f(1)=|1+|+|1﹣2m|,当m>时,f(1)=1+﹣(1﹣2m),不等式即+2m>10,化简为m2﹣5m+4>0,求得m<1,或m>4,故此时m的范围为(,1)∪(4,+∞).当0<m≤时,f(1)=1++(1﹣2m)=2+﹣2m关于变量m单调递减,故当m=时,f(1)取得最小值为17,故不等式f(1)>10恒成立.综上可得,m的范围为(0,1)∪(4,+∞).。

相关文档
最新文档