一元二次方程与二次函数的应用题精选题

合集下载

二次函数与一元二次方程应用题

二次函数与一元二次方程应用题

6.如图,一位运动员在距篮下4米处跳起投篮,求运行 的路线是抛物线,当球运行的水平距离为2.5米时,达 到最大高度3.5米,然后准确落入篮圈,已知篮圈中心 距离地面的距离为3.05米 y (1)建立如图所示坐标系
求抛物线解析式.
(2)该运动员身高1.8米, 在此次投篮中,球在头顶 上方0.25米处出手,求当 运动员出手时他跳离地 面的高度.
练习1.某特产专卖店销售核桃,其进价为每千克40元,按每 千克60元出售,平均每天可售出100千克,后来经过市场调 查发现,单价每降低2元,则平均每天的销售量可增加20千 克,若该专卖店销售这种核桃要想平均每天获利2 240元, 并且尽可能让利于顾客,则每千克核桃的售价应为____元
2.某品牌服装原售价为173元,经过 连续两次降价后售价为127元,设平 均每次降价x%,则下面所列方程中 正确的是( )
3. 某机械厂七月份生产零件 50 万个,第三季 度生产零件 196 万个.设该厂八、九月份平 均每月的增长率为 x ,那么 x 满足的方程是 ( )
4.如图,邻边不等的矩形花圃ABCD,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度 是6m.若矩形的面积为4m2,则AB的长为____m (可利用的围墙长度超过6m)
1.西瓜经营户以2元/千克的价格购进一批小型西瓜,以 3元/千克的价格出售,每天可售出200千克.为了促销, 该经营户决定降价销售.经调查发现,这种小型西瓜每 千克的售价每降价0.1元,每天可多售出40千克.另外, 每天的房租等固定成本共24元.若该经营户要想每天盈 利200元,设应将每千克小型西瓜的售价降低x元,则根 据题意可列方程为( )
A
D
B
C
例5.如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点 同时出发,以相等的速度作直线运动,已知点P沿射线AB运动, 点Q沿边BC的延长线运动,PQ与直线相交于点D。 (1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式; (2)当AP的长为何值时,S△PCQ= S△ABC

