2013中考数学精选例题解析 函数与一元二次方程

合集下载

2013年全国中考数学试题分类解析汇编专题9一元二次方程修改

2013年全国中考数学试题分类解析汇编专题9一元二次方程修改

2013年全国中考数学试题分类解析汇编 专题:一元二次方程一、选择题1. (2012天津市3分)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1≠x 2,有下列结论:①x 1=2,x 2=3; ②1m 4>-;③二次函数y=(x -x 1)(x -x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【 】 (A )0 (B )1 (C )2(D )32. (2012广东佛山3分)用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是【 】 A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=75. (2012湖北武汉3分)若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是【 】 A .-2 B .2 C .3 D .16. (2012湖北荆门3分)用配方法解关于x 的一元二次方程x 2﹣2x ﹣3=0,配方后的方程可以是【 】 A .(x ﹣1)2=4 B .(x+1)2=4 C .(x ﹣1)2=16 D .(x+1)2=167. (2012湖北天门、仙桃、潜江、江汉油田3分)如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,那么a 的值为【 】 A .3 B .﹣3 C .13 D .﹣139. (2012湖北襄阳3分)如果关于x 的一元二次方程2kx 10+=有两个不相等的实数根,那么k 的取值范围是【 】 A .k <12 B .k <12且k≠0 C .﹣12≤k<12 D .﹣12≤k<12且k≠010. (2012湖南常德3分)若一元二次方程2x 2x m 0++=有实数解,则m 的取值范围是【 】 A. m 1≤- B. m 1≤ C. m 4≤ D.m 12≤11. (2012湖南株洲3分)已知关于x 的一元二次方程x 2﹣bx+c=0的两根分别为x 1=1,x 2=﹣2,则b 与c 的值分别为【 】 A .b=﹣1,c=2 B .b=1,c=﹣2 C .b=1,c=2 D .b=﹣1,c=﹣212. (2012四川攀枝花3分)已知一元二次方程:x 2﹣3x ﹣1=0的两个根分别是x 1、x 2,则x 12x 2+x 1x 22的值为【 】 A . ﹣3B . 3C . ﹣6D . 613. (2012四川广安3分)已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l=0有两个不相等的实数根,则a 的取值范围是【 】 A .a >2 B .a <2 C .a <2且a≠l D.a <﹣214. (2012四川泸州2分)若关于x 的一元二次方程x 2-4x + 2k = 0有两个实数根,则k 的取值范围是【 】A 、k≥2B 、k≤2C 、k >-2D 、k <-215. (2012四川南充3分)方程x (x-2)+x-2=0的解是【 】 (A )2 (B )-2,1 (C )-1 (D )2,-1 16. (2012贵州安顺3分)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是【 】 A . 1B . ﹣1C . 0D . 无法确定17. (2012山东东营3分)方程()21k 1x =04-有两个实数根,则k 的取值范围是【 】.A . k≥1B . k≤1 C. k>1D . k<118. (2012山东莱芜3分)已知m 、n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为【 】 A .9 B .±3 C.3 D .520. (2012山东日照4分)已知关于x 的一元二次方程(k -2)2x 2+(2k +1)x +1=0有两个不相等的实数根,则k 的取值范围是【 】 (A) k>34且k≠2 (B)k≥34且k ≠2 (C) k >43且k≠2 (D)k≥43且k≠2 21. (2012山东烟台3分)下列一元二次方程两实数根和为﹣4的是【 】 A .x 2+2x ﹣4=0 B .x 2﹣4x+4=0 C .x 2+4x+10=0 D .x 2+4x ﹣5=0 23. (2012广西河池3分)一元二次方程2x 2x 20++=的根的情况是【 】A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根29. (2012内蒙古呼和浩特3分)已知:x 1,x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是【 】 A .a=﹣3,b=1 B .a=3,b=1 C .3a=2-,b=﹣1D .3a=2-,b=130. (2012内蒙古包头3分)关于x 的一元二次方程()2x mx+5m 5=0--的两个正实数根分别为x 1,x 2,且2x 1+x 2=7,则m 的值是【 】 A.2 B. 6 C. 2或6 D . 7 二、填空题1. (2012北京市4分)若关于x 的方程2x 2x m=0--有两个相等的实数根,则m 的值是 .2. (2012上海市4分)如果关于x 的一元二次方程x 2﹣6x+c=0(c 是常数)没有实根,那么c 的取值范围是 . 5. (2012江苏常州2分)已知关于x 的方程22x mx 6=0--的一个根是2,则m= ,另一根为 。

