第10章 微分方程与差分方程

合集下载

常微分方程与差分方程

常微分方程与差分方程

数值解法的改进
高精度算法
随着计算机技术的发展,人们开发出了许多高精度、高效率的数值解法,如谱方法、有限元方法等。
自适应算法
自适应算法可以根据问题的复杂性和解的特性自动调整计算精度和计算量,提高了数值解法的可靠性和效率。
THANKS FOR WATCHING
感谢您的观看
常微分方程的解法
总结词
求解常微分方程的方法有多种,如分离变量法、积分 因子法、参数变易法等。
详细描述
求解常微分方程的方法有多种,其中分离变量法和积 分因子法是比较常用的方法。分离变量法是将方程中 的变量分离出来,转化为多个简单的微分方程,然后 分别求解。积分因子法是通过引入一个因子,将原方 程转化为易于求解的形式。此外,参数变易法也是求 解常微分方程的一种常用方法,它通过将参数引入到 原方程中,使得原方程转化为易于求解的形式。
VS
详细描述
根据形式和性质的不同,常微分方程可以 分为多种类型。常见的一阶常微分方程是 形式为dy/dx = f(x, y)的方程,其中f(x, y)是一个关于x和y的函数。二阶常微分方 程是形式为y'' = f(x, y')的方程,其中y'表 示y对x的导数。此外,根据是否含有线性 项和非线性项,常微分方程还可以分为线 性常微分方程和非线性常微分方程。
02 差分方程的基本概念
差分方程的定义
差分方程是描述离散变量之间关系的 数学模型,通常表示为离散时间点的 函数值的差分关系式。
它与微分方程类似,但时间变量是离 散的,而不是连续的。
差分方程的分类Leabharlann 01一阶差分方程只包含一个差分的方程,如 (y(n+1) - y(n) = f(n))。

第十章 偏微分方程数值解法

第十章 偏微分方程数值解法

第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。

除少数特殊情况外,绝大多数情况均难以求出精确解。

因此,近似解法就显得更为重要。

本章仅介绍求解各类典型偏微分方程定解问题的差分方法。

§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。

第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。

当0=α时为第二类边界条件, 0≠α时为第三类边界条件。

抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。

大一微积分下册经典题目及解析

大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8—1 多元函数的基本概念1。

填空题:(1)若yx xy y x y x f tan ),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________y f f x-== (3)若)0()(22 y yy x x y f +=,则__________)(=x f (4)若22),(y x x yy x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xy z arcsin =的定义域是________________ (8)函数xy x y z 2222-+=的间断点是_______________ 2。

求下列极限:(1)xy xy y x 42lim0+-→→班级: 姓名: 学号:(2) x xy y x sin lim0→→(3) 22222200)()cos(1lim y x y x y x y x ++-→→微积分练习册[第八章] 多元函数微分学3.证明0lim 22)0,0(),(=+→y x xy y x4。

证明:极限0lim 242)0,0(),(=+→y x y x y x 不存在班级: 姓名: 学号:5。

函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么?微积分练习册[第八章] 多元函数微分学习题 8—2偏导数及其在经济分析中的应用1.填空题(1)设y x z tan ln =,则__________________,=∂∂=∂∂yz x z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂y z x z ; (3)设zy x u =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ;(4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x z yz x z (5)设z yx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x 2。

