微分方程和差分方程方法
差分方程与微分方程的区别

差分方程与微分方程的区别
差分方程和微分方程都是数学中的重要概念,但它们有一些明显的区别。
首先,微分方程是描述连续变化的方程,而差分方程是描述离散变化的方程。
微分方程通常是连续函数的导数,而差分方程则是离散函数的差分。
其次,微分方程通常需要求解解析解,即找到一个连续函数满足该方程。
而差分方程通常需要求解数值解,即找到一个离散函数满足该方程。
最后,微分方程通常涉及无限维的函数空间,需要使用函数分析中的工具来研究,而差分方程则通常只涉及有限维空间,可以使用线性代数中的工具来研究。
总之,差分方程和微分方程是有明显的区别的,它们分别描述着离散和连续的变化,需要使用不同的方法来研究。
- 1 -。
数的微分方程与差分方程

数的微分方程与差分方程微分方程和差分方程是数学中重要的研究对象,用于描述数学模型中的变化规律。
微分方程关注连续变化的问题,而差分方程则研究离散变化的情况。
本文将对数的微分方程和差分方程进行介绍,并比较它们之间的异同点。
一、数的微分方程微分方程是描述自变量与因变量之间的关系的方程,其基本形式为:dy/dx = f(x, y)其中dy/dx表示y对x的导数,f(x, y)是给定函数。
微分方程可分为常微分方程和偏微分方程。
常微分方程中只涉及一个自变量,而偏微分方程中涉及多个自变量。
解微分方程的方法有解析解和数值解两种。
解析解是指通过变量分离、恰当的变量换元等方法得到的精确解,而数值解则是利用数值方法进行近似计算得到的解。
二、数的差分方程差分方程是用差商表示的离散形式的方程,其基本形式为:Δy/Δx = f(x, y)其中Δy/Δx表示y对x的差商,f(x, y)是给定的函数。
差分方程可以用于描述离散的时间序列或空间序列中的变化规律。
与微分方程类似,差分方程也可分为常差分方程和偏差分方程。
解差分方程的方法主要有迭代法、插值法和递推法等。
通过这些方法,我们可以逐步逼近差分方程的解。
三、微分方程与差分方程的联系与区别微分方程和差分方程有很多共同之处,同时也存在一些区别。
首先,微分方程和差分方程都是用来描述变化规律的数学工具,它们都需要给定的函数和初始条件。
而微分方程描述的是连续变化,差分方程描述的是离散变化。
其次,微分方程和差分方程的解法也有相似之处。
两者都可以通过符号计算、数值方法等途径求解。
然而,由于微分方程是连续的,其解法更为灵活和复杂,常常需要应用高级的数学工具,而差分方程在求解过程中则更注重离散的计算方法。
最后,微分方程和差分方程在应用中具有不同的优势。
微分方程主要用于描述连续变化的物理、化学和工程等领域的问题,而差分方程则更适用于计算机科学、经济学和生物学等领域的离散模型。
总之,微分方程和差分方程是数学中研究变化规律的重要工具。
第九章--微分方程与差分方程简介

于是非齐次方程的一个特解为:y* =kxa x-1 x
例5 求解差分方程 2y x+1 − 4y x = 2
解:原方程可化为 y x+1 − 2y x = 2 x % 则相应齐方程的通解为 y x =C ⋅ 2 x 由于p=2=a, 所以原方程的特解应设为 y* = Ax 2 x x 代入原方程得: A(x+1)2 x +1 − 2 Ax 2 x = 2 x , 1 ⇒A= 2 1 x * y x = x 2 =x 2 x -1 于是 2 所以原方程的通解为: y x =x 2 x -1 +C ⋅ 2 x
(2)∆(cyx ) = c∆y x (c为常数)
(3)∆ (ay x + bz x ) = a∆y x + b∆z x , b为常数) (a
(4)∆ ( yx z x ) = yx +1∆z x + z x ∆yx = y∆z x + z x +1∆yx
yx z x ⋅ ∆y x − y x ⋅ ∆z x (5) ∆( ) = zx z x ⋅ z x +1
23
1、二阶齐次差分方程的通解 由9.6节可知,要求齐次差分方程的通解,只需找出 两个线性无关的特解即可。仿照一阶齐次差分方程, 设二阶齐次差分方程存在指数形式的解: y x = λ x , (λ ≠ 0) 代入原方程得:
λ x+2 + pλ x+1 + qλ x = 0
即:
λ x + pλ + q = 0
11
9.6、常系数线性差分方程 、
9.6.1 n阶 系 线 差 方 的 本 质 常 数 性 分 程 基 性 n阶 系 线 差 方 的 般 式 : 常 数 性 分 程 一 形 为 yx+n +p1yx+n-1+L+pn-1yx+1+pny1 = f (x) 其 , 1,, n为 知 数 且 n ≠ 0, (x)为 知 数 中 pL p 已 常 , p f 已 函 。 当 (x)=0时 上 方 则 n阶 系 齐 线 差 方 。 , 述 程 为 常 数 次 性 分 程 f 当 (x) ≠ 0时 上 方 则 n阶 系 非 次 性 分 程 , 述 程 为 常 数 齐 线 差 方 。 f
