最新人教A版必修5高中数学《1.1.2 余弦定理(一)》教案(精品)

合集下载

高中数学 1.1.2 余弦定理1教案 新人教A版必修5

高中数学 1.1.2 余弦定理1教案 新人教A版必修5

§1.1正弦定理和余弦定理(3)教学目标:1、知识与技能:进一步熟悉正、余弦定理内容,能够熟练应用正、余弦定理进行边角关系的相互转化,进而判断三角形的形状或求值.2、过程与方法:让学生从正、余弦定理的变形出发,得到边角互化的关系式,引导学生利用这个关系实现三角关系中的边或角的统一,再利用已学的三角变换或代数变换解决问题.3、情感与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学重点:利用正、余弦定理进行边角互化教学难点:边角互化时边化角及角化边的合理运用课时安排:1课时教学方法:启发引导式引导学生总结在解决三角问题时,如何合理运用正、余弦定理进行边角互化教学过程:一、复习引入:1、正弦定理:R A a 2sin ===(其中R 为ABC ∆外接圆半径)正弦定理应用范围:(1)已知两角和任一边,求其他两边及一角;(2)已知两边和其中一边对角,求另一边的对角.变形: (1)⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 ; (2).⎪⎪⎪⎩⎪⎪⎪⎨⎧===R c C R b B R a A 2sin 2sin 2sin 思考:变形(1)和(2)有什么作用?2、余弦定理:=2a ;=A cos ;=2b ; 变形: =B cos ;=2c . =C cos .余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【设计意图:通过复习旧知,导入变形,引导学生认知通过变形式实现边角的互化】二、典例剖析例1、在ABC ∆中,B a A b cos cos =,试判断ABC ∆的形状.【设计意图:本题属于容易题,主要通过本题让学生认知判断三角形的形状就是判断角之间的关系或边之间的关系,利用正、余弦的变形恰好达到角或边的一个统一】【练习巩固】1、在ABC ∆中,B b A a cos cos =,试判断ABC ∆的形状.【设计意图:本题是例1的直接变形,入手容易,但后面有学生易错或易忽视的地方,如B A 2sin 2sin =仅得到B A 22=一个结论,2222222)())((c b a b a b a -=+-直接两边约掉22b a -,同时本题体现出“边化角”比“角化边”要容易一些,因此在选择边角统一时要善于发现和总结用正弦还是余弦】2、在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠的对边长,若cos ,sin b a C c a B ==,试判断ABC ∆的形状.【设计意图:本题中sin =c a B 式子不能直接将sin B 处理成边了,让学生领悟利用正弦定理实现边角统一的关键】例2、在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A 、725 B 、725- C 、725± D 、2425【设计意图:本题是2012年的天津高考题,首先引导学生从目标入手,求角就应该处理出角之间的关系,这个较为容易,且得出的B cos 值,但多数学生会随即得出B sin 的值,然后求出C sin ,进而得到错误答案C 】例3、在锐角A B C ∆中,C B A ,,的对边分别为c b a ,,,且C ba abc o s 6=+,则=+BC A C t a n t a n t a n t a n .【设计意图:本题较难,主要因为学生习惯性的直接从条件出发,目的在于再次向学生强调思考问题,统一边角关系需从目标着手】三、本课小结:1、学会利用正弦、余弦定理解决两类题型:(1) 判断三角形的形状;(2) 三角形中的求值题.2、两种题型思路的共同点:统一边角关系.(1)边化角,利用三角变换求解;(2)角化边,利用代数变换求解. (强化目标意识)四、课后作业1、在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,则此三角形为A 、直角三角形B 、等腰三角形C 、等边三角形D 、等腰直角三角形2、在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,则=A cos .3、在△ABC 中,c b a b A o+=,,,80成等比数列,求B .4、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1,2A C B a c -+==,求C .5、在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠的对边长。

1.1.2 余弦定理 教案(人教A版必修5)

1.1.2 余弦定理 教案(人教A版必修5)