2013年全国各地中考数学-一元二次方程

2013年全国各地中考数学-一元二次方程

2013年中考数学一元二次方程试题分类精编1、(2013•郴州)已知关于x 的一元二次方程x 2+bx +b ﹣1=0有两个相等的实数根,则b 的值是 .2、(2013,娄底)已知:一元二次方程021212=-++k kx x . (1)求证:不论k 为何实数时,此方程总有两个实数根;(2)设0<k ,当二次函数21212-++=k kx x y 的图象与x 轴的两个交点A 、B 间的距离为4时,求此二次函数的解析式;3.方程x 2﹣9x +18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .4、(2004•广东)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.5、(2013•达州)若方程2360x x m -+=有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是( )6.(2013。

成都)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?7、(2013•乐山)已知一元二次方程x 2-(2k +1)x +k 2+k =0 .(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值.8、(2013•泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( )A .1k >-B .1k <且0k ≠C . 1k ≥-且0k ≠D . 1k >-且0k ≠9、(2013•泸州)设12,x x 是方程2330x x +-=的两个实数根,则2112x x x x +的值为( ) A .5 B .-5 C .1 D .-110、(2013•眉山)已知关于x 的一元二次方程032=--x x 的两个实数根分别为α、β,则(α+3)(β+3)=______11、(2013•绵阳)已知整数k <5,若△ABC 的边长均满足关于x的方程280x -+=,则△ABC的周长是 。

【2013年中考攻略】专题3:一元二次方程根的判别式应用探讨

【2013年中考攻略】专题3:一元二次方程根的判别式应用探讨

一元二次方程根的判别式应用探讨一元二次方程,就是只有一个未知数且未知数最高次数为2的整式方程,其一般形式为ax 2+bx+c=0(a≠0)。

在系数a ≠0的情况下,Δ=b 2-4ac>0时,方程有2个不相等的实数根;Δ=b 2-4ac =0时,方程有两个相等的实数根;Δ=b 2-4ac <0时,方程无实数根。

反之,若方程有2个不相等的实数根,则Δ=b 2-4ac>0;若方程有两个相等的实数根,则Δ=b 2-4ac =0;若无实数根,则Δ=b 2-4ac <0。

因此,Δ=b 2-4ac 称为一元二次方程根的判别式。

根的判别式b 2-4ac 的使用条件,是在一元二次方程中,而非别的方程中,因此,解题过程中要注意隐含条件a ≠0。

使用判别式之前一定要先把方程变化为一般形式,以便正确找出a 、b 、c 的值。

一元二次方程根的判别式在初中数学中有着广泛的应用,也是中考必考内容,并占有一定的份量。

将其应用归纳为直接应用和综合应用两方面,直接应用包括①不解一元二次方程,判断(证明)根的情况、②根据方程根的情况,确定待定系数的取值范围、③限制一元二次方程的根与系数关系的应用;综合应用包括④判断二次三项式是完全平方式时的待定系数、⑤判断双曲线与直线的公共点个数、⑥判断抛物线与直线(含x 轴)的公共点个数。

下面通过近年全国各地中考的实例探讨其应用。

一.不解一元二次方程,判断(证明)根的情况:例1:(2012广西河池3分)一元二次方程2x 2x 20++=的根的情况是【 】 A .有两个相等的实数根 B .有两个不相等的实数根C .只有一个实数根D .无实数根练习题:1(2012广东珠海6分)已知关于x 的一元二次方程x 2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根。

2. (2011福建福州4分)一元二次方程x (x ﹣2)=0根的情况是 【 】A 、有两个不相等的实数根B 、有两个相等的实数根C 、只有一个实数根D 、没有实数根3. (2011福建福州4分)一元二次方程x (x ﹣2)=0根的情况是 【 】A 、有两个不相等的实数根B 、有两个相等的实数根C 、只有一个实数根D 、没有实数根4. (2011内蒙古包头3分)一元二次方程x 2+x+ 1 4=0的根的情况是【 】A 、有两个不等的实数根B 、有两个相等的实数根C 、无实数根D 、无法确定 二. 根据方程根的情况,确定待定系数的取值范围:典型例题:例1:(2012湖北襄阳3分)如果关于x 的一元二次方程k x 10=有两个不相等的实数根,那么k 的取值范围是【 】A .k <12B .k <12且k≠0C .﹣12≤k <12D .﹣12≤k <12且k≠0 例3:(2012湖南常德3分)若一元二次方程2x 2x m 0++=有实数解,则m 的取值范围是【 】A. m 1≤-B. m 1≤C. m 4≤D.m 12≤ 例6:(2012湖北孝感12分)已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1、x 2是原方程的两根,且|x 1-x 2|=,求m 的值和此时方程的两根。