微分方程与差分方程

微分方程与差分方程

N, ,
N (t )
Nm Nm r ( t t 0 ) 1 N 1 e 0
.
下面,我们对模型作一简要分析. (1)当 t , N (t ) N m ,即无论人口的初值如何,人口总数趋向于极限值 N m ; (2)当 0 N N m 时, 数; (3) 由于
这就是马尔萨斯人口模型,用分离变量法易求出其解为
N (t ) N 0 e r (t t0 ) ,
此式表明人口以指数规律随时间无限增长. 模型检验:据估计 1961 年地球上的人口总数为 3.06 10 ,而在以后 7 年中,人口总数
9
9 以每年 2%的速度增长,这样 t 0 1961 , N 0 3.06 10 , r 0.02 ,于是
dx f ( x, y ) dt dy g ( x, y ) dt
定义 3:代数方程组
(5)
f ( x, y) 0 的实数根 x x0 , y y0 ,称它为(5)的一个平衡点 g ( x, y) 0
(或奇点) ,记为 P0 ( x0 , y0 ) . 定义 4:如果从所有可能的初始条件出发,方程(5)的解 x (t ) , y (t ) 都满足
2 T D 0
特征根为 1,2
T T 2 4D . 2
下面就分别特征根为相异实根、重根及复根三种情况加以研究: 1) T 4 D 0
2
3
华南农业大学数学建模培训
ⅰD0 ⅱD0
2
T 0 T 0
二根异号
二根同正 二根同负
O 是不稳定结点 O 是稳定结点
O 是鞍点
显然 O(0, 0) 为系统的奇点,记系统系数矩阵 A

微分方程与差分方程习题课总结

微分方程与差分方程习题课总结
或G( x, yx , yx−1 ,, yx−n ) = 0 (n 1)
方程中未知数下标的最大值与最小值的差 称为差分方程的阶.
差分方程的解
如果函数y = φ( x)代入差分方程后,方程两 边恒等,则称此函数为该差分方程的解.
差分方程的通解
含有相互独立的任意常数的个数与差分方程的 阶数相同的差分方程的解.
代入原方程, 得 P dP = f ( y, P ). dy
4.线性微分方程解的结构
(1) 二阶齐次方程解的结构:
形如 y + P( x) y + Q( x) y = 0
(1)
定理 1 如果函数 y1( x)与 y2 ( x)是方程(1)的两个
解,那末 y = C1 y1 + C2 y2也是(1)的解.(C1, C2 是常 数)
解法 由常系数齐次线性方程的特征方程的根确 定其通解的方法称为特征方程法.
y + py + qy = 0
特征方程为 r 2 + pr + q = 0
特征根的情况
实根r1 r2 实根r1 = r2
复根r1,2 = i
通解的表达式
y = C1e r1 x + C2e r2 x y = (C1 + C2 x)e r2 x
当Q( x) 0,
上述方程称为非齐次的.
齐次方程的通解为 y = Ce− P( x)dx (用分离变量法)
非齐次微分方程的通解为
y = e− [ P( x)dx Q( x)e P( x)dxdx + C ] (用常数变易法)
3.可降阶的高阶微分方程的解法 (1) y(n) = f ( x) 型
(2) 0,1 设yx = x zx

微分方程差分方程

微分方程差分方程

微分方程差分方程(原创实用版)目录1.微分方程和差分方程的定义2.微分方程和差分方程的联系与区别3.微分方程和差分方程的应用领域正文微分方程和差分方程都是数学领域中重要的方程式,它们各自具有独特的性质和应用,但在某些方面也存在相似之处。