1.1.2余弦定理从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系教学重点余弦定理的发现和证明过程及其基本应用教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程2.余弦定理在解三角形时的应用思路3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备投影仪、幻灯片两张第一张:课题引入图片(记作A如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a第二张:余弦定理(记作1.1.2B余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C形式二:co s A=bc ac b22 22-+,co s B=ca ba c22 22-+,co s C=ab cb a22 22-+三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法2.会利用余弦定理解决两类基本的解三角形问题3.能利用计算器进行运算二、过程与方法1.利用向量的数量积推出余弦定理及其推论2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得A2=CD2+BD2∵在Rt△ADC中,CD2=B2-AD2又∵BD2=(C-AD)2=C2-2C·AD+AD2∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD又∵在Rt△ADC中,AD=B·CO s A∴a2=b2+c2-2ab c os A类似地可以证明b2=c2+a2-2caco s Bc2=a2+b2-2ab c os C另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍在幻灯片1.1.2B中我们可以看到它的两种表示形式形式一a2=b2+c2-2bcco s Ab2=c+a2-2caco s Bc2=a2+b2-2abco s C形式二bc a c b A 2cos 222-+=ca b a c B 2cos 222-+=abc b a C 2cos 222-+=师 在余弦定理中,令C =90°时,这时co s C =0,所以c 2=a 2+b 2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用 [合作探究2.向量法证明余弦定理 (1)证明思路分析师联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边C .由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢生 向量数量积的定义式a ·b =|a ||b |co sθ,其中θ为A 、B 的夹角师 在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C ,则构造∙这一数量积以使出现CO s C .同样在证明过程中应注意两向量夹角是以同起点为前提(2)向量法证明余弦定理过程如图,在△ABC 中,设AB 、BC 、CA 的长分别是c 、a 、b由向量加法的三角形法则,可得+=∴,cos 2)1802)()(22a B ac c B BC AB +-=+-︒+=+∙+=+∙+=∙即B 2=C 2+A 2-2AC COB由向量减法的三角形法则,可得-=∴2222cos 22)()(c A bc b A AB AC +-=-=+∙-=-∙-=∙即a 2=b 2+c 2-2bcco s A由向量加法的三角形法则,可得-=+=∴,cos 22)()(22222a C bab C AC BC AC +-=-=+∙-=-∙-=∙即c 2=a 2+b 2-2abco sC [方法引导(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则(2)在证明过程中应强调学生注意的是两向量夹角的确定,与属于同起点向量,则夹角为A ;与是首尾相接,则夹角为角B 的补角180°-B ;与是同终点,则夹角仍是角C [合作探究师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:bac a b C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC 中,C =90°,则co s C =0,这时c 2=a 2+b 2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变成可定量计算的公式了.师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有关三角形的问题(1)已知三边,求三个角这类问题由于三边确定,故三角也确定,解唯一,课本P 8例4属这类情况 (2)已知两边和它们的夹角,求第三边和其他两个角这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题接下来,我们通过例题来进一步体会一下 [例题剖析]【例1】在△ABC 中,已知B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到1°,边长精确到1 c m )解:根据余弦定理,a 2=b 2+c 2-2bcco s A =602+342-2·60·34co s41°≈3 600+1 156-所以A ≈41c 由正弦定理得sin C =4141sin 34sin ︒⨯=a A c ≈41656.034⨯因为C 不是三角形中最大的边,所以C 是锐角.