微分方程差分方程

微分方程差分方程摘要:1.微分方程与差分方程的定义及区别2.微分方程的应用领域3.差分方程的应用领域4.求解微分方程和差分方程的方法5.两者在实际问题中的结合与转化正文:微分方程与差分方程是数学中的两种重要方程类型,它们在许多实际问题中有广泛的应用。
尽管它们具有一定的相似性,但它们之间仍然存在着明显的区别。
本文将对微分方程和差分方程进行简要介绍,并探讨它们在实际问题中的求解方法及应用领域。
一、微分方程与差分方程的定义及区别1.微分方程微分方程是一种描述变量随时间变化的数学方程。
它包含一个或多个未知函数及其导数,要求求解该未知函数在某一区间内的解。
微分方程可以分为线性和非线性两类。
2.差分方程差分方程是一种离散时间模型,它描述了变量在离散时间点上的关系。
差分方程包含一个或多个未知数,并要求求解这些未知数在离散时间点上的取值。
与微分方程类似,差分方程也可以分为线性和非线性两类。
二、微分方程的应用领域1.物理:微分方程在物理学中被广泛应用于描述力学、电磁学、热力学等领域中的现象。
2.生物学:微分方程在生物学中可以用于描述生物种群的数量变化、生长速率等。
3.经济学:微分方程在经济学中可以用于描述物价、产量等经济指标的变化。
4.工程:微分方程在工程领域中可以用于分析结构的动态特性、控制系统的稳定性等。
三、差分方程的应用领域1.计算机科学:差分方程在计算机科学中可以用于数值计算、图像处理等领域。
2.生物学:差分方程在生物学中可以用于模拟生物种群的动态行为。
3.社会科学:差分方程在社会科学中可以用于研究人口统计、经济学模型等。
4.工程:差分方程在工程领域中可以用于分析系统的稳定性、预测发展趋势等。
四、求解微分方程和差分方程的方法1.数值方法:对于微分方程和差分方程,可以采用数值方法求解,如欧拉法、龙格-库塔法等。
2.解析方法:对于一些简单的微分方程和差分方程,可以尝试通过解析方法求解,如分离变量法、常数变易法等。
差分方程与微分方程的区别

差分方程与微分方程的区别
差分方程和微分方程是数学中两个重要的概念,它们在许多领域都具有广泛的应用。
差分方程是指一种用差分代替微分的方程,它描述的是离散的变化过程。
而微分方程则是指一种用微分来描述变化过程的方程,它描述的是连续的变化过程。
因此,差分方程和微分方程的区别在于它们所描述的变化过程的不同性质。
另一个差异是在解方面。
求解微分方程时,我们通常使用微积分的方法,如分离变量、齐次化、常数变易法等。
而求解差分方程时则需要用到数学递推的方法,如欧拉法、龙格-库塔法等。
这也是差分方程和微分方程之间的另一个区别。
此外,差分方程和微分方程也有不同的应用领域。
微分方程通常用于描述自然现象的变化过程,如物理学、化学等领域。
而差分方程则更适用于描述离散的过程,如计算机科学、金融学等领域。
综上所述,差分方程和微分方程虽然都是数学中的重要概念,但在描述的变化过程、解法和应用领域上都存在不同的特点。
了解它们之间的区别,有助于我们更好地应用它们来解决实际问题。
- 1 -。
微分方程与差分方程简介

方程通解为: 二、二阶常系数线性非齐次方程 二阶常系数线性非齐次方程,其标准形式是
, 其中 a,b,c 是常数,式中的 f(x)称为右端项。
定理 2 设 是线性非齐次方程的一个特解,而 是相应的线性齐次方
程的通解,则其和
为线性非齐次方程的通解。
定理 3 设 y1 是非齐次方程 方程
的一个特解, y2 是非齐次
(4)由于λ=1+3i 不是特征方程的根,n=1,故应设特解为 。
本章重点 微分方程的概念,一阶可分离变量微分方程的解法,一阶线性微分方程的解
法,二阶常系数线性微分方程的解法。
内容提示与分析 §8.1 微分方程的一般概念
1. 微分方程:含有未知函数的导数(或微分)的方程称为微分方程。 常微分方程:微分方程中的未知函数是一元函数的,叫常微分方程,其
一般形式为
。 偏微分方程:未知函数是多元函数的微分方程,叫偏微分方程。 2. 微分方程的阶:微分方程中出现的未知函数的最高阶导数的阶数,叫 做微分方程的阶。 3.微分方程的解:如果把某个函数以及它的各阶导数代人微分方程,能使 方程成为恒等式,这个函数称为微分方程的解。 微分方程的解有通解与特解两种形式。 4. n 阶微分方程的通解:含有 n 个独立的任意常数的解,叫 n 阶微分方 程的通解。 5.微分方程的特解:不含有任意常数的解,叫微分方程的特解。