本文将从定义、联系与区别以及应用领域三个方面对微分方程和差分方程进行介绍。

一、微分方程和差分方程的定义微分方程是一种包含未知函数及其导数的方程,描述了物理量在时间、空间上的变化规律。

微分方程中的未知函数通常表示某一物理量的瞬时变化率,如速度、加速度等。

差分方程是一种离散形式的微分方程,它描述了离散系统中各变量之间的变化关系。

差分方程中的未知函数通常表示某一离散系统中各个时刻的变量值,如数列、矩阵等。

二、微分方程和差分方程的联系与区别1.联系微分方程和差分方程都是描述系统变化的数学模型,它们之间存在一定的联系。

微分方程是差分方程的连续形式,而差分方程是微分方程的离散形式。

这意味着,当微分方程中的自变量离散化时,可以得到相应的差分方程;反之,当差分方程中的自变量连续化时,可以得到相应的微分方程。

2.区别微分方程中的未知函数通常表示物理量的瞬时变化率,而差分方程中的未知函数表示离散系统中各个时刻的变量值。

这意味着,微分方程描述的是连续系统中的变化规律,而差分方程描述的是离散系统中的变化规律。

此外,微分方程和差分方程的求解方法也有所不同。

微分方程通常采用积分方法求解,而差分方程则采用代数方法求解。

三、微分方程和差分方程的应用领域微分方程广泛应用于物理、工程、生物学等领域,描述了各种连续现象的变化规律。

例如,牛顿运动定律、电磁场方程、生态系统模型等都包含微分方程。

差分方程在计算机科学、信息处理、控制论等领域具有重要应用。

例如,数值方法中的欧拉法、龙格 - 库塔法等用于求解常微分方程;离散系统中的状态转移方程、输入输出关系等都可以用差分方程来描述。

微分方程差分方程

微分方程差分方程

微分方程差分方程摘要:1.微分方程与差分方程的定义及区别2.微分方程的应用领域3.差分方程的应用领域4.求解微分方程和差分方程的方法5.两者在实际问题中的结合与转化正文:微分方程与差分方程是数学中的两种重要方程类型,它们在许多实际问题中有广泛的应用。