利用计数器可得CB =180°-A -C =180°-41°-【例2】在△ABC 中,已知a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形解:由余弦定理的推论,得co s A =7.1618.8726.1347.1618.872222222⨯⨯-+=-+bc a c b ≈0.554 3,Aco s B =7.1616.13428.877.1616.1342222222⨯⨯-+=-+ca b a c ≈0.839 8,BC =180°-(A +B )=180°-[知识拓展补充例题:【例1】在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C .(精确到分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二解:∵725.0610276102cos 222222=⨯⨯-+=-+=bc a c b A∴A∵c os C =140113107261072222222=⨯⨯-+=-+ab c b a∴C∴B =180°-(A +C )=180°- [教师精讲(1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出(2)对于较复杂运算,可以利用计算器运算【例2】在△ABC 中,已知a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效数字,角度精确到分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好 解:由c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s 82°28′, 得c∵c os A =297.4696.32730.2297.4696.32222222⨯⨯-+=-+bc a c b∴A∴B =180°-(A +C )=180°- [教师精讲通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦 【例3】在△ABC 中,已知A =8,B =7,B =60°,求C 及S △ABC分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边C ,而三角形面积由公式S △ABC =21ac sin B 可以求出若用余弦定理求C ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2caco s B 建立关于C 的方程,亦能达到求C 的目的 下面给出两种解法 解法一:由正弦定理得︒=60sin 7sin 8A∴A 1=81.8°,A 2 ∴C 1=38.2°,C 2由Ccsin 60sin 7=︒,得c 1=3,c 2 ∴S △ABC =36sin 211=B ac 或S △ABC =310sin 212=B ac解法二:由余弦定理得b 2=c +a 2-2caco s B∴72=c +82-2×8×cco整理得c 2-8c解之,得c 1=3,c 2=5.∴S △ABC =36sin 211=B ac 或S △ABC = 310sin 212=B ac[教师精讲]在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之 课堂练习1.在△ABC 中(1)已知c =8,b =3,b =60°,求A (2)已知a =20,b B =29,c =21,求B (3)已知a =33,c =2,b =150°,求B(4)已知a =2,b =2,c =3+1,求A解: (1)由a 2=b 2+c 2-2bcco s A ,得a 2=82+32-2×8×3co s60°=49.∴A(2)由ca b a c B 2cos 222-+=,得021202292120cos 222=⨯⨯-+=B .∴B (3)由b 2=c 2+a 2-2caco s B ,得b 2=(33)2+22-2×33×2co s150°=49.∴b(4)由bc a c b A 2cos 222-+=,得22)13(222)13()2(cos 222=+-++=A .∴A评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题效率2.根据下列条件解三角形(角度精确到(1)a =31,b =42,c (2)a =9,b =10,c解:(1)由bc a c b A 2cos 222-+=,得27422312742cos 222⨯⨯-+=A ≈0.675 5,∴A由273124227312cos 222222⨯⨯-+=-+=ca b a c B ≈-0.044 2,∴B∴C =180°-(A +B )=180°-(2)由,2222bc a c b -+得1510291510cos 222⨯⨯-+=A∴A由1592109152cos 222222⨯⨯-+=-+=ca b a c B ≈0.763 0,∴B∴C =180°-(A +B )=180°-评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力 课堂小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①已知三边求三角;②已知两边、一角解三角形. 布置作业课本第8页练习第1(1)、2(1)题板书设计 1.余弦定理 2.证明方法余弦定理所能解决的两类问题: (1)平面几何法已知三边求任意角;学生练习。