二次函数与一元二次方程的关系典型试题

二次函数与一元二次方程的关系典型试题

二次函数与一元二次方程的关系典型试题一选择题1.如图,抛物线y=ax 2+bx+c 交x 轴于(-1,0)、(3,0)两点,则下列判断中,错误的是( )A .图象的对称轴是直线x=1B .当x >1时,y 随x 的增大而减小B .一元二次方程ax 2+bx+c=0的两个根是-1和3 D .当-1<x <3时,y <02.如图为二次函数y=ax 2+bx+c 的图象,给出下列说法:①ab <0;②方程ax 2+bx+c=0的根为x 1=-1,x 2=3;③a+b+c >0;④当x <1时,y 随x 值的增大而增大;⑤当y >0时,x<-1或x >3.其中,正确的说法有( )A .①②④B .①②⑤C .①③⑤D .②④⑤3.二次函数y=x 2+bx+c 的图象如图所示,则下列结论正确的是( )A .顶点坐标(-1,-4)B .当x >-1时,y 随x 的增大而减小C .线段AB 的长为3D .当-3<x <1时,y >04.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论:①a 、b 同号;②当x=1和x=3时,函数值y 相等;③4a+b=0;④当y=2时,x 的值只能取0;⑤x=-1是关于x 的方程ax 2+bx+c=0的一个解.其中正确的有( ) A .2个 B .3个 C .4个 D .5个5.如图是二次函数y=ax 2+bx+c 的图象,下列结论:①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c <0;③一元二次方程ax 2+bx+c=1的两根之和为-1;④使y≤3成立的x 的取值范围是x≥0.其中正确的个数有( )A .1个 B .2个 C .3个 D .4个A .x 1=2,x 2=-2B .x 1=2,x 2=-3C .x 1=2,x 2=-4D .x 1=2,x 2=-510.抛物线y=ax 2+bx+c 的顶点为D (-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论不正确的是( )A .b 2-4ac <0B .a+b+c <0C .c-a=2D .方程ax 2+bx+c-2=0有两个相等的实数根11.二次函数y=-x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>-5 B.-5<t<3 C.3<t≤4D.-5<t≤412.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过(-3,0),对称轴直线为x=-1,给出四个结论:①16a-4b+c>0;②abc>0;③一元二次方程ax2+bx+c=5没有实数根;④(x1,y1),(x2,y2)是抛物线上的两点,且x1<-1<x2,-1-x1<x2+1,则y1>y2.其中结论正确的个数为()A.2个B.3个C.4个D.1个13.如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A.b2>4ac C.关于x的一元二次方程ax2+bx+c=-4的两根分别为-5和-1B.ax2+bx+c≥-6 D.若点(-2,m),(-5,n)在抛物线上,则m>n14.如图,抛物线y=ax2+bx+c交x轴于(-1,0)、(3,0)两点,则下列判断中,错误的是()A.图象的对称轴是直线x=1 B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1和3 D.当-1<x<3时,y<015.已知函数y=-(x-m)(x-n)+3,并且a,b是方程(x-m)(x-n)=3的两个根,则实数m,n,a,b的大小关系可能是()A.m<a<b<n B.m<a<n<b C.a<m<b<n D.a<m<n<b 16.(2016•永康市模拟)已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4ac B.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1C.ax2+bx+c≥﹣6 D.若点(﹣2,m),(﹣5,n)在抛物线上,则m>n17.二次函数y=x2+2x+m(m为常数)的图象与x轴交点A(x1,0),B(x2,0),且x1<x2<0,已知当x=a时,y<0,那么当x=a+2时,函数值()A.y<m B.y>m C.y=m D.无法确定18.(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个19.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤20.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的()A.abc>0 B.9a+3b+c>0 C.a+b≥m(am+b)(m≠1的实数)D.方程ax2+bx+c=2有两个不相等的实数根21.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列说法错误的是()A.abc>0 B当x<1时,y随x的增大而减小C.a-b+c>0 D.当y>0时,x<-2或x>4 22.如图,二次函数y1=ax2+bx+c与一次函数y2=kx+b的交点A,B的坐标分别为(1,-3),y2时,x的取值范围是()(6,1),当y1>A.1<x<6 B.x<1或x>6 C.-3<x<1 D.x<-3或x>123.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为直线x=1,给出五个结论:①bc>0;②a+b+c<0;③方程ax2+bx+c=0的根为x1=-1,x2=3;④当x<1时,y随着x的增大而增大;⑤4a-2b+c>0.其中正确结论是()A.①②③B.①③④C.②③④D.③④⑤24.二次函数y=ax2+bx+c(a≠0)的图象所示,若∣ax2+bx+c∣=k(k≠0)有两个不相等的实数根,则k的取值范围是()A. k<-3B. k>-3C. k<3D. k>325二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0,有实数根,则以下关于m的结论正确的是( )A.m的最大值为2B.m的最小值为-2 C.m是负数D.m是非负数26..抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是( )A.﹣4<x<1B.﹣3<x<1C.x<﹣4或x>1 D.x<﹣3或x>127.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.328.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①c=0;②该抛物线的对称轴是直线x=-1;③当x=1时,y=2a;④am2+bm+a>0(m≠-1).其中正确的个数是( )A.1B.2C.3D.429.二次函数y=ax2 +bx+c(a,b,c为常数,a<0)的图象经过点(﹣1,1),(4,﹣4).下列结论:①a/c<0;②当x>1时,y的值随x值的增大而减小;③是方程ax2+(b+1)x+c=0的一个根;④当﹣1<x<4时,ax2+(b+1)x+c>0.其中正确的是( )A、①③B、①②④C、①③④D、②③④30.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法,正确的有()①b2-4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2;④a(x0-x1)(x0-x2)<0。

一元二次方程与二次函数的应用题精选题

一元二次方程与二次函数的应用题精选题

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分5000(1-x )2= 4050 ………………………………………3分解得:x 1=10% x 2=1910(不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵<∴选方案①更优惠. ……………………………………………8分2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。

一元二次方程+二次函数测试(含答案)

一元二次方程+二次函数测试(含答案)

