微分方程与差分方程

合集下载

常微分方程与差分方程

常微分方程与差分方程

数值解法的改进
高精度算法
随着计算机技术的发展,人们开发出了许多高精度、高效率的数值解法,如谱方法、有限元方法等。
自适应算法
自适应算法可以根据问题的复杂性和解的特性自动调整计算精度和计算量,提高了数值解法的可靠性和效率。
THANKS FOR WATCHING
感谢您的观看
常微分方程的解法
总结词
求解常微分方程的方法有多种,如分离变量法、积分 因子法、参数变易法等。
详细描述
求解常微分方程的方法有多种,其中分离变量法和积 分因子法是比较常用的方法。分离变量法是将方程中 的变量分离出来,转化为多个简单的微分方程,然后 分别求解。积分因子法是通过引入一个因子,将原方 程转化为易于求解的形式。此外,参数变易法也是求 解常微分方程的一种常用方法,它通过将参数引入到 原方程中,使得原方程转化为易于求解的形式。
VS
详细描述
根据形式和性质的不同,常微分方程可以 分为多种类型。常见的一阶常微分方程是 形式为dy/dx = f(x, y)的方程,其中f(x, y)是一个关于x和y的函数。二阶常微分方 程是形式为y'' = f(x, y')的方程,其中y'表 示y对x的导数。此外,根据是否含有线性 项和非线性项,常微分方程还可以分为线 性常微分方程和非线性常微分方程。
02 差分方程的基本概念
差分方程的定义
差分方程是描述离散变量之间关系的 数学模型,通常表示为离散时间点的 函数值的差分关系式。
它与微分方程类似,但时间变量是离 散的,而不是连续的。
差分方程的分类Leabharlann 01一阶差分方程只包含一个差分的方程,如 (y(n+1) - y(n) = f(n))。

微分方程与差分方程

微分方程与差分方程

λ = −1± i, 则齐次方程的通解为 y = e−x (C1 cos x + C2 sin x). 因 −1+ i 是单特征根,故设原非齐次方程的特解为
y* = xe−x[( A0 x + A1) cos x + (B0 x + B1) sin x].
402
把它代入原非齐次方程得
4B0 x cos x + 2(A0+B1) cos x − 4A0 x sin x + 2(B0−A1) sin x = x cos x + 3sin x,
解 将特解 y = e2x + (1+ x)ex 代入原非齐次微分方程得 (4 + 2 p + q)e2x + (3 + 2 p + q)ex + (1+ p + q)xex = rex.
比较系数,得方程组
⎧2 p + q = −4, ⎧ p = −3;
⎪⎨2 p + q − r = −3,⇒ ⎪⎨q = 2;
tan y
tan x

1 tan
y
d
tan
y
=
−∫
1 tan
x
d
tan
x,
ln(tan y) = − ln(tan x) + ln C, 故通解为 tan x tan y = C. 例3 求微方程 cos ydx + (1+ e−x ) sin ydy 在 y(0) = π 下的特解.
4
解 原方程变形为 (1+ e−x ) sin ydy = − cos ydx, 分离变量,得
过程,只要对所给通解求若干次导数,以消去所有任意常数即可.

温故知新-微分方程与差分方程356308756

温故知新-微分方程与差分方程356308756

∑ P
⎛ ⎜⎝
d dt
⎞ ⎟⎠
⎡⎣t
k
eλt
⎤⎦
=
j
k =0
⎛ ⎜ ⎝
k λ
⎞ ⎟ ⎠
P
(
j
)

)t
k

j
eλt
=0
即 eλt , teλt ,…, t e m−1 λt 都是微分方程的解,并且明显它们是线性无关的。
由常微分方程的基本定理,上述微分方程的解由初始条件
x(0), x′(0),…, x(n−1) (0)
Cλ, jt jeλt
λ是特征根 j=0
其中 x∗ (t) 是这个微分方程的一个特解。
求解非齐次方程的常用方法是常数变易法:即把齐次方程通解中的常数 C 变成函数 C(t) :
λ的重数−1
∑ ∑ x(t) =
Cλ, j (t)t jeλt
λ是特征根 j=0
对它求导得到
∑ ∑ ∑ ∑ ( ) x′(t) =
( ) 称为上述差分方程的特征根),则 λ m ∞ 是上述差分方程的解。 m=0
( ) ( ) 如果 λ1,
, λk 是两两不同的特征根,则
λ1m
∞ ,…,
m=0
λkm