高中数学 1.1.2 余弦定理优秀教案 新人教A版必修5

高中数学 1.1.2 余弦定理优秀教案 新人教A版必修5

备课资料 一、向量方法证明三角形中的射影定理在△ABC 中,设三内角A 、B 、C 的对边分别是A 、B 、C . ∵AB CB AC =+, ∴AC AB CB AC AC •=+•)(. ∴AC AB CB AC AC AC •=•+•.∴A AC AB C CB AC AC cos )180cos(2=-︒+.∴.cos cos A AB C CB AC •=-.∴b -aco s C =ccos A ,即B =cco s A +aco s C .类似地有C =aco s B +bco s A ,a =bcos C +cco s B .上述三式称为三角形中的射影定理.二、解斜三角形题型分析正弦定理和余弦定理的每一个等式中都包含三角形的四个元素,如果其中三个元素是已知的(其中至少有一个元素是边),那么这个三角形一定可解.关于斜三角形的解法,根据所给的条件及适用的定理可以归纳为下面四种类型:(1)已知两角及其中一个角的对边,如A 、B 、A ,解△ABC .解:①根据A +B +C =π,求出角C ;②根据Cc A a B b A a sin sin sin sin ==及,求B 、C . 如果已知的是两角和它们的夹边,如A 、B 、C ,那么先求出第三角C ,然后按照②来求解.求解过程中尽可能应用已知元素.(2)已知两边和它们的夹角,如A 、B 、C ,解△ABC .解:①根据C 2=A 2+B 2-2abco s C ,求出边C ;②根据co s A =bca cb A 2cos 222-+,求出角A ; ③由B =180°-A -C ,求出角B .求出第三边C 后,往往为了计算上的方便,应用正弦定理求角,但为了避免讨论角是钝角还是锐角,应先求A 、B 较小边所对的角(它一定是锐角),当然也可以用余弦定理求解.(3)已知两边及其中一条边所对的角,如a 、b 、A ,解△ABC .解:①Bb A a sin sin =,经过讨论求出B ; ②求出B 后,由A +B +C =180°,求角C ;③再根据C c A a sin sin ,求出边C . (4)已知三边A 、B 、C ,解△ABC .解:一般应用余弦定理求出两角后,再由A +B +C =180°,求出第三个角.另外,和第二种情形完全一样,当第一个角求出后,可以根据正弦定理求出第二个角,但仍然需注意要先求较小边所对的锐角. (5)已知三角,解△ABC .解:满足条件的三角形可以作出无穷多个,故此类问题解不唯一.三、“可解三角形”与“需解三角形”解斜三角形是三角函数这章中的一个重要内容,也是求解立体几何和解析几何问题的一个重要工具.但在具体解题时,有些同学面对较为复杂(即图中三角形不止一个)的斜三角形问题,往往不知如何下手.至于何时用正弦定理或余弦定理也是心中无数,这既延长了思考时间,更影响了解题的速度和质量.但若明确了“可解三角形”和“需解三角形”这两个概念,则情形就不一样了.所谓“可解三角形”,是指己经具有三个元素(至少有一边)的三角形;而“需解三角形”则是指需求边或角所在的三角形.当一个题目的图形中三角形个数不少于两个时,一般来说其中必有一个三角形是可解的,我们就可先求出这个“可解三角形”的某些边和角,从而使“需解三角形”可解.在确定了“可解三角形”和“需解三角形”后,就要正确地判断它们的类型,合理地选择正弦定理或余弦定理作为解题工具,求出需求元素,并确定解的情况.“可解三角形”和“需解三角形”的引入,能缩短求解斜三角形问题的思考时间.一题到手后,先做什么,再做什么,心里便有了底.分析问题的思路也从“试试看”“做做看”等不大确定的状态而变为“有的放矢”地去挖掘,去探究.。