中考数学精选例题解析函数与一元二次方程

中考数学精选例题解析函数与一元二次方程

二次函数与一元二次方程知识考点:1、理解二次函数与一元二次方程之间的关系;2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x 轴的交点情况;3、会利用韦达定理解决有关二次函数的问题。

精典例题:【例1】已抛物线1)2()1(2--+-=x m x m y (m 为实数)。

(1)m 为何值时,抛物线与x 轴有两个交点?(2)如果抛物线与x 轴相交于A 、B 两点,与y 轴交于点C ,且△ABC 的面积为2,求该抛物线的解析式。

【例2】已知抛物线)6(2)8(222+++-=m x m x y 。

(1)求证:不论m 为任何实数,抛物线与x 轴有两个不同的交点,且这两个点都在x 轴的正半轴上;(2)设抛物线与y 轴交于点A ,与x 轴交于B 、C 两点,当△ABC 的面积为48平方单位时,求m 的值。

(3)在(2)的条件下,以BC 为直径作⊙M ,问⊙M 是否经过抛物线的顶点P ?探索与创新:【问题】如图,抛物线4)(22c x b a x y ++-=,其中a 、b 、c 分别是△ABC 的∠A 、∠B 、∠C 的对边。

(1)求证:该抛物线与x 轴必有两个交点;(2)设有直线bc ax y -=与抛物线交于点E 、F ,与y 轴交于点M ,抛物线与y 轴交于点N ,若抛物线的对称轴为a x =,△MNE 与△MNF 的面积之比为5∶1,求证:△ABC 是等边三角形;(2)当3=∆ABC S 时,设抛物线与x 轴交于点P 、Q ,问是否存在过P 、Q 两点且与y 轴相切的圆?若存在这样的圆,求出圆心的坐标;若不存在,请说明理由。

跟踪训练:yx问题图EQ FPM O N一、选择题:1、已知抛物线m x m x y +-+=)1(52与x 轴两交点在y 轴同侧,它们的距离的平方等于2549,则m 的值为( ) A 、-2 B 、12 C 、24 D 、-2或24 2、已知二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图像交于点A (-2,4),B (8,2),如图所示,则能使21y y >成立的x 的取值范围是( )A 、2-<xB 、8>xC 、82<<-xD 、2-<x 或8>xyx第2题图B AOyx第3题图EBAOyx第4题图BAO3、如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A 、B 、E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系:①0=+c a ;②0=b ;③1-=ac ;④2c S A B E =∆其中正确的有( )A 、4个B 、3个C 、2个D 、1个 4、设函数1)1(22++-+-=m x m x y 的图像如图所示,它与x 轴交于A 、B 两点,线段OA 与OB 的比为1∶3,则m 的值为( ) A 、31或2 B 、31C 、1D 、2 二、填空题:1、已知抛物线23)1(2----=k x k x y 与x 轴交于两点A (α,0),B (β,0),且1722=+βα,则k = 。

2013年函数中考试题解析

2013年函数中考试题解析

1.(2013山西。

14分 )(本题14分)综合与探究:如图,抛物线213442y x x =--与x 轴交于A,B 两点(点B 在点A 的右侧)与y 轴交于点C,连接BC,以BC 为一边,点O 为对称中心作菱形BDEC,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q(1)求点A,B,C 的坐标。