尽管它们具有一定的相似性,但它们之间仍然存在着明显的区别。

本文将对微分方程和差分方程进行简要介绍,并探讨它们在实际问题中的求解方法及应用领域。

一、微分方程与差分方程的定义及区别1.微分方程微分方程是一种描述变量随时间变化的数学方程。

它包含一个或多个未知函数及其导数,要求求解该未知函数在某一区间内的解。

微分方程可以分为线性和非线性两类。

2.差分方程差分方程是一种离散时间模型,它描述了变量在离散时间点上的关系。

差分方程包含一个或多个未知数,并要求求解这些未知数在离散时间点上的取值。

与微分方程类似,差分方程也可以分为线性和非线性两类。

二、微分方程的应用领域1.物理:微分方程在物理学中被广泛应用于描述力学、电磁学、热力学等领域中的现象。

2.生物学:微分方程在生物学中可以用于描述生物种群的数量变化、生长速率等。

3.经济学:微分方程在经济学中可以用于描述物价、产量等经济指标的变化。

4.工程:微分方程在工程领域中可以用于分析结构的动态特性、控制系统的稳定性等。

三、差分方程的应用领域1.计算机科学:差分方程在计算机科学中可以用于数值计算、图像处理等领域。

2.生物学:差分方程在生物学中可以用于模拟生物种群的动态行为。

3.社会科学:差分方程在社会科学中可以用于研究人口统计、经济学模型等。

4.工程:差分方程在工程领域中可以用于分析系统的稳定性、预测发展趋势等。

四、求解微分方程和差分方程的方法1.数值方法:对于微分方程和差分方程,可以采用数值方法求解,如欧拉法、龙格-库塔法等。

2.解析方法:对于一些简单的微分方程和差分方程,可以尝试通过解析方法求解,如分离变量法、常数变易法等。

差分方程与微分方程的求解

差分方程与微分方程的求解

求解 1. 求差分方程满足初值问题之解:11232133123123(1)3()()()(1)2()()(1)()()2()(1)(1)1,(1)0x n x n x n x n x n x n x n x n x n x n x n x x x +=-+⎧⎪+=+⎪⎨+=-+⎪⎪===⎩ 解:原差分方程组可化为:112233(1)311()(1)201()(1)112()x n x n x n x n x n x n +-⎛⎫⎛⎫⎛⎫⎪ ⎪⎪+= ⎪ ⎪⎪ ⎪ ⎪⎪+-⎝⎭⎝⎭⎝⎭则令311201112-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,求矩阵A 的特征值及特征向量 设特征值分别为123,,λλλ,对应的特征向量分别为123β,β,β.则231121(2)(1)0112λλλλλλ---=-=--=--A E可解得1232,2,1λλλ===设1λ对应的特征向量1111a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭β,则满足111111022101100a b c -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭可化简为11100a b c -=⎧⎨=⎩,令111a b ==可以得到特征向量1110⎛⎫⎪= ⎪ ⎪⎝⎭β同理可得到特征向量2110-⎛⎫ ⎪=- ⎪ ⎪⎝⎭β,3011⎛⎫ ⎪= ⎪ ⎪⎝⎭β设方程组的通解为:111222333()nnnx n c c c λλλ=++βββ代入特征值、特征向量,可得到方程组的通解为:123110()21211001n n x n c c c -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭代入初值条件:123(1)(1)1,(1)0x x x ===得到12123322122110n n n n n c c c c c c ⎛⎫-⎛⎫ ⎪ ⎪--= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭可得123120c c c ⎧-=⎪⎨⎪=⎩,可以令11c =,所以212c =;综上所述,满足方程初值方程组的解为:11()210n x n -⎛⎫⎪= ⎪ ⎪⎝⎭2. 求差分方程之通解:2(4)2(2)()32nx n x n x n n n+-++=-+ 解:原方程的特征方程为:42210λλ-+= 即22(1)0λ-=从而求得特征根为11λ=-(二重),21λ=(二重) 因此原方程所对应的齐次方程的通解为:()(1)()1()n n xn A Bn C Dn =-+++ 即 ()(1)()nxn A Bn C Dn =-+++ 而原方程的特解为2(4)2(2)()3x n x n x n n +-++=-的特解1()x n与(4)2(2)()2n x n x n x n n +-++=的特解2()x n 之和.从而原方程具有如下的特解形式:221201201()()()()2()n x n x n x n n A n A n A B n B =+=++++将特解形式代入原方程,可得0010120014811922402244883914890A A A A A AB B B =⎧⎪+=⎪⎪++=-⎨⎪=⎪⎪+=⎩,从而0120114816124194881A A A B B ⎧=⎪⎪⎪=-⎪⎪⎪=⎨⎪⎪=⎪⎪⎪=-⎪⎩综上,原方程的通解为22111148()()()(1)()()2()48624981n n x n xn x n A Bn C Dn n n n n =+=-++++-++- 3. 求微分方程满足初值问题之解:211212212121120d d d 320d d d d d 20d d d (0)1,-1,(0)0d t x x x x x tt t xx x x t t x x x t =⎧++++=⎪⎪⎪++-=⎨⎪⎪===⎪⎩解:方法一:降阶法令13d d x x t =,则原方程组可表示为:13323122312d d d d 320d d d 20d x x t xx x x x tt x x x x t ⎧=⎪⎪⎪++++=⎨⎪⎪++-=⎪⎩化简得:132123323d d d 2d d 22d x x t xx x x t x x x t ⎧=⎪⎪⎪=-+-⎨⎪⎪=--⎪⎩它的系数矩阵为001211022⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,特征方程是01211(2)(2)(1)0022λλλλλλλ--=---=+-++=---A E特征根为1232,2,1λλλ=-==-求得特征根所对应的特征向量分别为1102⎛⎫ ⎪= ⎪ ⎪-⎝⎭T ,21221⎛⎫⎪ ⎪=- ⎪ ⎪⎪⎝⎭T ,31121⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭T .故方程组的通解为1222123311()121()e 0e 2e 221()1t t t x t x t C C C x t --⎛⎫⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭- ⎪⎝⎭⎝⎭根据初值1120d (0)1,-1,(0)0d t x x x t====得12312323112211202C C C C C C C C ⎧++=⎪⎪-+-=-⎨⎪⎪-+=⎩解得123112,,463C C C === 则原方程组的解为:22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩方法二:消元法设dd t λ=,则原方程组可化为21212(32)(1)0(1)(2)(1)0(2)x x x x λλλλλ⎧++++=⎨++-=⎩(1)(2)λ-得21(2)(21)0(3)x λλλ++--= (2)(3)-得22(2)0x λλ--=解得两个特征根为122,1λλ==- 则2x 可表示为:2212e e ttx C C -=+ 根据初值2(0)0x =得22e e ttx C C -=- 将2x 代入(2)得212e 2e ttx C C λ-+=+ 即211d 2e 2e (4)d t t x x C C t-+=+ 下面用常数变易法求解(4) 先解对应齐次方程11d 20d x x t+=得齐次通解211e t x C -= 由常数变易法,令211(t)etx C -=为非齐次方程(4)的解,代入后得221()e e 2e t t t C t C C --'=+积分得41()e 2e 4tt C C t C =+ 则(4)的通解为2211e e 2e 4t tt C x C C --=++ 根据初值110d (0)0,-1d t x x t===得112142212C C C C C C ⎧++=⎪⎪⎨⎪-+-=-⎪⎩解得11314C C ⎧=⎪⎪⎨⎪=⎪⎩ 则221112()e e e 4123t t tx t --=++ 将13C =代入22e e t tx C C -=-得方程组的解为 22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩4. 利用待定系数法求解下列初值问题之解:Td (),(0)(0,1)d xA x f t x t=+= 其中TT 1235(,),,()(e ,0)53t x x x A f t -⎛⎫===⎪-⎝⎭解:方法一:待定系数法原方程组所对应的齐次方程组为112212d 35d d 53d x x x tx x xt⎧=+⎪⎪⎨⎪=-+⎪⎩特征方程235(3)25053λλλλ--==-+=--A E求得特征根为1,235i λ=±下求135i λ=+所对应的特征向量,设112αα⎛⎫=⎪⎝⎭ξ 则111225i 50()55i 0ααλαα-⎛⎫⎛⎫⎛⎫⎛⎫-==⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A E 从而可取11α=,则2i α= 于是由132()1e (cos5isin 5)()i t x t t t x t ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭得到齐次方程的通解为:11322()cos5sin 5e ()sin 5cos5t xt C t t x t C t t ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭下求非齐次方程的特解利用待定系数法,可设特解为12()e ()e t t x t A x t B --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭将其代入原方程组,可得e 3e 5e ee 5e 3et t t tt t tA AB B A B -------⎧-=++⎪⎨-=-+⎪⎩ 即451540A B A B +=-⎧⎨-=⎩,从而求得441541A B ⎧=-⎪⎪⎨⎪=-⎪⎩ 因此原方程的通解为113224()cos5sin 541e e ()sin 5cos5541t t x t C t t x t C t t -⎛⎫-⎪⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭- ⎪⎝⎭ 代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为:13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭方法二:常数变易法利用常数变易法,可设特解为11322()()cos5sin 5e ()()sin 5cos5t x t C t t t x t C t t t ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 带回到原方程,可得到132()cos5sin 5e e ()sin 5cos50t tC t t t C t t t -'⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭从而1132()cos5sin 5e e cos5e ()sin 5cos50e sin 5t t t t C t t t t C t t t t ----'⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭⎝⎭进而4142()e cos5()e sin 5t tC t t C t t --'⎛⎫⎛⎫= ⎪ ⎪'⎝⎭⎝⎭两边积分可得414254()e (sin 5cos5)414145()e (sin 5cos5)4141t t C t t t C t t t --⎧=-⎪⎪⎨⎪=--⎪⎩因此原方程组的通解为111222()()()()()()x t xt x t x t x t x t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13254sin 5cos5cos5sin 5cos5sin 54141e e sin 5cos5sin 5cos545sin 5cos54141t t t t C t t t t C t t t t t t -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎪⎝⎭-- ⎪⎝⎭344cos5sin 54141e e sin 5cos54654141t t t t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫=+ ⎪⎪ ⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 微分方程与差分方程