1.下列方程是一元二次方程的是()A.3x+1=0 B.5x2﹣6y﹣3=0 C.ax2﹣x+2=0 D.3x2﹣2x﹣1=02.关于x的一元二次方程x2+k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤03.若关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,则a、b分别为()A.a=﹣8,b=﹣6 B.a=4,b=﹣3 C.a=3,b=8 D.a=8,b=﹣34.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13 B.﹣4,19 C.﹣4,13 D.4,195.方程x2﹣=0的根的情况为()A.有一个实数根 B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根6.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.28.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3 C.y=﹣(2x+1)2+3 D.y=﹣(2x﹣1)2+3 9.对于函数y=x2+1,下列结论正确的是()A.图象的开口向下B.y随x的增大而增大C.图象关于y轴对称 D.最大值是010.在同一直角坐标系中y=ax2+b与y=ax+b(a≠0,b≠0)图象大致为()A.B.C.D.二.填空题11.把方程3x(x﹣1)=(x+2)(x﹣2)+9化成ax2+bx+c=0的形式为.12.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.13.参加一次聚会的每两人都握了一次手,所有人共握手10次,有人参加聚会.14.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是.15.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是.三.解答题(1)(x+1)(x﹣2)=x+1;(2)3x2﹣x﹣1=0.17.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,求k的取值范围.18.关于x的方程x2﹣(k+1)x﹣6=0的一个根是2,求k的值和方程的另一根.19.抛物线y=ax2与直线y=2x﹣3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=﹣2的两个交点B,C的坐标(B点在C点右侧);(3)求△OBC的面积.20.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.21.某市要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?22.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出只粽子,利润为元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?23.一个二次函数,它的图象的顶点是原点,对称轴是y轴,且经过点(﹣1,2).(1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)当x>0时,y值随x的增减情况;(4)指出函数的最大值或最小值.24.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.2015-2016学年湖北省潜江市积玉口中学九年级(上)第一次月考数学试卷(A卷)参考答案与试题解析一.选择题1.下列方程是一元二次方程的是()A.3x+1=0 B.5x2﹣6y﹣3=0 C.ax2﹣x+2=0 D.3x2﹣2x﹣1=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【解答】解:A、是一元一次方程,故本选项错误;B、是二元二次方程,故本选项错误;C、当a≠0时,是一元二次方程,当a=0时,是一元一次方程,故本选项错误;D、是一元二次方程,故本选项正确.故选D.2.关于x的一元二次方程x2+k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】根的判别式.【分析】由一元二次方程有实数根得出△=02﹣4×1×k≥0,解不等式即可.【解答】解:∵关于x的一元二次方程x2+k=0有实数根,∴△=02﹣4×1×k≥0,解得:k≤0;故选:D.3.若关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,则a、b分别为()A.a=﹣8,b=﹣6 B.a=4,b=﹣3 C.a=3,b=8 D.a=8,b=﹣3【考点】根与系数的关系.【分析】由关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,直接利用根与系数的关系的知识求解即可求得答案.【解答】解:∵关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,∴﹣=4,=﹣3,解得:a=8,b=﹣3.故选D.4.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13 B.﹣4,19 C.﹣4,13 D.4,19【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣8x+3=0∴x2﹣8x=﹣3∴x2﹣8x+16=﹣3+16∴(x﹣4)2=13∴m=﹣4,n=13故选C.5.方程x2﹣=0的根的情况为()A.有一个实数根 B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根【考点】根的判别式.【分析】要判定方程根的情况,首先求出其判别式,然后判定其正负情况即可作出判断.【解答】解:∵x2﹣=0=0,∴△=b2﹣4ac=8﹣8=0,∴方程有两个相等的实数根.故选D.6.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.7.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【考点】根与系数的关系.【分析】根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.【解答】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.8.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3 C.y=﹣(2x+1)2+3 D.y=﹣(2x﹣1)2+3 【考点】待定系数法求二次函数解析式.【分析】直接利用顶点式写出抛物线解析式.【解答】解:抛物线解析式为y=﹣2(x+1)2+3.故选B .9.对于函数y=x 2+1,下列结论正确的是( )A .图象的开口向下B .y 随x 的增大而增大C .图象关于y 轴对称D .最大值是0【考点】二次函数的性质.【分析】根据二次函数y=x 2+1的性质进行判断即可.【解答】解:∵a=1>0,图象的开口向上,对称轴为y 轴;∴当x >0时,y 随x 的增大而增大,当x=0时,y=1.故选:C .10.在同一直角坐标系中y=ax 2+b 与y=ax+b (a ≠0,b ≠0)图象大致为( )A .B .C .D .【考点】二次函数的图象;一次函数的图象.【分析】本题由一次函数y=ax+b 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致.【解答】解:A 、由抛物线可知,a >0,b >0,由直线可知,a <0,b <0,故本选项错误; B 、由抛物线可知,a <0,b >0,由直线可知,a >0,b >0,故本选项错误;C 、由抛物线可知,a >0,b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,b <0,由直线可知,a <0,b <0,故本选项正确.