弧、弦、圆心角的关系
圆心角与弦、弧之间的关系

:
辫 如图,  ̄A C I B D的顶点A为圆心,B为半径作圆, ) 2 A 交
A B D, C于 E, 延长 F,
证明
。 .
面. 而 . 都搪 七 即可.
交 o 于 G 求证 : = . 廓
连接
‘
在 同 圆或等 圆 中 , 圆心 角 、 和 弦三者 之 问有 下列 关 系 : 弧
1 定理 . 在 同 圆或 等 圆 中 ,相 等 的 圆心 角 所对 的弧 相等 . 所
对 的弦也 相等 . 几何 表达 式
注意
下罔.
应刚定理时 , 在同圆 “
如 图 , QO 中 ,・ AO : C D0. B 面 , : D. 在 ・ . B O A : AB C — 2 推论 . 在 同圆 或 等 圆 中 , 等 的 两 条 弧 、 条 弦 、 个 圆心 相 两 两
在 同 心 圆 00 巾 . 4O = B
C OD. 但 ≠C AB≠C — D. D.
O = C D. B O
此 定理 是证 明弧等 、 等 、 角 弦等 的 另一 个基 本方 法.
3 圆心 角 的度数 等 于 圆心 角所对 弧 的度 数. .
倒 1 如图, A = C 求证 :B C 已知 D B , A =D
日= 4F-. B= 1 . .L .
・
.
‘
D C l /2 LB 3 ∥B . = , = .
2 3 : . . : ・ . 威
即
1 5
浑 浑 噩 噩 的人 生 是 不 值 得 过 的人 ห้องสมุดไป่ตู้ 。— — 苏 格 拉 底
弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
圆心角、弧、弦之间的关系 衡水中学内部资料 精品教学课件

C )
︵ 11.如图,已知 AB 是⊙O 的直径,C,D 是BE上的三等分点, ∠AOE=60°,则∠COE 等于( A.40° C.80° B.60° D.120° C )
12.如图,在⊙O 中,A,C,D,B 是⊙O 上四点,OC,OD 交 AB 于点 E,F,且 AE=FB,则下列结论不正确的是( ︵ ︵ A.OE=OF B.AC=BD C.AC=CD=DB D.CD∥AB C )
︵ 5.(5 分)如图,AB 是AB所对的弦,AB 的垂直平分线 CD 分别交 ︵ ︵ AB于点 C、交 AB 于点 D,AD 的垂直平分线 EF 分别交AB于点 E、交 ︵ AB 于点 F,DB 的垂直平分线 GH 分别交AB于点 G、交 AB 于点 H, 下列结论不正确的有( D ) ︵ ︵ ︵ ︵ A.AC=CB B.EC=CG ︵ ︵ C.EF=GH D.AE=EC
25 π cm2 . 4
一、选择题(每小题 4 分,共 16 分) 9.下列说法中,正确的是( B ) A.等弦所对的弧相等 B.等弧所对的弦相等 C.圆心角相等,所对的弦相等 D.弦相等,所对的圆心角相等 ︵ ︵ 10.在⊙O 中,AB=2CD,则下列结论正确的是( A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确
【综合运用】 19.(10 分)如图,以⊙O 的直径 BC 为一边作等边△ABC,AB, ︵ ︵ ︵ AC 交⊙O 于点 D,E,求证:BD=DE=EC.
解:连接 OD,OE,∵OB=OD,∠B=60°, ∴∠BOD=60°,同理∠COE=60°, ∴∠BOD=∠COE=∠DOE=60°, ︵ ︵ ︵ BD=DE=EC
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分英语141 分 文综255分
24.1.3弧、弦、圆心角的关系

弧
弦
相等
相等
思考:如图,在等圆中,如果∠AOB=∠A′O ′ B′, 你发现的等量关系是否依然成立?为什么?
A
B
A′
B′Leabharlann ·O· O′由∠AOB=∠A′O ′ B′︵可得到:︵
AB A' B '.
AB A' B '.
小结
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
圆心角 相等
(1)如果AB=CD,那么_A__B___=__C__D_,_____A_O_B_____C_O_D___.
(2)如果 AB = CD ,那么___A_B_=__C_D____,__A_O_B_____C_O__D_. (3)如果∠AOB=∠COD,那么___A_B___=___C_D__,___A_B_=__C_D_.
弧 相等
弦 相等
思考
定理“在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么?
温馨提示:
由弦相等推出弧相等时, 这里弧一般要求 都是优弧或劣弧
探究二 在同圆中, ︵︵ (1)、如果 AB A' B '. 那么∠AOB=∠A′OB ′, AB A' B '. 成立吗 ?
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?
为什么? 答 :OE﹦OF 证明:∵ OE⊥AB OF ⊥CD
A
E
B
·O
D
∵ AB﹦CD ∴ AE﹦CF
F
∵ OA﹦OC ∴ RT△AOE≌RT △COF C
∴ OE﹦OF
弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)责编:康红梅【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
圆心角弧弦之间的关系课件