(2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M,N 。

试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由。

(3)当点P 在线段EB 上运动时,是否存在点 Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由。

解析:(1)当y=0时,2134042x x --=,解得,122,8x x =-= ∵点B 在点A 的右侧,∴点A,B 的坐标分别为:(-2,0),(8,0) 当x=0时,y=-4 ∴点C 的坐标为(0,-4),(2)由菱形的对称性可知,点D 的坐标为(0,4).设直线BD 的解析式为y =kx +b ,则480b k b ì=ïí+=ïî.解得,k=12-,b=4.∴直线BD 的解析式为142y x =-+. ∵l ⊥x 轴,∴点M ,Q 的坐标分别是(m ,142m -+),(m ,213442m m --) 如图,当MQ=DC 时,四边形CQMD 是平行四边形. ∴(142m -+)-(213442m m --)=4-(-4) 化简得:240m m -=.解得,m 1=0,(舍去)m 2=4. ∴当m=4时,四边形CQMD 是平行四边形. 此时,四边形CQBM 是平行四边形. 解法一:∵m=4,∴点P 是OB 中点.∵l ⊥x 轴,∴l ∥y 轴. ∴△BPM ∽△BOD.∴12BP BM BO BD ==.∴BM=DM. ∵四边形CQMD 是平行四边形,∴DM CQ ∴BM CQ.∴四边形CQBM 为平行四边形.解法二:设直线BC 的解析式为y=k 1x+b 1,则111480b k b ì=-ïí+=ïî.解得,k 1=12,b 1=-4∴直线BC的解析式为y=12x-4又∵l⊥x轴交BC于点N.∴x=4时,y=-2. ∴点N的坐标为(4,-2)由上面可知,点M,Q的坐标分别为:(4,2),Q(4,-6).∴MN=2-(-2)=4,NQ=-2-(-6)=4.∴MN=QN.又∵四边形CQMD是平行四边形.∴DB∥CQ,∴∠3=∠4,又∠1=∠2,∴△BMN≌△CQN.∴BN=CN.∴四边形CQBM为平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(-2,0),Q2(6,-4).2.(2013•烟台)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣23,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.=﹣,,BE=.∴=,∴=∴+t3.(12分)(2013•黄冈)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为y2=(1)用x的代数式表示t为:t=6﹣x;当0<x≤4时,y2与x的函数关系为:y2=5x+80;当4<x<6时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?的关系∵;4.(本题满分12分)为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31?答案:(1)在Rt △ABC 中,由题意得AC=312米,BC=36米,∠ABC=30°, 所以,330tan ,33360tan x EFBE x x DG AD =︒===︒=又AD+DE+BE=AB, 所以,334324333324x x x y -=--=(0<x <8). (2)矩形DEFG 的面积.3108)9(334324334)334324(22+--=+-=-==x x x x x xy S 所以当x=9时,矩形DEFG 的面积最大,最大面积为3108平方米.(3)记AC 为直径的半圆\、BC 为直径的半圆、AB 为直径的半圆面积分别为S 1、S 2、S3,两弯新月面积为S ,则,81,81,81232221AB S BC S AC S πππ===由AC 2+BC 2=AB 2可知S 1+S 2=S 3,∴S 1+S 2-S=S 3-S △ABC ,故S=S △ABC所以两弯新月的面积S=32163631221=⨯⨯(平方米) 由3216313108)9(334⨯=+--x , 即27)9(2=-x ,解得339±=x ,符合题意, 所以当339±=x 米时,矩形DEFG 的面积等于两弯新月面积的31.考点:考查了解直角三角形,二次函数最值求法以及一元二次方程的解法。

中考数学总复习第7课 一元二次方程

中考数学总复习第7课 一元二次方程

5.(2013·浙江衢州)如图 7-1,在长和宽分别是 a,b 的矩形纸片的四个 角都剪去一个边长为 x 的正方形. (1)用含 a,b,x 的代数式表示纸片剩余部分的面积; (2)当 a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方 形的边长.
图 7-1 【解析】 (1)面积=ab-4x2. (2)根据题意,得 ab-4x2=4x2(或 4x2=1ab龙江牡丹江)若关于 x 的一元二次方
程为 ax2+bx+5=0(a≠0)的解是 x=1,则 2013-a-b 的
值是
()
A.2018
B.2008
C .2014
D.2012
点评:(1)本题主要考查一元二次方程的解的概念,难度较小.
(2)解题的关键是把已知方程的解直接代入方程得到待定系数
3.解一元二次方程时,方程两边不能同时约去一个相同 的式子,因为这个式子可能为 0,如果约去,会造成漏 解.
【精选考题 2】 (2013·江苏无锡)解方程:x2-3x+2=0.
点评:(1)本题考查一元二次方程的解法,难度较小. (2)求解本题的关键是根据题目特征选择最适合的方法(因 式分解法)求解. 解析:x 2-3x +2=0,(x -1)(x -2)=0,∴x 1=1,x 2=2.
3.配方法:解一元二次方程时,先把方程的常数项移到方程的右边,再在方程两边同时 加上某一常数,使得左边刚好能配成一个完全平方式,即将方程化为(x+a)2=b 的形式, 如果 b≥0,就可以用直接开平方法来求出它的解,这种解一元二次方程的方法叫做配 方法.
4.公式法:一元二次方程 ax2+bx+c=0(a≠0)的求根公式:x=-b± b2-4ac(b2-4ac≥0). 2a
拓展提高
1.(2012·山东泰安)方程 2x2+5x-3=0 的解是