故选D .二.填空题11.把方程3x (x ﹣1)=(x+2)(x ﹣2)+9化成ax 2+bx+c=0的形式为 2x 2﹣3x ﹣5=0 .【考点】一元二次方程的一般形式.【分析】方程整理为一般形式即可.【解答】解:方程整理得:3x 2﹣3x=x 2﹣4+9,即2x 2﹣3x ﹣5=0.故答案为:2x 2﹣3x ﹣5=0.12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 x ≤1 .【考点】二次函数的性质.【分析】根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.【解答】解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y随x的增大而减小;即:当x≤1时,y随x的增大而减小,故答案为:x≤1.13.参加一次聚会的每两人都握了一次手,所有人共握手10次,有5人参加聚会.【考点】一元二次方程的应用.【分析】设有x人参加聚会,每个人都与另外的人握手一次,则每个人握手x﹣1次,且其中任何两人的握手只有一次,因而共有x(x﹣1)次,设出未知数列方程解答即可.【解答】解:设有x人参加聚会,根据题意列方程得,=10,解得x1=5,x2=﹣4(不合题意,舍去);答:有5人参加聚会.故答案为:5.14.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是6或12或10.【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程x2﹣6x+8=0的根,进行分情况计算.【解答】解:由方程x2﹣6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.15.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是3或﹣5.【考点】二次函数的性质.【分析】抛物线y=ax2+bx+c的顶点纵坐标为,当抛物线的顶点在x轴上时,顶点纵坐标为0,解方程求k的值.【解答】解:根据顶点纵坐标公式,抛物线y=x2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x轴上时,∴顶点纵坐标为0,即=0,解得k=3或﹣5.故本题答案为3或﹣5.三.解答题16.解方程(1)(x+1)(x﹣2)=x+1;(2)3x2﹣x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)方程整理后,利用因式分解法求出解即可;(2)方程利用公式法求出解即可.【解答】解:(1)方程整理得:(x+1)(x﹣2)﹣(x+1)=0,分解因式得:(x+1)(x﹣3)=0,解得:x=﹣1或x=3;(2)这里a=3,b=﹣1,c=﹣1,∵△=1+12=13,∴x=.17.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,求k的取值范围.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.∴k的取值范围为k>﹣1且k≠0.18.关于x的方程x2﹣(k+1)x﹣6=0的一个根是2,求k的值和方程的另一根.【考点】一元二次方程的解.【分析】将x=2代入原方程,可求出k的值,进而可通过解方程求出另一根.【解答】解:把x=2代入x2﹣(k+1)x﹣6=0,得4﹣2(k+1)﹣6=0,解得k=﹣2,解方程x2+x﹣6=0,解得:x1=2,x2=﹣3.答:k=﹣2,方程的另一个根为﹣3.19.抛物线y=ax2与直线y=2x﹣3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=﹣2的两个交点B,C的坐标(B点在C点右侧);(3)求△OBC的面积.【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】(1)将点A代入y=2x﹣3求出b,再把点A代入抛物线y=ax2求出a即可.(2)解方程组即可求出交点坐标.(3)利用三角形面积公式即可计算.【解答】解:(1)∵点A(1,b)在直线y=2x﹣3上,∴b=﹣1,∴点A坐标(1,﹣1),把点A(1,﹣1)代入y=ax2得到a=﹣1,∴a=b=﹣1.(2)由解得或,∴点C坐标(﹣,﹣2),点B坐标(,﹣2).(3)S△BOC=•2•2=2.20.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.【考点】根的判别式;根与系数的关系.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)根据根与系数的关系得到x1+x2=4,又5x1+2x2=2求出函数实数根,代入m=x1x2,即可得到结果.【解答】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.21.某市要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【考点】一元二次方程的应用.【分析】可设比赛组织者应邀请x队参赛,则每个队参加(x﹣1)场比赛,则共有场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果.【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为:=28.解得:x1=8,x2=﹣7(舍去),答:比赛组织者应邀请8队参赛.22.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出300+100×只粽子,利润为(1﹣m)元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?【考点】一元二次方程的应用.【分析】(1)每天的销售量等于原有销售量加上增加的销售量即可;利润等于销售量乘以单价即可得到;(2)利用总利润等于销售量乘以每件的利润即可得到方程求解.【解答】解:(1)300+100×,(1﹣m).(2)令(1﹣m)=420.化简得,100m2﹣70m+12=0.即,m2﹣0.7m+0.12=0.解得m=0.4或m=0.3.可得,当m=0.4时卖出的粽子更多.答:当m定为0.4时,才能使商店每天销售该粽子获取的利润是420元并且卖出的粽子更多.23.一个二次函数,它的图象的顶点是原点,对称轴是y轴,且经过点(﹣1,2).(1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)当x>0时,y值随x的增减情况;(4)指出函数的最大值或最小值.【考点】二次函数的性质;二次函数的图象;二次函数的最值;待定系数法求二次函数解析式.【分析】(1)根据题意设出抛物线解析式,把已知点坐标代入求出a的值,即可确定出解析式;(2)画出函数图象即可;(3)利用二次函数的增减性得到结果即可;(4)利用二次函数的性质确定出最小值与最大值即可.【解答】解:(1)根据题意设抛物线解析式为y=ax2,把(﹣1,2)代入得:a=2,则二次函数解析式为y=2x2;(2)画出函数图象,如图所示;(3)当x>0时,y随x的增大而增大;(4)函数的最小值为0,没有最大值.24.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)利用交点式得出y=a(x﹣1)(x﹣3),进而得出a的值,再利用配方法求出顶点坐标即可;(2)根据左加右减得出抛物线的解析式为y=﹣x2,进而得出答案.【解答】解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x﹣1)(x﹣3),把C(0,﹣3)代入得:3a=﹣3,解得:a=﹣1,故抛物线解析式为y=﹣(x﹣1)(x﹣3),即y=﹣x2+4x﹣3,∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上.. 2016年5月26日.。