高中数学《1.1.2 余弦定理(第一课时)》教案 新人教A版必修5

高中数学《1.1.2 余弦定理(第一课时)》教案 新人教A版必修5

1.1.2 余弦定理(第一课时)教学目标知识与技能:1. 掌握余弦定理,并能解决一些简单的三角形度量问题2. 能够运用余弦定理解决一些与测量和几何计算有关的实际问题过程与方法:1. 学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的一种数量关系——余弦定理2. 在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力情感、态度与价值观:1. 通过对三角形边角关系的探究学习,经历数学探究活动的过程,培养探索精神和创新意识2. 在运用余弦定理的过程中,逐步养成实事求是、扎实严谨的科学态度,学习用数学的思维方式解决问题、认识世界3. 通过本节的学习和运用实践,体会数学的科学价值、应用价值,进而领会数学的人文价值、美学价值,不断提高自身的文化素养教学重点:余弦定理的证明及应用教学难点:向量知识在证明余弦定理时的应用,与向量知识的联系过程 教学过程一,创设情境,课题导入1.复习:已知30,45,16A C b ===,解三角形(学生板演)2.若将条件45C =改成8c =如何解三角形?设计意图:把研究余弦定理的问题和平面几何中三角形全等判定的方法建立联系,沟通新旧知识的联系,引导学生体会量化的思想和观点师生活动:用数学符号来表达“已知三角形的两边及其夹角解三角形”:已知,,ABC BC a AC b ∆==和角C ,求解c ,,B A引出课题:余弦定理二.设置问题,知识探究1.探究:我们可以先研究计算第三边长度的问题,那么我们又从哪些角度研究这个问题能得到一个关系式或计算公式呢?设计意图:期望能引导学生从各个不同的方面去研究、探索得到余弦定理 师生活动:从某一个角度探索并得出余弦定理3.设a b -,22()()2cos c c c a b a b a b ab C ∴=⋅=-⋅-=+-即2222cos c a b ab C =+- 引导学生证明:2222cos a b c bc A =+-3.余弦定理:三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍三.典型例题剖析 1.例1.在ABC ∆中,已知120,2,2,A b cm c cm ===解三角形分析:已知三角形的两边和它们的夹角解三角形,基本思路是先由余弦定理求出第三边,再由正弦定理求其各角变式引申:在ABC ∆中,已知30,5,A b c ===2.探究:余弦定理是关于三角形三边和一个角的一个关系式,把这个关系式做某些变形,是否可以解决其他类型的解三角形问题?设计意图:(1)引入余弦定理的推论;(2)对一个数学式子做某种变形,从而得到解决其他类型的数学问题的方法,这是一种研究问题的方法师生活动:对余弦定理做某些变形,研究变形后所得关系式的应用,因此应把重点引导到余弦定理的推论上去,即讨论已知三边求角的问题 引入余弦定理的推论:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222cos 2a b c C ab +-= 公式作用:(1) 已知三边求三角(2) 若A 为直角,则cos 0A =,从而222b c a +=;若A 为锐角,则cos 0A >,从而222b c a +>;若A 为钝角,则cos 0A <,从而222b c a +<例2.已知在ABC ∆中,a b c ===,,A B C先让学生自己分析、探索,老师进行引导、启发和补充,最后师生一起求解总结:对于已知三角形的三边求三角这种类型,解三角形的基本思路是先由余弦定理求出两角,再用三角形内角和定理求出第三角变式引申:在ABC ∆中,::21)a b c =,求,,A B C让学生板演,师生共同评判3.三角形形状的判定例3.在ABC ∆中,cos cos a A b B =,试确定此三角形的形状求解思路:判断三角形的形状可有两种思路:一是利用边之间的关系来判断,在运算过程中,尽可能把角的关系转化为边的关系;二是利用角之间的关系来判断,将边转化为角变式引申:在ABC ∆中,若()()3a b c b c a bc +++-=,并且sin 2sin cos A B C =,判断三角形的形状四.课堂检测反馈1.已知在ABC ∆中,60,8,3A b c ===,则a = ( )2. 在ABC ∆中,若1,1,a b c ===,则ABC ∆的最大角的度数为( )3.在ABC ∆中,5,6,8AB BC AC ===,则ABC ∆的形状是( ).A 锐角三角形 .B 直角三角形 .C 钝角三角形 .D 非钝角三角形五.课时小结1.学生自己归纳、补充,培养学生的口头表达能力和归纳概括能力,教师总结2.运用向量方法推导出余弦定理,并能灵活运用余弦定理解决解三角形的两种类型及判断三角形的形状问题六.课后作业课本第10页A 组3(2),4(2)B 组第2题。