2013中考数学压轴题 一元二次方程精选解析(一)

2013中考数学压轴题 一元二次方程精选解析(一)

2013中考数学压轴题一元二次方程精选解析(一)例1.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.(1)当k为何值时,△ABC是以BC为斜边的直角三角形;(2)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.解析:(1)∵AB、AC方程x2-(2k+3)x+k2+3k+2=0的两个实数根∴AB+AC=2k+3,AB·AC=k2+3k+2∵△ABC是以BC为斜边的直角三角形,且BC=5∴AB2+AC2=BC2,(AB+AC)-2AB·AC=25即(2k+3)2-2(k2+3k+2)=25∴k2+3k-10=0,∴k1=-5,k,2=2当k=-5时,方程为x2+7x+12=0,解得x1=-3,x2=-4(均不合题意,舍去)当k=2时,方程为x2-7x+12=0,解得x1=3,x2=4∴当k=2时,△ABC是以BC为斜边的直角三角形(2)若△ABC是等腰三角形,则有①AB=AC;②AB=BC;③AC=BC三种情况∵△=(2k+3)2-4(k2+3k+2)=1>0∴AB≠AC,故第①种情况不成立∴当AB=BC或AC=BC时,5是方程x2-(2k+3)x+k2+3k+2=0的根∴52-5(2k+3)+k2+3k+2=0即k2-7k+12=0,解得k1=3,k2=4当k=3时,方程为x2-9x+20=0,解得x1=4,x2=5此时△ABC的三边长分别为5、5、4,周长为14当k=4时,方程为x2-11x+30=0,解得x1=5,x2=6此时△ABC的三边长分别为5、5、6,周长为16例2.已知△ABC的三边长为a、b、c,关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根,又sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根.(1)求m的值;(2)若△ABC的外接圆面积为25π,求△ABC的内接正方形的边长.解析:(1)∵关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根∴△=4(a+b)2-4(c2+2ab)=0,即a2+b2=c2∴△ABC 是直角三角形∵sin A 、sin B 是关于x 的方程(m +5)x 2-(2m -5)x +m -8=0的两个实数根 ∴sin A +sin B =2m -5m +5,sin A ·sin B =m -8m +5∵在Rt△ABC 中,sin 2A +sin 2B =sin 2A +c os 2A =1 ∴(sin A +sinB )2-2sin A ·sin B =1 即(2m -5m +5)2-2×m -8m +5=1∴m 2-24m +80=0,解得m 1=4,m 2=20当m =4时,方程为9x 2-3x -4=0,解得x 1=3+15318,x 2=3-15318<0∵在Rt△A BC 中,sin A >0,sin B >0 ∴m =4不合题意,舍去当m =20时,方程为25x 2-35x +12=0,解得x 1=35,x 2=45,符合题意∴m =20(2)∵△ABC 的外接圆面积为25π∴外接圆半径为5,∴c =10 由(1)知,sin A =35或sin A =45∴△ABC 的两条直角边长分别为6,8 设△ABC 的内接正方形的边长为t①若正方形的两边在△ABC 的两直角边上,则8-t 8=t6解得t =247②若正方形的一条边在△ABC 的斜边上,易得斜边上的高为245,则t 10=245-t245解得t =12037例3.已知关于x 的方程x 2-(m +n +1)x +m =0(n ≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示m 和n ; (2)求证:α≤1≤β;(3)若点P (α,β)在△ABC 的三条边上运动,且△ABC 顶点的坐标分别为A (1,2),ABCttA BC tttB (12,1),C (1,1),问是否存在点P ,使m +n =54?若存在,求出点P 的坐标;若不存在,请说明理由. 解析:(1)解:∵α、β为方程x 2-(m +n +1)x +m =0(n ≥0)的两个实数根∴△=(m +n +1)2-4m =(m +n -1)2+4n ≥0,且α+β=m +n +1,αβ=m ∴m =αβ,n =α+β-m -1=α+β-αβ-1 ·········· 2分(2)证明:∵(1-α)(1-β)=1-(α+β)+αβ=-n ≤0(n ≥0),又α≤β∴α≤1≤β ·························· 4分(3)解:要使m +n =54成立,只需α+β=m +n +1=94①当点P (α,β)在BC 边上运动时由B (12,1),C (1,1),得12≤α≤1,β=1而α=94-β=94-1=54>1∴在BC 边上不存在满足条件的点6分 ②当点P (α,β)在AC 边上运动时由A (1,2),C (1,1),得α=1,1≤β≤2 此时β=94-α=94-1=54,又∵1<54<2∴在AC 边上存在满足条件的点,其坐标为(1,54) ········· 8分③当点P (α,β)在AB 边上运动时由A (1,2),B (12,1),得12≤α≤1,1≤β≤2由对应线段成比例得1-α1-12=2-β2-1,∴β=2α由⎩⎪⎨⎪⎧α+β=94β=2α解得α=34,β=32又∵12<34<1,1<32<2∴在AB 边上存在满足条件的点,其坐标为(34,32)综上所述,当点点P (α,β)在△ABC 的三条边上运动时,存在点(1,54)和点(34,32),使m +n =54成立10分。