《二次函数与一元二次方程》专题练习含答案

《二次函数与一元二次方程》专题练习含答案

二次函数与一元二次方程专题复习练习题1.小兰画了一个函数y=x2+ax+b的图象如图,则关于的方程x2+ax+b=0的解是()A.无解B.x=1 C.x=-4 D.x=-1或x=42. 已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 3. 已知函数y=x2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是()A.-1≤x≤3 B.-3≤x≤1 C.x≥-3 D.x≤-1或x≥34. 如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.-1<x<5 B.x>5 C.x<-1且x>5 D.x<-1或x>55. 根据下列表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个根x的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.266. 已知函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c-3=0的根的情况为()A.有两个不相等实数根B.有两异号实数根C.有两个相等实数根D.无实数根7. 若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是() A.a>0 B.b2-4ac≥0 C.x1<x0<x2D.a(x0-x1)(x0-x2)<08. 一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c,当________时,自变量x的值,它是二次函数的图象与x轴交点的________.9. 抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴________交点;当b2-4ac=0时,抛物线与x轴有________个交点;当b2-4ac>0时,抛物线与x轴有________个交点.10. 抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为________.11.若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则1x1+1x2的值为________.12.若二次函数y=-x2+3x+m的图象全部在x轴下方,则m的取值范围为________.13.若抛物线y =12x 2与直线y =x +m 只有一个公共点,则m 的值为________. 14.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的两个根; (2)写出不等式ax 2+bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取值范围.15.已知关于x 的二次函数y =ax 2+bx +c(a >0)的图象经过点C(0,1),且与x 轴交于不同的两点A ,B ,点A 的坐标是(1,0). (1)求c 的值; (2)求a 的取值范围.16.已知抛物线y =-x 2+3(m +1)x +m +4与x 轴交于A ,B 两点,若A 点在x 轴负半轴上,B 点在x 轴正半轴上,且BO =4AO ,求抛物线的解析式.17.如图,抛物线y =-12x 2+22x +2与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求A ,B ,C 三点的坐标; (2)证明△ABC 为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使△ABP 是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.答案:1---7 DBDAC CD 8. y =0 横坐标 9. 无 一 两 10. 8 11. -4 12. m <-9/4 13. -1/214. 解:(1)由图象可得x 1=1,x 2=3(2)由图象可得ax 2+bx +c >0时,x 的取值范围为1<x <3(3)由图可知,当y 随x 的增大而减小时,自变量x 的取值范围为x >2 (4)方程ax 2+bx +c =k 有两个不相等的实数根,实际上就是函数y =ax 2+bx +c 的图象与直线y =k 有两个交点,由图象可知k <2 15. (1)c =1(2)由C(0,1),A(1,0)得a +b +1=0,故b =-a -1.由b 2-4ac >0,可得(-a -1)2-4a >0,即(a -1)2>0,故a≠1.又a >0,所以a 的取值范围是a >0且a≠1 16. 设A(x 1,0),B(x 2,0),x 1<0,x 2>0,x 2=-4x 1,x 1+x 2=3(m +1)>0,x 1x 2=-m -4,联立求得m =0或m =-74<-1(舍去),∴抛物线解析式为y =-x 2+3x+417. (1)令y =0得x 1=-2,x 2=22,令x =0,得y =2,∴A(-2,0),B(22,0),C(0,2)(2)AC =6,BC =23,AB =32,易知AC 2+BC 2=AB 2,∴∠ACB =90° (3)令y =2,得x1=0,x2=2,∴存在另外一个点P,其坐标为(2,2)。