人教A版数学必修5-1.1.2 余弦定理(第一课时) 教学设计

人教A版数学必修5-1.1.2 余弦定理(第一课时) 教学设计

编写时间:2021年月日2021-2022学年第一学期编写人:形体系,确定边角边和边边边是两类可解的解三角形问题,使学生产生进一步探索解决问题的动机. (二) 分析问题,确定方案探究一:已知两边及其夹角解三角形问题:怎样确定解决问题的方案?设置意图:通过学生的独立思考,畅所欲言,确定思路,让更多的学生有的放矢,明确解决问题的方向.学生活动:小组合作,相互讨论,展示结果.过程说明:通过确定方案,放手让学生自己探究发现证明余弦定理.必要时加以引导如:第三边可以放在直角三角形中求解吗?涉及边长和夹角,三角形是三条线段首尾相接所组成的封闭图形,可以用向量的等式来表示吗?两点之间的距离,能用坐标法求解吗?设置意图:将原有的知识与现有的推理相联系,从多个角度联想去发现和解决问题,自主探究获得定理的证明.使其在探究中对问题本质的思考逐步深入,思维水平不断提高. (三) 发现定理,分析内涵不同方法探索并证明余弦定理之后,通过观察余弦定理结构特征,层层深入,去分析余弦定理的内涵.思考:观察C ab b a c cos 2222-+=的结构特征,谈一谈你对等式的理解.设置意图:分析等式的外延和内涵,自然的得到余弦定理及其推论. (四) 解决问题,理解定理得到了余弦定理,继续完成已知边角边求解角的过程,和已知三边解三角形的过程.探究二:已知三边解三角形设置意图:通过解三角形的过程,不但发现余弦定理,还能在求解中进一步理解和应用余弦定理. (五) 例题展示,巩固定理例:在ABC ∆中,已知,30,3,32︒===A b c 解三角形.设置意图:巩固熟悉余弦定理,从例题的思考,展示,交流,点评中使学生对正余弦定理解三角形有进一步的体验. (六) 课堂小结,提炼过程思考:余弦定理及其推论发现和证明的过程是怎样的?在这个过程中你有 什么体会?设置意图:小结环节设置了两个问题:谈过程,谈体会.目的是不但让学生经历整个探究学习过程,还能在此基础上对本节课有整体的认识,说出整个过程的环节,感受以及发现证明定理运用的方法等. (七) 布置作业,课后探究(1) 课本10P A 组3,4题(2) 拓展思考:相等和不等是一对辩证的关系,请根据角的范围讨论余弦定理中所蕴含的相等和不等关系.设置意图:作业一是巩固熟悉利用余弦定理解三角形,作业二的目的是进一步挖掘余弦定理的内涵.。

高中数学《1.1.2 余弦定理(一)》教案 新人教A版必修5

高中数学《1.1.2 余弦定理(一)》教案 新人教A版必修5

福建省长乐第一中学高中数学必修五《1.1.2 余弦定理(一)》教案教学要求:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.教学重点:余弦定理的发现和证明过程及其基本应用.教学难点:向量方法证明余弦定理.教学过程:一、复习准备:1. 提问:正弦定理的文字语言? 符号语言?基本应用?2. 练习:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形. →变式3. 讨论:已知两边及夹角,如何求出此角的对边?二、讲授新课:1. 教学余弦定理的推导:① 如图在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC AB BC =+,∴()()AC AC AB BC AB BC ∙=+∙+222AB AB BC BC =+∙+ 222||||cos(180)AB AB BC B BC =+∙-+222cos c ac B a =-+.即2222cos b c a ac B =+-,→② 试证:2222cos a b c bc A =+-,2222cos c a b ab C =+-.③ 提出余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.用符号语言表示2222cos a b c bc A =+-,…等; → 基本应用:已知两边及夹角 ④ 讨论:已知三边,如何求三角?→ 余弦定理的推论:222cos 2b c a A bc+-=,…等. ⑤ 思考:勾股定理与余弦定理之间的关系?2. 教学例题:① 出示例1:在∆ABC 中,已知=a c 060=B ,求b 及A .分析已知条件 →讨论如何利用边角关系 → 示范求b→ 讨论:如何求A ?(两种方法) (答案:b =060A =)→小结:已知两边及夹角②在∆ABC 中,已知13a cm =,8b cm =,16c cm =,解三角形.分析已知条件 → 讨论如何利用边角关系 → 分三组练习 → 小结:已知两角一边3. 练习:① 在ΔABC 中,已知a =7,b =10,c =6,求A 、B 和C .② 在ΔABC 中,已知a =2,b =3,C =82°,解这个三角形.4. 小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; 余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边.三、巩固练习:1. 在∆ABC 中,若222a b c bc =++,求角A . (答案:A =1200)2. 三角形ABC 中,A =120°,b =3,c =5,解三角形.→变式:求sin B sin C;sin B+sin C.3. 作业:教材P8 练习1、2(1)题.。