2013年中考备考往年真题专题《二次函数与一元二次方程》试题与答案

2013年中考备考往年真题专题《二次函数与一元二次方程》试题与答案

一、选择题 1、(2012年台湾)下列哪一个函数,其图形与x 轴有两个交点? (A) y =17(x +83)2+2274 (B) y =17(x -83)2+2274 (C) y = -17(x -83)2-2274 (D) y = -17(x +83)2+2274。

2、(2012年台州市)已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间二、填空题1、(2012年内蒙古包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2.2、(2012年甘肃白银)抛物线2y x bx c =-++的部分图象如上所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)3、(2012年甘肃庆阳)从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度为 米. 4、(2012年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值(填空题2)是 cm 2.5、(2012年包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.三、解答题1、(2012年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围. 2、(2012 安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.3、(2012年常德市)已知二次函数过点A(0,2-),B(1-,0),C(5948,).(1)求此二次函数的解析式;(2)判断点M(1,12)是否在直线AC上?(3)过点M(1,12)作一条直线l与二次函数的图象交于E、F两点(不同于A,B,C三点),请自已给出E点的坐标,并证明△BEF是直角三角形.4、(2012年湖南长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?5、(2012年内蒙古包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、(2012年杭州市)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0). (1)若0>a ,且tan ∠POB =91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB =38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式;(3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离. 7、(2012年娄底)已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.9、(2012烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?O 1 1y x =1y x =P (2,0)xy(第24题)10、(2012年孝感)已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.11、(2012年新疆)(1)用配方法把二次函数243y x x =-+变成2()y x h k =-+的形成. (2)在直角坐标系中画出243y x x =-+的图象.(3)若1122()()A x y B x y ,,,是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y ,的大小关系.(直接写结果)(4)把方程2432x x -+=的根在函数243y x x =-+的图象上表示出来.12、(2012年天津市)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.12、(2012年广西梧州)如图(9)-1,抛物线23y ax ax b =-+经过A (1-,0),C (3,2-)两点,与y 轴交于点D ,与x 轴交于另一点B . (1)求此抛物线的解析式;(2)若直线)0(1≠+=k kx y 将四边形ABCD 面积二等分,求k 的值;(3)如图(9)-2,过点E (1,1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥x 轴于点G ,若线段MG ︰AG =1︰2,求点M ,N 的坐标.13、2012年包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价x 的范围.图(9)-1图(9)-214、(2012年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围.15、(09湖南怀化)如图11,已知二次函数22)(m k m x y -++=的图象与x 轴相交于两个不同的点1(0)A x ,、2(0)B x ,,与y 轴的交点为C .设ABC △的外接圆的圆心为点P .(1)求P ⊙与y 轴的另一个交点D 的坐标;(2)如果AB 恰好为P ⊙的直径,且ABC △的面积等于5,求m 和k 的值.16、(2012年达州)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N. ①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由.17、(2012年肇庆市)已知一元二次方程2 10x px q +++=的一根为 2. (1)求q 关于p 的关系式;(2)求证:抛物线2 y x px q =++与x 轴有两个交点;(3)设抛物线2y x px q =++的顶点为 M ,且与 x 轴相交于A (1x ,0)、B (2x ,0)两点,求使△AMB 面积最小时的抛物线的解析式.2013年中考备考往年真题专题《二次函数与一元二次方程》试题及答案18、(2012年邵阳市)如图(十二)直线l 的解析式为y =-x+4, 它与x 轴、y 轴分相交于A 、B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M 、N 两点,运动时间为t 秒(0<t ≤4).(1)求A 、B 两点的坐标;(2)用含t 的代数式表示△MON 的面积S 1;(3)以MN 为对角线作矩形OMPN,记 △MPN 和△OAB 重合部分的面积为S 2; ①当2<t ≤4时,试探究S 2 与之间的函数关系;②在直线m 的运动过程中,当t 为何值时,S 2 为△OAB 的面积的165?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12013中考数学精选例题解析函数与一元二次方程知识考点:1、理解二次函数与一元二次方程之间的关系;2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x 轴的交点情况;3、会利用韦达定理解决有关二次函数的问题。