初中数学-二次函数和一元二次方程-习题及解析

初中数学-二次函数和一元二次方程-习题及解析

初中数学-二次函数和一元二次方程-习题及解析勤志数学二次函数与一元二次方式练习题一、选择题(共15小题)21、已知二次函数y=a某+b某+c的图象如图所示,对称轴为直线某=1,则下列结论正确的是()2A、ac>0B、方程a某+b某+c=0的两根是某1=﹣1,某2=3C、2a﹣b=0D、当某>0时,y随某的增大而减小22、已知二次函数y=a某+b某+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a﹣b+c>02C、b=﹣4aD、关于某的方程a某+b某+c=0的根是某1=﹣1,某2=523、已知抛物线y=a某+b某+c中,4a﹣b=0,a﹣b+c>0,抛物线与某轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是()A、abc<0B、c>0C、4a>cD、a+b+c>04、抛物线y=a某+b某+c在某轴的下方,则所要满足的条件是()22A、a<0,b﹣4ac<0B、a<0,b﹣4ac>022C、a>0,b﹣4ac<0D、a>0,b﹣4ac>025、如图所示,二次函数y=a某+b某+c(a≠0)的图象经过点(﹣1,2),且与某轴交点的横坐标分别为某1,某2,其中﹣2<某1<﹣1,0<某2<1,下列结论:①abc>0;②4a﹣2b+c<0;③2a﹣b<0;2④b+8a>4ac.其中正确的有()2A、1个B、2个C、3个D、4个26、已知:a>b>c,且a+b+c=0,则二次函数y=a某+b某+c的图象可能是下列图象中的()勤志数学A、B、C、2D、27、已知y1=a1某+b1某+c1,y2=a2某+b2某+c2且满足.则称抛物线y1,y2互为“友好抛物线”,则下列关于“友好抛物线”的说法不正确的是()A、y1,y2开口方向、开口大小不一定相同B、因为y1,y2的对称轴相同C、如果y2的最值为m,则y1的最值为kmD、如果y2与某轴的两交点间距离为d,则y1与某轴的两交点间距离为|k|d28、已知二次函数的y=a某+b某+c图象是由的图象经过平移而得到,若图象与某轴交于A、C(﹣1,0)两点,与y轴交于D(0,),顶点为B,则四边形ABCD的面积为()A、9B、10C、11D、129、根据下列表格的对应值:判断方程a某+b某+c=0(a≠0,a,b,c为常数)的一个解某的范围是()A、8<某<9B、9<某<10C、10<某<11D、11<某<12210、如图,已知二次函数y=a某+b某+c的部分图象,由图象可知关于某的一元二次方程2a某+b某+c=0的两个根分别是某1=1.6,某2=()2A、﹣1.6C、4.4B、3.2D、以上都不对2211、如图,抛物线y=某+1与双曲线y=的交点A的横坐标是1,则关于某的不等式+某+1<0的解集是()2勤志数学A、某>1B、某<﹣1C、0<某<1D、﹣1<某<0212、已知二次函数y=a某+b某+c的图象如图所示,则关于某的不等式b某+a>0的解集是()A、某<B、某<C、某>D、某>2213、方程7某﹣(k+13)某+k﹣k﹣2=0(k是实数)有两个实根α、β,且0<α<1,1<β<2,那么k的取值范围是()A、3<k<4B、﹣2<k<﹣1C、3<k<4或﹣2<k<﹣1D、无解214、对于整式某和2某+3,请你判断下列说法正确的是()22A、对于任意实数某,不等式某>2某+3都成立B、对于任意实数某,不等式某<2某+3都成立C、某<3时,不等式某<2某+3成立D、某>3时,不等式某>2某+3成立二、解答题(共7小题)215、已知抛物线y=某+2p某+2p﹣2的顶点为M,(1)求证抛物线与某轴必有两个不同交点;(2)设抛物线与某轴的交点分别为A,B,求实数p的值使△ABM面积达到最小.16、已知:二次函数y=(2m﹣1)某﹣(5m+3)某+3m+5(1)m为何值时,此抛物线必与某轴相交于两个不同的点;(2)m 为何值时,这两个交点在原点的左右两边;(3)m为何值时,此抛物线的对称轴是y轴;(4)m为何值时,这个二次函数有最大值.3222勤志数学17、已知下表:(1)求a、b、c的值,并在表内空格处填入正确的数;(2)请你根据上面的结果判断:2①是否存在实数某,使二次三项式a某+b某+c的值为0?若存在,求出这个实数值;若不存在,请说明理由.22②画出函数y=a某+b某+c的图象示意图,由图象确定,当某取什么实数时,a某+b某+c>0.18、请将下表补充完整;(Ⅱ)利用你在填上表时获得的结论,解不等式﹣某﹣2某+3<0;(Ⅲ)利用你在填上表时获得的结论,试写出一个解集为全体实数的一元二次不等式;(Ⅳ)试写出利用你在填上表时获得的结论解一元二次不等式a某+b某+c>0(a≠0)时的解题步骤.224勤志数学219、二次函数y=a某+b某+c(a≠0)的图象如图所示,根据图象解答下列问题:2(1)写出方程a某+b某+c=0的两个根;2(2)写出不等式a某+b某+c>0的解集;(3)写出y随某的增大而减小的自变量某的取值范围;2(4)若方程a某+b某+c=k有两个不相等的实数根,求k的取值范围.20、阅读材料,解答问题.2例.用图象法解一元二次不等式:某﹣2某﹣3>0.2解:设y=某﹣2某﹣3,则y是某的二次函数.∵a=1>0,∴抛物线开口向上.22又∵当y=0时,某﹣2某﹣3=0,解得某1=﹣1,某2=3.∴由此得抛物线y=某﹣2某﹣3的大致图象如2图所示.观察函数图象可知:当某<﹣1或某>3时,y>0.∴某﹣2某﹣3>0的解集是:某<﹣1或某>3.2(1)观察图象,直接写出一元二次不等式:某﹣2某﹣3<0的解集是_________;2(2)仿照上例,用图象法解一元二次不等式:某﹣5某+6<0.(画出大致图象).三、填空题(共4小题)21、二次函数y=a某+b某+c(a≠0)的图象如图所示,根据图象解答下列问题:2(1)写出方程a某+b某+c=0的两个根.某1=_________,某2=_________;2(2)写出不等式a某+b某+c>0的解集._________;(3)写出y随某的增大而减小的自变量某的取值范围._________;2(4)若方程a某+b某+c=k有两个不相等的实数根,求k的取值范围._________.25勤志数学22、如图是抛物线y=a某+b某+c的一部分,其对称轴为直线某=1,若其与某轴一交点为B(3,20),则由图象可知,不等式a某+b某+c>0的解集是_________.22223、二次函数y=a某+b某+c和一次函数y=m某+n的图象如图所示,则a某+b某+c≤m某+n时,某的取值范围是_________.224、如图,已知函数y=a某+b某+c与y=﹣的图象交于A(﹣4,1)、B(2,﹣2)、C(1,﹣4)2三点,根据图象可求得关于某的不等式a某+b某+c<﹣的解集为_________.6勤志数学答案与评分标准一、选择题(共15小题)21、(2022山西)已知二次函数y=a某+b某+c的图象如图所示,对称轴为直线某=1,则下列结论正确的是()A、ac>0B、方程a某+b某+c=0的两根是某1=﹣1,某2=3C、2a﹣b=0D、当某>0时,y随某的增大而减小考点:二次函数图象与系数的关系;抛物线与某轴的交点。