。
注意 为了运算方便,可将两端积分后方程式中的 ln|y+1|写成 ln(y+1),
只要记住最后得到的任意常数可正可负即可。另外,也可以将式中的任意常数
写为 lnC,最终 C 是任意常数。
例 5.求微分方程
的通解。
解:原方程可改写成
它是一个齐次方程。
差分方程和微分方程的区别与联系
差分方程和微分方程的区别与联系数学中,有很多让人感到有些神秘的概念,比如差分方程和微分方程。
这两个名字听上去似乎有些类似,但它们其实是解决不同问题的两个工具。
今天我们就来聊聊这两者的区别和联系,把它们说得简单明了些,让你一听就懂!1. 基本概念1.1 微分方程先从微分方程说起。
微分方程就是一个涉及到导数的方程。
导数,简单来说,就是一个函数变化的速率。
你可以把它理解为车速,比如说你要计算汽车的加速度,你就用到导数。
而微分方程就是描述一个系统如何随时间或空间的变化来建立方程。
例如,如果你有一个物体在下落,微分方程可以帮你找出它的速度和加速度,甚至是未来某一时刻的位置。
1.2 差分方程再来看看差分方程。
差分方程则处理的是离散时间点上的问题。
想象一下你在记录每天的股票价格,今天的价格和昨天的价格之间的差异,这种差异就是差分方程在做的事情。
它通过差异来描述和预测系统的行为,适用于那些不能用连续变化来描述的情况。
2. 区别与应用2.1 微分方程的应用微分方程主要用于处理连续变化的系统。
比如,物理学中的运动学,生物学中的种群增长,甚至金融中的投资模型,很多问题都可以用微分方程来解决。
你可以用它来模拟天体运行、气温变化,或者人口增长等现象。
就像我们在前面提到的汽车加速度,如果你想知道一个物体在空气阻力影响下的运动状态,你需要用到微分方程。
2.2 差分方程的应用而差分方程则更多地用于处理那些离散时间的数据。
比如在计算机科学中,你可能会用差分方程来设计算法,或者在经济学中预测季度销售额。
你还可以在游戏开发中使用差分方程来模拟角色的行为变化,或者在工程中分析离散信号的处理情况。
简单来说,差分方程适合用在那些时间步长是离散的场景里。
3. 联系与转换3.1 从差分方程到微分方程尽管差分方程和微分方程各有千秋,但它们之间也有联系。
实际上,你可以把差分方程看作是微分方程在离散情况下的“近亲”。
比如说,如果你把离散时间的步长缩得很小,差分方程和微分方程的行为就会变得越来越相似。
差分方程与微分方程的求解
求解 1. 求差分方程满足初值问题之解:11232133123123(1)3()()()(1)2()()(1)()()2()(1)(1)1,(1)0x n x n x n x n x n x n x n x n x n x n x n x x x +=-+⎧⎪+=+⎪⎨+=-+⎪⎪===⎩ 解:原差分方程组可化为:112233(1)311()(1)201()(1)112()x n x n x n x n x n x n +-⎛⎫⎛⎫⎛⎫⎪ ⎪⎪+= ⎪ ⎪⎪ ⎪ ⎪⎪+-⎝⎭⎝⎭⎝⎭则令311201112-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,求矩阵A 的特征值及特征向量 设特征值分别为123,,λλλ,对应的特征向量分别为123β,β,β.则231121(2)(1)0112λλλλλλ---=-=--=--A E可解得1232,2,1λλλ===设1λ对应的特征向量1111a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭β,则满足111111022101100a b c -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭可化简为11100a b c -=⎧⎨=⎩,令111a b ==可以得到特征向量1110⎛⎫⎪= ⎪ ⎪⎝⎭β同理可得到特征向量2110-⎛⎫ ⎪=- ⎪ ⎪⎝⎭β,3011⎛⎫ ⎪= ⎪ ⎪⎝⎭β设方程组的通解为:111222333()nnnx n c c c λλλ=++βββ代入特征值、特征向量,可得到方程组的通解为:123110()21211001n n x n c c c -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭代入初值条件:123(1)(1)1,(1)0x x x ===得到12123322122110n n n n n c c c c c c ⎛⎫-⎛⎫ ⎪ ⎪--= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭可得123120c c c ⎧-=⎪⎨⎪=⎩,可以令11c =,所以212c =;综上所述,满足方程初值方程组的解为:11()210n x n -⎛⎫⎪= ⎪ ⎪⎝⎭2. 