精典例题:【例1】已抛物线1)2()1(2--+-=x m x m y (m 为实数)。

(1)m 为何值时,抛物线与x 轴有两个交点?(2)如果抛物线与x 轴相交于A 、B 两点,与y 轴交于点C ,且△ABC 的面积为2,求该抛物线的解析式。

分析:抛物线与x 轴有两个交点,则对应的一元二次方程有两个不相等的实数根,将问题转化为求一元二次方程有两个不相等的实数根m 应满足的条件。

略解:(1)由已知有⎩⎨⎧>=∆≠-0012m m ,解得0≠m 且1≠m (2)由0=x 得C (0,-1)又∵1-=∆=m ma AB ∴2112121=⋅-⋅=⋅⋅=∆m m OC AB S ABC∴34=m 或54=m ∴132312--=x x y 或156512---=x x y 【例2】已知抛物线)6(2)8(222+++-=m x m x y 。

(1)求证:不论m 为任何实数,抛物线与x 轴有两个不同的交点,且这两个点都在x 轴的正半轴上;2(2)设抛物线与y 轴交于点A ,与x 轴交于B 、C 两点,当△ABC 的面积为48平方单位时,求m 的值。

(3)在(2)的条件下,以BC 为直径作⊙M ,问⊙M 是否经过抛物线的顶点P ? 解析:(1)0)4(22>+=∆m ,由08221>+=+m x x ,0)6(2221>+=m x x 可得证。

(2))6(8)8(4)(2222122121+-+=-+=-=m m x x x x x x BC=42+m)6(22+=m OA又∵48=∆ABCS∴48)6(2)4(2122=+⋅+⋅m m 解得22=m 或122-=m (舍去) ∴2±=m(3)16102+-=x x y ,顶点(5,-9),6=BC∵69>-∴⊙M 不经过抛物线的顶点P 。

评注:二次函数与二次方程有着深刻的内在联系,因此,善于促成二次函数问题与二次方程问题的相互转化,是解相关问题的常用技巧。

探索与创新:【问题】如图,抛物线4)(22c x b a x y ++-=,其中a 、b 、c 分别是△ABC 的∠A 、∠B 、∠C 的对边。

3(1)求证:该抛物线与x 轴必有两个交点;(2)设有直线bc ax y -=与抛物线交于点E 、F ,与y 轴交于点M ,抛物线与y 轴交于点N ,若抛物线的对称轴为a x =,△MNE 与△MNF 的面积之比为5∶1,求证:△ABC 是等边三角形;(2)当3=∆ABCS 时,设抛物线与x 轴交于点P 、Q ,问是否存在过P 、Q 两点且与y轴相切的圆?若存在这样的圆,求出圆心的坐标;若不存在,请说明理由。

解析:(1)))(()(22c b a c b a c b a -+++=-+=∆∵0>++c b a ,0>-+c b a ∴0>∆ (2)由a ba =+2得b a = 由⎪⎩⎪⎨⎧-=++-=bc ax y c x b a x y 4)(22得:0432=++-ac c ax x设E (1x ,1y ),F (2x ,2y ),那么:a x x 321=+,ac c x x +=4221 由MNE S ∆∶MNF S ∆=5∶1得:215x x =∴215x x =或215x x -=由021>⋅x x 知215x x -=应舍去。

由⎩⎨⎧==+212153x x a x x 解得22ax =∴ac c a +=⎪⎭⎫ ⎝⎛42522,即04522=--c ac a∴ c a =或05=+c a (舍去)4 ∴ c b a ==∴△ABC 是等边三角形。