一元二次方程及二次函数应用题练习与讲解资料.

一元二次方程及二次函数应用题练习与讲解资料.
一元二次方程及二次函数 专题复习及练习
一、增长率应用题
• 1、恒利商厦九月份的销售额为200万元,十月份的销售额 下降了20%,商厦从十一月份起加强管理,改善经营,使 销售额稳步上升,十二月份的销售额达到了193.6万元,求 这两个月的平均增长率.
解: 设这两个月的平均增长率是x,则根据题意, 得 200(1-20%)(1+x)2=193.6, 即 (1+x)2=1.21, 解这个方程,得x1=0.1,x2=-2.1(舍去) 答 这两个月的平均增长率是10%.
二、商品定价
2、益群精品店以每件21元的价格购进一批商品, 若每件商品售价a元,则可卖出(350-10a)件, 但物价局限定每件商品的利润不得超过20%, 商店计划要盈利400元,需要进货多少件?每件 商品应定价多少?
解:根据题意,得(a-21)(350-10a)=400,整理, 得a2-56a+775=0,
解这个方程,得a1=25,a2=31. 因为31×(1+20%)=25.2,所以a2=31不合题意,舍去 . 所以350-10a=350-10×25=100(件). 答 需要进货100件,每件商品应定价25元.
三、比赛类型应用题
• 1、在一个QQ群里有n个网友在线,每个网 友都向其他网友发出一条信息,共有20条
信息,则n为 (C )
• A、10 B、6 C、5 D、4 • 2、一次开会时,同事们见面后,倍感亲切,
相互握手恭贺,这次共握手 28 次,一共有 多少人参加开会?
8人
二次函数应用题
Hale Waihona Puke 1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m, 拱顶距离水面4m. (1)在如图所示的直角坐标系中,求出该抛物线的表达式; (2)在正常水位的基础上,当水位上升h(m)时,桥下水 面的宽度为d(m),求出将d表示为h的函数表达式; (3)设正常水位时桥下的水深为2m,为保证过往船只顺利 航行,桥下水面宽度不得小于18m,求水深超过多少米时就 会影响过往船只在桥下的顺利航行.

二次函数与一元二次方程 练习题

二次函数与一元二次方程 练习题

二次函数与一元二次方程练习题1.抛物线y=2x-8-3x与x轴有2个交点,因为其判别式b-4ac=25>0.2,相应二次方程3x^2-2x+8=0的根的情况为2个不相等的实根。

3.关于二次函数y=ax^2+bx+c的图像有下列命题:①当c=0时,函数的图像经过原点;②当c>0,且函数的图像开口向下时,方程ax^2+bx+c=0必有两个不相等的实根;③函数图像最高点的纵坐标是-Δ/4a;④当b=0时,函数的图像关于y 轴对称。

其中正确命题的个数是3个。

4.关于x的方程mx^2+mx+5=m有两个相等的实数根,则相应二次函数y=mx^2+mx+5-m与x轴必然相交于点(0,5-m),此时m=1.5.要使抛物线y=x^2-(2m-1)x-6m与x轴交于两点(x1,0)和(x2,0),经过原点,应将它向右平移1个单位。

6.关于x的二次函数y=2mx+(8m+1)x+8m的图像与x轴有交点,则m的范围是m≥-11/16且m≠16/27.7.已知抛物线y=-(x-h)^2+k的顶点在抛物线y=x上,且抛物线在x轴上截得的线段长是4/3,求h和k的值。

解得h=±1/3,k=2/3.8.已知函数y=x-mx+m-2.(1) 求证:不论m为何实数,此二次函数的图像与x轴都有两个不同交点;(2) 若函数y有最小值-2,求m的值。