求差分方程之通解:2(4)2(2)()32nx n x n x n n n+-++=-+ 解:原方程的特征方程为:42210λλ-+= 即22(1)0λ-=从而求得特征根为11λ=-(二重),21λ=(二重) 因此原方程所对应的齐次方程的通解为:()(1)()1()n n xn A Bn C Dn =-+++ 即 ()(1)()nxn A Bn C Dn =-+++ 而原方程的特解为2(4)2(2)()3x n x n x n n +-++=-的特解1()x n与(4)2(2)()2n x n x n x n n +-++=的特解2()x n 之和.从而原方程具有如下的特解形式:221201201()()()()2()n x n x n x n n A n A n A B n B =+=++++将特解形式代入原方程,可得0010120014811922402244883914890A A A A A AB B B =⎧⎪+=⎪⎪++=-⎨⎪=⎪⎪+=⎩,从而0120114816124194881A A A B B ⎧=⎪⎪⎪=-⎪⎪⎪=⎨⎪⎪=⎪⎪⎪=-⎪⎩综上,原方程的通解为22111148()()()(1)()()2()48624981n n x n xn x n A Bn C Dn n n n n =+=-++++-++- 3. 求微分方程满足初值问题之解:211212212121120d d d 320d d d d d 20d d d (0)1,-1,(0)0d t x x x x x tt t xx x x t t x x x t =⎧++++=⎪⎪⎪++-=⎨⎪⎪===⎪⎩解:方法一:降阶法令13d d x x t =,则原方程组可表示为:13323122312d d d d 320d d d 20d x x t xx x x x tt x x x x t ⎧=⎪⎪⎪++++=⎨⎪⎪++-=⎪⎩化简得:132123323d d d 2d d 22d x x t xx x x t x x x t ⎧=⎪⎪⎪=-+-⎨⎪⎪=--⎪⎩它的系数矩阵为001211022⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,特征方程是01211(2)(2)(1)0022λλλλλλλ--=---=+-++=---A E特征根为1232,2,1λλλ=-==-求得特征根所对应的特征向量分别为1102⎛⎫ ⎪= ⎪ ⎪-⎝⎭T ,21221⎛⎫⎪ ⎪=- ⎪ ⎪⎪⎝⎭T ,31121⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭T .故方程组的通解为1222123311()121()e 0e 2e 221()1t t t x t x t C C C x t --⎛⎫⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭- ⎪⎝⎭⎝⎭根据初值1120d (0)1,-1,(0)0d t x x x t====得12312323112211202C C C C C C C C ⎧++=⎪⎪-+-=-⎨⎪⎪-+=⎩解得123112,,463C C C === 则原方程组的解为:22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩方法二:消元法设dd t λ=,则原方程组可化为21212(32)(1)0(1)(2)(1)0(2)x x x x λλλλλ⎧++++=⎨++-=⎩(1)(2)λ-得21(2)(21)0(3)x λλλ++--= (2)(3)-得22(2)0x λλ--=解得两个特征根为122,1λλ==- 则2x 可表示为:2212e e ttx C C -=+ 根据初值2(0)0x =得22e e ttx C C -=- 将2x 代入(2)得212e 2e ttx C C λ-+=+ 即211d 2e 2e (4)d t t x x C C t-+=+ 下面用常数变易法求解(4) 先解对应齐次方程11d 20d x x t+=得齐次通解211e t x C -= 由常数变易法,令211(t)etx C -=为非齐次方程(4)的解,代入后得221()e e 2e t t t C t C C --'=+积分得41()e 2e 4tt C C t C =+ 则(4)的通解为2211e e 2e 4t tt C x C C --=++ 根据初值110d (0)0,-1d t x x t===得112142212C C C C C C ⎧++=⎪⎪⎨⎪-+-=-⎪⎩解得11314C C ⎧=⎪⎪⎨⎪=⎪⎩ 则221112()e e e 4123t t tx t --=++ 将13C =代入22e e t tx C C -=-得方程组的解为 22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩4. 