(3)3=∆ABCS ,即3432=a ∴2=a 或2-=a (舍去) ∴2===c b a ,此时抛物线142+-=x x y 的对称轴是2=x ,与x 轴的两交点坐标为P (32-,0),Q (32+,0)设过P 、Q 两点的圆与y 轴的切点坐标为(0,t ),由切割线定理有:OQ OP t ⋅=2∴1±=t故所求圆的圆心坐标为(2,-1)或(2,1)评注:本题(1)(2)问与函数图像无关,而第(3)问需要用前两问的结论,解题时千万要认真分析前因后果。

同时,如果后一问的解答需要前一问的结论时,尽管前一问没有解答出来,倘能会用前一题的结论来解答后一问题,也是得分的一种策略。

跟踪训练: 一、选择题: 1、已知抛物线m x m x y +-+=)1(52与x 轴两交点在y 轴同侧,它们的距离的平方等于2549,则m 的值为( ) A 、-2 B 、12 C 、24 D 、-2或24 2、已知二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图像交于点A (-2,4),B (8,2),如图所示,则能使21y y >成立的x 的取值范围是( )A 、2-<xB 、8>xC 、82<<-xD 、2-<x 或8>x5第2题图第4题图3、如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A 、B 、E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系:①0=+c a ;②0=b ;③1-=ac ;④2c S A BE =∆其中正确的有( )A 、4个B 、3个C 、2个D 、1个 4、设函数1)1(22++-+-=m x m x y 的图像如图所示,它与x 轴交于A 、B 两点,线段OA与OB 的比为1∶3,则m 的值为( ) A 、31或2 B 、31C 、1D 、2 二、填空题: 1、已知抛物线23)1(2----=k x k xy 与x 轴交于两点A (α,0),B (β,0),且1722=+βα,则k = 。

2、抛物线m x m x y 2)12(2---=与x 轴的两交点坐标分别是A (1x ,0),B (2x ,0),且121=x x ,则m 的值为 。

3、若抛物线1212-++-=m mx x y 交x 轴于A 、B 两点,交y 轴于点C ,且∠ACB =900,则m = 。

4、已知二次函数1)12(2--+=x k kxy 与x 轴交点的横坐标为1x 、2x )(21x x <,则对于下列结论:①当2-=x 时,1=y ;②当2x x >时,0>y ;③方程1)12(2--+x k kx =60有两个不相等的实数根1x 、2x ;④11-<x ,12->x ;⑤kk x x 21241+=-,其中所有正确的结论是 (只填写顺号)。

三、解答题:1、已知二次函数c bx ax y ++=2(a ≠0)的图像过点E (2,3),对称轴为1=x ,它的图像与x 轴交于两点A (1x ,0),B (2x ,0),且21x x <,102221=+x x 。

(1)求这个二次函数的解析式;(2)在(1)中抛物线上是否存在点P ,使△POA 的面积等于△EOB 的面积?若存在,求出点P 的坐标;若不存在,请说明理由。

2、已知抛物线42)4(2++-+-=m x m x y 与x 轴交于点A (1x ,0),B (2x ,0)两点,与y 轴交于点C ,且21x x <,0221=+x x ,若点A 关于y 轴的对称点是点D 。

(1)求过点C 、B 、D 的抛物线解析式;(2)若P 是(1)中所求抛物线的顶点,H 是这条抛物线上异于点C 的另一点,且△HBD 与△CBD 的面积相等,求直线PH 的解析式;3、已知抛物线m mx x y 223212--=交x 轴于点A (1x ,0),B (2x ,0)两点,交y 轴于点C ,且210x x <<,112)(2+=+CO BO AO 。

(1)求抛物线的解析式;(2)在x 轴的下方是否存在着抛物线上的点,使∠APB 为锐角、钝角,若存在,求出P 点的横坐标的范围;若不存在,请说明理由。

参考答案一、选择题:CDBD 二、填空题:1、2;2、21;3、3;4、①③④ 三、解答题:71、(1)322++-=x x y ;(2)存在,P (131+,-9)或(131-,-9)2、(1)862+-=x x y ;(2)103-=x y3、(1)223212--=x x y ;(2)当30<<P x 时∠APB 为锐角,当01<<-P x 或43<<P x 时∠A PB 为钝角。

相关文档
最新文档