在几何中,圆心角、弧和弦是圆形中的三个基本概念。它们之间有着密切的 关系和数学公式,通过本课件将深入探讨它们间的关联和实际应用。
圆心角的定义
圆心角是指以圆心为顶点,两条与圆相交的射线所夹的角度。
弧的定义
弧长
弧长是指弧上的一段线段的长度。
对应弧
对应弧是指与圆心角相对应的弧。
弦弧中点角
弦弧中点角是指弦所对应的弧的一半的圆心角。
弦的定义
1 中心弦
中心弦是指连接圆的两个不同点,并通过圆心的弦。
2 切线弦
切线弦是指与圆相切并通过圆心的弦。
3 弦弧中点角和弦角
弦弧中点角和弦角是弦所对应的圆心角。
圆心角和弧的关系
1
圆心角和对应弧的关系2圆心角等于对来自弧所包含的弧度数的两倍。
3
圆心角度数等于对应弧的弧度数
圆心角的度数等于对应弧的弧度数。
圆心角和弧长的关系
圆心角的度数等于弧长除以圆的半径。
圆心角和弦的关系
圆心角和弦垂直
圆心角和弦的所对应的两条弧都 与弦垂直。
圆心角是所对应弦弧中点 角的两倍
圆心角的度数等于所对应弦弧中 点角度数的两倍。
所对应弦弧中点角是圆心 角的一半
所对应弦弧中点角的度数等于圆 心角度数的一半。
圆心角和弧弦的计算公式
圆心角 圆心角 弦角 弦弧中点角
弧长/圆半径 弧对应的弧度数 圆心角的一半 圆心角/2
实际问题的应用
建筑设计
在建筑设计中,圆心角和弦的 关系可用于计算建筑物的弧线 结构。
车辆转弯
在车辆转弯的计算中,圆心角 和弦的关系可用于确定转弯半 径和最佳转弯角度。
天文学
在天文学中,圆心角和弧的关 系可用于计算星体之间的距离 和角度。
弧、弦、圆心角的关系

M
N
今天作业 课本第94页 3,10
·
把圆O的半径ON绕圆心O旋转任意一个角度,
N O
把圆O的半径ON绕圆心O旋转任意一个角度,
N' N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度, 由此可以看出,点N'仍落在圆上。
N' N
O
定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合( 圆的旋转不变性) 。
A 求证:∠AOB=∠BOC=∠AOC
证明: ∵ A⌒B=A⌒C
∴ AB=AC, △ABC是等腰
O
三角形.
又 ∠ACB=60° ,
B
C
∴ △ABC是等边三角形,
∴ AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
例如图,AC与BD为⊙O的两条
互相垂直的直径
求证:A⌒B=B⌒C=C⌒D=D⌒A;
反馈练习
1、在⊙O中,AB⌒=AC⌒,∠AOB=70°,E
则∠AOC =
70°
D C
2、如图,AB是⊙O 的直径,
A
·
O
B
,∠COD=35°,
则∠AOE 的度数是 75°
3、在⊙O中,弦AB所对的劣弧
为圆的1/3,圆的半径为2㎝,那么
AB =
㎝
九年级数学 圆 第二讲 弧、弦、圆心角的对应关系