利用待定系数法求解下列初值问题之解:Td (),(0)(0,1)d xA x f t x t=+= 其中TT 1235(,),,()(e ,0)53t x x x A f t -⎛⎫===⎪-⎝⎭解:方法一:待定系数法原方程组所对应的齐次方程组为112212d 35d d 53d x x x tx x xt⎧=+⎪⎪⎨⎪=-+⎪⎩特征方程235(3)25053λλλλ--==-+=--A E求得特征根为1,235i λ=±下求135i λ=+所对应的特征向量,设112αα⎛⎫=⎪⎝⎭ξ 则111225i 50()55i 0ααλαα-⎛⎫⎛⎫⎛⎫⎛⎫-==⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A E 从而可取11α=,则2i α= 于是由132()1e (cos5isin 5)()i t x t t t x t ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭得到齐次方程的通解为:11322()cos5sin 5e ()sin 5cos5t xt C t t x t C t t ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭下求非齐次方程的特解利用待定系数法,可设特解为12()e ()e t t x t A x t B --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭将其代入原方程组,可得e 3e 5e ee 5e 3et t t tt t tA AB B A B -------⎧-=++⎪⎨-=-+⎪⎩ 即451540A B A B +=-⎧⎨-=⎩,从而求得441541A B ⎧=-⎪⎪⎨⎪=-⎪⎩ 因此原方程的通解为113224()cos5sin 541e e ()sin 5cos5541t t x t C t t x t C t t -⎛⎫-⎪⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭- ⎪⎝⎭ 代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为:13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭方法二:常数变易法利用常数变易法,可设特解为11322()()cos5sin 5e ()()sin 5cos5t x t C t t t x t C t t t ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 带回到原方程,可得到132()cos5sin 5e e ()sin 5cos50t tC t t t C t t t -'⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭从而1132()cos5sin 5e e cos5e ()sin 5cos50e sin 5t t t t C t t t t C t t t t ----'⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭⎝⎭进而4142()e cos5()e sin 5t tC t t C t t --'⎛⎫⎛⎫= ⎪ ⎪'⎝⎭⎝⎭两边积分可得414254()e (sin 5cos5)414145()e (sin 5cos5)4141t t C t t t C t t t --⎧=-⎪⎪⎨⎪=--⎪⎩因此原方程组的通解为111222()()()()()()x t xt x t x t x t x t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13254sin 5cos5cos5sin 