是上述微分方程的线性无关解:
m=0
若 C1λ1m + + Ck λkm = 0 ,则
不难知道
⎛1 1
⎜ ⎜
λ1
λ2

⎜ ⎝
λ1k
−1
1 5
cos(t )e 2t
+
1 5
∫ C1(t) = C1(0) −
t 0
se2s
sin(s)ds

第九章--微分方程与差分方程简介

第九章--微分方程与差分方程简介
19
于是非齐次方程的一个特解为:y* =kxa x-1 x
例5 求解差分方程 2y x+1 − 4y x = 2
解:原方程可化为 y x+1 − 2y x = 2 x % 则相应齐方程的通解为 y x =C ⋅ 2 x 由于p=2=a, 所以原方程的特解应设为 y* = Ax 2 x x 代入原方程得: A(x+1)2 x +1 − 2 Ax 2 x = 2 x , 1 ⇒A= 2 1 x * y x = x 2 =x 2 x -1 于是 2 所以原方程的通解为: y x =x 2 x -1 +C ⋅ 2 x
(2)∆(cyx ) = c∆y x (c为常数)
(3)∆ (ay x + bz x ) = a∆y x + b∆z x , b为常数) (a
(4)∆ ( yx z x ) = yx +1∆z x + z x ∆yx = y∆z x + z x +1∆yx

yx z x ⋅ ∆y x − y x ⋅ ∆z x (5) ∆( ) = zx z x ⋅ z x +1
23
1、二阶齐次差分方程的通解 由9.6节可知,要求齐次差分方程的通解,只需找出 两个线性无关的特解即可。仿照一阶齐次差分方程, 设二阶齐次差分方程存在指数形式的解: y x = λ x , (λ ≠ 0) 代入原方程得:
λ x+2 + pλ x+1 + qλ x = 0
即:
λ x + pλ + q = 0
11
9.6、常系数线性差分方程 、
9.6.1 n阶 系 线 差 方 的 本 质 常 数 性 分 程 基 性 n阶 系 线 差 方 的 般 式 : 常 数 性 分 程 一 形 为 yx+n +p1yx+n-1+L+pn-1yx+1+pny1 = f (x) 其 , 1,, n为 知 数 且 n ≠ 0, (x)为 知 数 中 pL p 已 常 , p f 已 函 。 当 (x)=0时 上 方 则 n阶 系 齐 线 差 方 。 , 述 程 为 常 数 次 性 分 程 f 当 (x) ≠ 0时 上 方 则 n阶 系 非 次 性 分 程 , 述 程 为 常 数 齐 线 差 方 。 f

微分方程与差分方程之间的关系(例说)

微分方程与差分方程之间的关系(例说)

T 为采样周期
i C
U
T
C
U [nT ] U [(n 1)T ] T
iR U [nT ] 0
C
U [nT ] U [(n 1)T ] R U [nT ] 0 T
RC
U [nT ] U [(n 1)T ] U [nT ] 0 T
RC (U [nT ] U [( n 1)T ] U [nT ] 0 T

nT
T
由于 e 1 ( ) 取一次项进行近似:得:
T t
1 T 2 1 T 1 T ( ) ( )3 ... ( )m ... 2! t 3! t m! t
nT T
U (nT ) U (( n - 1)T ) U e (1 - e ) U 1 (0 ) U (0 )e ( ) (nT ) T T
U [0] t n
n
U [t ]
n t n
U [0]
n
n
U [t ]
n t U [0] 1 n t
n t n t U [0] 1 n t t
(U [nT ] U [( n 1)T ]) U [nT ] 0 T
T U [nT ] U [( n 1)T ] 0 这实际上是一阶线性常系数齐次差分方程。 T T
U [nT ] T U [( n 1)T ]
2 3
U [nT ]
即:
T U [( n 2)T ] T U [( n 3)T ] ... T U [0]

微分方程与差分方程简介

微分方程与差分方程简介

方程通解为: 二、二阶常系数线性非齐次方程 二阶常系数线性非齐次方程,其标准形式是
, 其中 a,b,c 是常数,式中的 f(x)称为右端项。
定理 2 设 是线性非齐次方程的一个特解,而 是相应的线性齐次方
程的通解,则其和
为线性非齐次方程的通解。
定理 3 设 y1 是非齐次方程 方程
的一个特解, y2 是非齐次
(4)由于λ=1+3i 不是特征方程的根,n=1,故应设特解为 。
本章重点 微分方程的概念,一阶可分离变量微分方程的解法,一阶线性微分方程的解
法,二阶常系数线性微分方程的解法。
内容提示与分析 §8.1 微分方程的一般概念
1. 微分方程:含有未知函数的导数(或微分)的方程称为微分方程。 常微分方程:微分方程中的未知函数是一元函数的,叫常微分方程,其
一般形式为
。 偏微分方程:未知函数是多元函数的微分方程,叫偏微分方程。 2. 微分方程的阶:微分方程中出现的未知函数的最高阶导数的阶数,叫 做微分方程的阶。 3.微分方程的解:如果把某个函数以及它的各阶导数代人微分方程,能使 方程成为恒等式,这个函数称为微分方程的解。 微分方程的解有通解与特解两种形式。 4. n 阶微分方程的通解:含有 n 个独立的任意常数的解,叫 n 阶微分方 程的通解。 5.微分方程的特解:不含有任意常数的解,叫微分方程的特解。