人教A版必修5数学 精品导学案:1.1.2 余弦定理

人教A版必修5数学 精品导学案:1.1.2  余弦定理

§1.1.2 余弦定理 班级 姓名 学号 学习目标1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.学习过程一、课前准备:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45,C =30,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC = ,∴AC AC •=同理可得: 2222cos a b c bc A =+-,2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, ,.[理解定理]c a b B C(1)若C=90︒,则cos C=,这时222c a b=+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.试试:(1)△ABC中,a=2c=,150B=,求b.(2)△ABC中,2a=,b=,1c=,求A.※典型例题例1. 在△ABC中,已知a=b=,45B=,求,A C和c.变式:在△ABC中,若AB,AC=5,且cos C=910,则BC=________.例2. 在△ABC中,已知三边长3a=,4b=,c,求三角形的最大内角.变式:在∆ABC中,若222=++,求角A.a b c bc三、总结提升※学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:①已知三边,求三角;②已知两边及它们的夹角,求第三边.1. 已知a c=2,B=150°,则边b的长为().A. B. C. D.2. 已知三角形的三边长分别为3、5、7,则最大角为().A.60B.75C.120D.1503. 已知锐角三角形的边长分别为2、3、x,则x的取值范围是().A x<B x<5C.2<x D.5<x<54. 在△ABC中,|AB|=3,|AC|=2,AB与AC的夹角为60°,则|AB-AC|=________.5. 在△ABC中,已知三边a、b、c满足222+-=,则∠C等于.b ac ab1. 在△ABC中,已知a=7,b=8,cos C=1314,求最大角的余弦值.2. 在△ABC中,AB=5,BC=7,AC=8,求AB BC的值.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五《1.1.2 余弦定理(一)》教案
教学要求:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.
教学重点:余弦定理的发现和证明过程及其基本应用.
教学难点:向量方法证明余弦定理.
教学过程:
一、复习准备:
1. 提问:正弦定理的文字语言? 符号语言?基本应用?
2. 练习:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形. →变式
3. 讨论:已知两边及夹角,如何求出此角的对边? 二、讲授新课:
1. 教学余弦定理的推导:
① 如图在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵AC AB BC =+ ,
∴()()AC AC AB BC AB BC ∙=+∙+ 222AB AB BC BC =+∙+
222||||cos(180)AB AB BC B BC =+∙-+ 222cos c ac B a =-+.
即2222cos b c a ac B =+-,→
② 试证:2222cos a b c bc A =+-,2222cos c a b ab C =+-.
③ 提出余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.
用符号语言表示2222cos a b c bc A =+-,…等; → 基本应用:已知两边及夹角 ④ 讨论:已知三边,如何求三角?
→ 余弦定理的推论:222
cos 2b c a A bc
+-=,…等. ⑤ 思考:勾股定理与余弦定理之间的关系?
2. 教学例题:
① 出示例1:在∆ABC 中,已知=a c 060=B ,求b 及A .
分析已知条件 → 讨论如何利用边角关系 → 示范求b
→ 讨论:如何求A ?(两种方法) (答案:b =060A =)
→ 小结:已知两边及夹角
②在∆ABC 中,已知13a cm =,8b cm =,16c cm =,解三角形.
分析已知条件 → 讨论如何利用边角关系 → 分三组练习 → 小结:已知两角一边
3. 练习:
① 在ΔABC 中,已知a =7,b =10,c =6,求A 、B 和C .
② 在ΔABC 中,已知a =2,b =3,C =82°,解这个三角形.
4. 小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; 余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边.
三、巩固练习:
1. 在∆ABC 中,若222a b c bc =++,求角A . (答案:A =1200)
2. 三角形ABC 中,A =120°,b =3,c =5,解三角形.
→ 变式:求sin B sin C ;sin B +sin C .
3. 作业:教材P8 练习1、2(1)题.。

相关文档
最新文档