A 级自测题
一、选择题(每小题5分,共20分)
1.下列方程中为可分离变量方程的是( ).
A .xy y e '=.
B .x xy y e '+=.
C .22()()0x xy dx y x y dy +++=.
D .0yy y x '+-=.
2.下列方程中为可降阶的方程是( ).
A .1y xy y '''++=.
B .2()5yy y '''+=.
C .x y xe y ''=+.
D .2(1)(1)x y x y ''-=+.
3.若连续函数()f x 满足关系式30()()ln 33
x
t f x f dt =+⎰,则()f x 等于( ). A .ln 3x e . B .3ln 3x e . C .ln 3x e +. D .3ln 3x e +.
4.函数28x x y A =⋅+是差分方程( )的通解.
A .21320x x x y y y ++-+=.
B .12320x x x y y y ---+=.
C .128x x y y +-=-.
D .128x x y y +-=.
二、填空题(每小题5分,共20分)
1.微分方程2sin d d ρρθθ
+=的阶数为 . 2.一阶线性微分方程()()y g x y f x '+=的通解为_________.
3.微分方程0y y e '+=满足初始条件(1)0y =的特解为_________.
4.差分方程12x x y y +-=的通解为 .
三、求下列微分方程的通解(每小题5分,共40分)
1.240ydx x dy dy +-=; 2.()220x y dx xydy +-=;
3.3dy y dx x y
=+; 4.0xy y '''+=; 5.(cos )cos 0y y x y dx x dy x x -+=; 6.2
2dy x xy y dx
+=; 7.440y y y '''-+=; 8.322x y y y e '''-+=.
四、求下列差分方程的通解.(每小题5分,共10分)
1.212x x y y x +-=; 2.122x x x y y +-=.
五、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总
相交, 交点记为.A 已知||||MA OA =,且L 过点33(,)22
,求L 的方程.(10分)
B 级自测题
一、选择题(每小题3分,共12分)
1.下面函数中不是方程2()4(1)y y y '=-的解是( ).
A .2cos x ;
B .2sin x ;
C .1(cos 21)2
x +; D .sin 2x . 2.微分方程2y xdy ydx y e dy -=的通解为( ).
A .()x y x e C =+;
B .()y x y e
C =+; C .()y x y C e =-;
D .()x y x C e =-.
3.若()y y x =是22x y xy y '+=的满足条件1|1x y ==的解, 则3
1()y x dx =⎰( ). A .ln 5. B .ln 3. C .ln 2 . D .ln 7.
4.已知函数()y y x =在任意点x 处的增量21y x y x
α∆∆=++,且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于( ).
A .2π.
B .π.
C .4e π
. D .4e π
π. 二、填空题 (每小题3分,共12分)
1.通解为12x x y C e C e x -=+-(12,C C 为任意常数)的微分方程是 .
2.方程2(1)2x y xy '''+=满足条件0|1x y ==,0|3x y ='=的特解是 .
3.方程2ln xy y x x '+=满足1(1)9
y =-的解为 . 4.某公司每年的工资额在比上一年增加10%的基础上再追加三百万元.若以t W 表示第t 年的工资总额,则t W 满足的差分方程是 .
三、求下列微分方程的通解.(每小题5分,共35分)
1.11dy dx x y
=+-; 2.230y x
dy e dx y
+-=; 3.(cos sin )(sin cos )y y y y y x y dx x y x dy x x x x
+=-;
4.2(1)()0y dx xy y dy ++=;
5.5dy y xy dx
-=. 6.2100y y y '''++=;
7.32x y y y xe '''-+=.
四、设可导函数()x ϕ满足0()cos 2()sin 1x
x x t tdt x ϕϕ+=+⎰,求()x ϕ.(6分) 五、求方程2()0yy y y ''''--=满足初始条件(0)1y =,(0)1y '=的特解.(6分)
六、设函数()(0)y x x ≥二阶可导,且()0y x '>,(0)1y =,过曲线()y y x =上任意一点(,)P x y 作该曲线的切线及x 轴的垂线,上述两直线与x 轴围成的三角形的面积记为1S ,区间[]0,x 上以()y y x =为曲边的曲边梯形面积记为2S ,并设1221S S -=,求此曲线()y y x =的方程.(9分)
七、某公司的净资产W 因资产本身产生的利息以5%的年利率增长,同时公司还必须以每年二百万元的数额连续地支付职工工资.
(1)给出描述该公司净资产W (万元)的微分方程;
(2)求解该方程,并分别给出初始资产值为04000,5000,3000W =三种情况下的特解,并讨论今后公司财务变化特点.(10分)
八、某产品在时刻t 的价格、总供给与总需求分别为t P ,t S 和t D ,且满足条件:(1)21t t S P =+;(2)145t t D P -=-+;
(3)t t S D =.求证:由(1)、(2)、(3)可导出差分方程122t t P P ++=;已知
0P 时,求上述方程的解.(10分)。

相关文档
最新文档