注意 为了运算方便,可将两端积分后方程式中的 ln|y+1|写成 ln(y+1),
只要记住最后得到的任意常数可正可负即可。另外,也可以将式中的任意常数
写为 lnC,最终 C 是任意常数。
例 5.求微分方程
的通解。
解:原方程可改写成
它是一个齐次方程。

微分方程与差分方程方法

微分方程与差分方程方法

第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。

一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。

自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。

第1章微分方程和差分方程

第1章微分方程和差分方程

第一章 线性微分方程在讲这部分之前,我们先来看一个非常熟悉的物理问题。

一个一维粒子,初始时刻处于点0x x =,初始速度为0v ,受到阻尼作用,求该粒子的运动轨迹。

解:用()x t 表示粒子在任意时刻t 的位置,根据牛顿第二定律F ma =,有mx F =对于阻尼作用F kx =-,于是,粒子的运动方程mx kx =-这是关于时间t 的常微分方程,非常简单。

求解得12()ek t mx t c c -=+结合初始条件0(0)x x =,0(0)x v =,则010mv c x k =+,02mvc k=- 代入得粒子的运动轨迹0()(1e )kt m mv x t x k-=+-这就是这门课程的第二部分——数学物理方程所要讨论的内容:将物理问题表述成数学方程,然后用各种方法来求解方程。

1.1 常系数齐次线性微分方程方程的阶:微分方程中未知函数导数的最高阶数。

线性方程:微分方程中对于未知函数及其所有导数都是一次的,就称为线性方程,高于一次以上就称为非线性方程。

齐次方程:微分方程不含有不包含未知函数的项。

例如 u = 4 u xx ; 二阶线性,x 2u = u xx ; 二阶线性,(u x )2 + u 2 = 1; 一阶非线性。

一、二阶常系数齐次线性微分方程求解 二阶线性微分方程()()()y P x y Q x y f x '''++=若()0f x ≡为齐次,()0f x ≠为非齐次。

方程y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数。

能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程与差分方程
一、 微分方程
一种机理分析方法研究两个变量之间的变化规律。

1.1.
微分方程的建立
变化率
微元法
(彭放等,《数学建模方法》,第章)
1.2. 方程的求解和结果分析 1.2.1. 解析法
一些常系数的或特殊函数形式的微分方程
1.2.2. 数值解法
大多数变系数的、非线性函数形式的微分方程
一般只能求得微分方程的近似解。

给定等间距自变量点列{x n }。

1) 欧拉方法
用差商代替导数,结合初始条件,推出计算{y n }的迭代公式 ⎪⎩
⎪⎨⎧==00)(),(y x y y x g dx dy 的第一个方程变为))(,()()(1n n n n x y x g h x y x y ≈-+,于是 ))(,()()(1n n n n x y x hg x y x y +≈+——显式欧拉式
))(,()()(111++++=n n n n x y x hg x y x y ——隐式欧拉式
欧拉方法计算精度低,收敛速度慢。

))(,(2))(,(2)()(111+++++=n n n n n n x y x g h x y x g h x y x y ——梯形公式
梯形公式比欧拉公式精度高,收敛速度快。

改进的欧拉方法
第一步,由显式欧拉式计算1+n y 的预测值1+n y 第二步,将1+n y 代入梯形公式进行校正,即
⎪⎩
⎪⎨⎧++=+=++++),(2))(,(2)()())(,()(1111n n n n n n n n n n y x g h x y x g h x y x y x y x hg x y y ——改进的欧拉公式 (彭放等,《数学建模方法》,第4章)
2) 龙格-库塔法(简称R-K 法)
泰勒公式
MATLAB 中数值求解的系统函数的实现原理就是龙格-库塔法
(彭放等,《数学建模方法》,第4章)
1.2.3. 图解法
可以将微分方程解的全局信息直观地、形象地展现出来。

斜率场
(彭放等,《数学建模方法》,第4章)
1.2.4. 定性分析
(徐全智等,《数学建模》,第6章)
1.2.5. 稳定性分析
平衡点及其稳定性的概念只针对自治方程有意义。

(姜启源等,《数学模型》,第6章,P198)
二、 差分方程
稳定性分析
平衡点及其稳定性的概念只针对自治方程有意义。

(姜启源等,《数学模型》,第7章,P220)。

相关文档
最新文档