(1) 当y=0时,解得x=1和x=m-2,因此与x轴有两个交点;(2) 当m=1时,函数的最小值为-2,因此m=1.9.下图是二次函数y=ax^2+bx+c的图像,与x轴交于B,C两点,与y轴交于A点。

已知BC=5,∠ABC=45°,∠ACB=60°,(1) 根据图像确定a,并说明理由;(2) 如果A点的坐标为(0,-3),b,c的符号,求这个二次函数的函数表达式。

(1) 因为∠ABC=45°,∠ACB=60°,所以BC的长度为5,AB的长度为5cos45°=5/√2,AC的长度为5cos30°=5√3/2.因此,函数的开口向下,a<0.又因为函数与y轴交于A点,所以c=0.(2) 由于A点的坐标为(0,-3),所以c=-3.又因为函数与x轴交于B,C两点,所以b=-a(Bx+Cx)=-a(BC)=5a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分5000(1-x )2= 4050 ………………………………………3分解得:x 1=10% x 2=1910(不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵<∴选方案①更优惠. ……………………………………………8分2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。

根据题意,得 2150(1)216x+= 解得10.220%x ==,2 2.2x =-(不合题意,舍去)。

答:该市汽车拥有量的年平均增长率为20%。

(2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为21690%y ⨯+万辆,2011年底全市的汽车拥有量为(21690%)90%y y ⨯+⨯+万辆。

根据题意得(21690%)90%231.96y y ⨯+⨯+≤解得30y ≤答:该市每年新增汽车数量最多不能超过30万辆。

第21题图 3.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长..解:设BC 边的长为x 米,根据题意得 ············································ 1分 321202xx-=, ································································ 4分 解得:121220x x ==,, ···························································· 6分∵20>16,∴220x =不合题意,舍去, ···················································· 7分答:该矩形草坪BC 边的长为12米.4.(2010山东烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?答案:解:设原计划每天打x 口井,由题意可列方程30/x-30/(x+3)=5, …………………………………………4分 去分母得,30(x+3)-30x=5x(x+3),整理得,x 2+3x-18=0……………………………………………………………5分 解得x 1=3,x 2=-6(不合题意舍去)…………………………………………6分 经检验,x 2=3是方程的根,…………………………………………7分答:原计划每天打3口井………………………………………………………………8分5.(2010·浙江温州)23.(本题l2分)在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.(1)下图是小芳家2009年全年月用电量的条形统计图。

根据图中提供的信息,回答下列问题:①2009年小芳家月用电量最小的是月,四个季度中用电量最大的是第季度;②求2009年5月至6月用电量的月增长率;(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?6..(2011山东日照,20,8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.7. 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a 元,则可卖出(350-10a )件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解 根据题意,得(a -21)(350-10a )=400,整理,得a 2-56a +775=0, 解这个方程,得a 1=25,a 2=31.因为21×(1+20%)=25.2,所以a 2=31不合题意,舍去. 所以350-10a =350-10×25=100(件). 答 需要进货100件,每件商品应定价25元.8. 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解 设该单位这次共有x 名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x -25)]x =27000.整理,得x 2-75x +1350=0,解这个方程,得x 1=45,x 2=30. 当x =45时,1000-20(x -25)=600<700,故舍去x 1; 当x 2=30时,1000-20(x -25)=900>700,符合题意. 答:该单位这次共有30名员工去天水湾风景区旅游.图19. 在如图8中,每个正方形有边长为1 的小正方形组成:(1)观察图形,请填写下列表格: 正方形边长 1 3 5 7 … n (奇数) 黑色小正方形个数…正方形边长 2 4 6 8 … n (偶数) 黑色小正方形个数…(2)在边长为n (n ≥1)的正方形中,设黑色小正方形的个数为P 1,白色小正方形的个数为P 2,问是否存在偶数..n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n 时,黑色正方形的个数为1、5、9、13、2n -1(奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形的个数为4、8、12、16、2n (偶数).(2)由(1)可知n 为偶数时P 1=2n ,所以P 2=n 2-2n .根据题意,得n 2-2n =5×2n ,即n 2-12n =0,解得n 1=12,n 2=0(不合题意,舍去).所以存在偶数n =12,使得P 2=5P 1.图8二、二次函数的应用题1.(03吉林)如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计). 货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B .∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时), 货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时.2. (03辽宁)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).(1)由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?解:(1)设s 与t 的函数关系式为c bt at s ++=2,由题意得⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a ∴t t s 2212-=.(2)把s =30代入t t s 2212-=,得.221302t t -= 解得101=t ,62-=t (舍去) 答:截止到10月末公司累积利润可达到30万元.(3)把7=t 代入,得.5.10727212=⨯-⨯=s 把8=t 代入,得.16828212=⨯-⨯=s5.55.1016=-.答:第8个月获利润5.5万元.。

相关文档
最新文档