AB 3
3
3
∴ AM MN NB
A
M
NБайду номын сангаасO
B
E
F
C
A
MN O
B
E
F
解析二:
连结 OE,易知 OE 与半径的比.
AC ,也可求得 AM ,进而可求得 AM MO
证法二:
如图,连结 OE,设 AC=2a,则 AC=AB=2OE=2a
∵ CAM AOC 60 ,∴ AC OE , C
∴ OM OE a 1 AM AC 2a 2
60
,
AO
EO
a
,
C
∴ AOE 为等边三角形,∴ AE AO a
又∵ EAO CBA 60 ,∴ AE BC
∴ AME BMC ,∴ AM AE a 1 ,∴ AM 1
BM BC 2a 2
AB 3
同理: BN 1 ,∴ MN AB 2 AB 1 AB ,
第二讲 弧、弦、圆心角的对应关系
课标引路
必备解题知识
圆心角
弧
弦
弦心距
必备解题 知识
圆心角 定理
垂径定 理
圆心角 定理
圆心角概念
抓两点
圆心角定理推 论使用前提条 件
注意 必须在同 圆或者等圆中
必备解题知识
圆心角
弧
弦
弦心距
必备解题 知识
圆心角 定理
垂径定 理
圆心角 定理
注意:这里说的相等是指角 的度数与弧的度数相等.而 不是角与弧相等,在书写时
证明三:连结 AE,并延长交 CO 的延长线于 G
设 AC=2a,则有 AE=OA=a(证法一中已证明△AOE 为等边三角形)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、一个圆绕着它的圆心旋转180 °,你会发现什么? 发现:和原来的图形完全重合。即圆是中心对称图形, 圆心是它的对称中心。 2、一个圆绕着它的圆心旋转任意一个角度,你会发现什么?
发现:旋转之后的图形与原来的图形完全重合。
这是圆特有的一个性质,叫做圆的旋转 不变性。
二: 圆心角的概念
(2)如果 AB CD ,那么____________ , AB=CD AOB COD _____________ . (3)如果∠AOB=∠COD,那么 AB=CD . _____________ AB CD ,_________
A E
B
O
·
F
D
C
如图,AB、CD是⊙O的两条弦.
∴ AB与A ' B ' 重合,AB与A′B′重合.
A
AB A ' B '
AB A ' B '.
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦也相等. 前提条件 在同圆或等圆中,相等的弧所对的圆心角 相等, 所对的弦________ 相等 ; _____
同圆或等圆中, 两个圆心角、两 条弧、两条弦、 两条弦心距中 有一组量相等, 它们所对应的其 余各组量也相 等.
问题: 1、找出图中所出现的角(一般是小于180°的角) 2、观察这些角之间有什么共同点 ∠AOB 、 ∠COD、 ∠BOC、 ∠AOD 角:
B A
共同点:顶点都在圆心
圆心角:把顶点在圆心的角叫做 圆心角.
O C D
三、狐、弦、圆心角的关系 探 究
如图,将圆心角∠AOB绕圆心O旋转到 ∠A’OB’ 的位置,你能发现哪些等量关系?为什么?
(4)如果AB=CD,OE⊥AB于E,OF⊥CD 于F,OE与OF相等吗?为什么?
A E B
OE OF ,
O 证明: OE AB, OF CD 1 1 AE AB, CF CD 2 2 C 又 AB=CD AE=CF 又 OA=OC Rt AOE Rt COF
在同圆或等圆中,相等的弦所对的圆心角
相等 ,所对的弧_________ 相等 . ______ 思考:在同圆或等圆中,如果弦心距相等,那么与弦心距 相关的弦有什么关系?
例1:如图,在⊙O中, 1 45,求∠2的度 AC=BD, 数。
解: ∵ AC=BD (已知)
∴ AC-BC=BD-BC (等式的性质) ∴ AB=CD (在同圆中,相等的弧所 对的圆心角相等) ∴ ∠1=∠2=45°
例2 如图, 在⊙O中, AB=AC ,∠ACB=60°,
求证∠AOB=∠BOC=∠AOC.
A
证明:
∵
AB=AC
O B
∴ AB=AC. 又∠ACB=60°, ∴ AB=BC=CA. ∴ ∠AOB=∠BOC=∠AOC.
·
C
练习
1、 如图,AB、CD是⊙O的两条弦.
AB CD , (1)如果AB=CD,那么___________ AOB COD . _________________
A′
B B′ B′
A′
B
O
·
A
O
·
A
A′
根据旋转的性质,将圆
B
B′
O
·
A′
B
A
心角∠AOB绕圆心O旋转到 ∠A′OB′的位置时, ∠AOB= ∠A′OB′,射线 OA与OA′重合, OB与OB′重合.而同圆的半径 相等,OA=OA′,OB=OB′, ∴点 A与 A′重合,B与B′重 合.
B′
· O
·
F
D
OE OF .
பைடு நூலகம்、(1)判断下列说法是否正确:
A、相等的圆心角所对的弧相等。(
×)
B 1 A
B、相等的弧所对的弦相等。( × ) C、相等的弦所对的弧相等。( (2)如图,⊙O中,AB=CD,
×)
C D 2 O
1 50
o 2 ____ 50 .