5cos5sin 54141e e sin 5cos5sin 5cos545sin 5cos54141t t t t C t t t t C t t t t t t -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎪⎝⎭-- ⎪⎝⎭344cos5sin 54141e e sin 5cos54654141t t t t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫=+ ⎪⎪ ⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭.。
微分方程与差分方程方法
第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。
一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。
自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。
微分方程与差分方程方法
第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。
一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。
自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ds s(t ) pA(t )(1 ) s(t ) dt M
(3.11)
等式右端的第一项反映广告投入对销售速度
s(t ) (1 ) 相当于一个开关函数, 的影响, 显然当 A(t) 0 M
或 s M 时,都有
ds s (t ) dt
(3.12)
第二项表明销售速度自然衰减的特性。 为确定 A(t) 的形式,假设选择如下广告策略 0 t A A(t ) (3.13) t 0 即在时间 内平均投入常数 A 的资金来作广告, 在此条件下求解(3.11)式。
x(t t ) x(t ) kx(t )t
两边除以 t ,令 t 0 ,有
x ( t t ) x ( t ) kx (t ) t 0 t lim
即 x(t) 满足微分方程
dx kx (t ) dt
(3.7)
其解为
x(t ) C ekt
若已知 t 0 时,x(0) x ,则满足初值条件的解为 x (t ) x e (3.8)
0.014810
对马尔萨斯人口模型的解作进一步分析, 当 t 时,x(t) ,表明人口将无限增长。马尔萨 斯人口论的核心内容是:人口按几何级数增 长,而生活资料则按算术级数增长,两者的矛 盾必会给人类社会进步造成障碍。马尔萨斯并 不认为 : 解决人口过剩和生活资料匮乏两者 之间的矛盾,只有通过失业、饥饿、犯罪甚至 战争等方式来自发调节。使用消极手段来遏制 人口增长,这是人们对马尔萨斯人口论的一种 误解。 “新马尔萨斯”主张通过自愿的家庭限 制,即节制生育的办法限制人口的过快增长。
这种为了使用数学工具的需要而对离散量进 行连续化处理的方法,在建模中经常使用,如 将道路中运动的车辆群视为连续的“流体” , 动物种群和生产产品当达到一定数量都可以 看作是连续的变量。有时建模中也会作相反的 处理,比如求微分方程近似解时,把连续量进 行离散化,通过数值格式迭代求出数值解。因 此在一定条件下,连续和离散是相对的,可以 转换的,当然这种连续化或离散化的处理必须 是合理和适当的。
C1
为积分常数。
若初始时刻销售速度 s(0) s ,则
0
s (t )
c (1 e bt ) s0 e bt b
0 t
(3.15)
当 t 时,根据(3.13)式, A 0 , 则(3.11)式 退化为
ds s (t ) dt
其解为 (3.16) 综合(3.15)、(3.16),式(3.13)条件下产品销 售速度广告模型的解可写为:
建立微分方程模型时,会经常出现一些术 语,如“速率” 、 “增长率” 、 “单位时间内的变 化量”等,应与导数联系起来,再结合问题所 涉及的基本规律就很容易得到微分方程。一般 微分方程建模的基本步骤可以概括为: 1 .根据实际要求确定要研究的量,如自 变量、未知函数、必要参数等,有时需要确定 坐标系。 2 .找出这些量所满足的基本规律 ( 几何 的、物理的、经济的规律等)。一时看不出规
s(t ) s( ) e ( t ) t
c (1 e bt ) s0 e bt b s(t ) ( t ) s( ) e 0 t t
(3.17)
第三节
经济增长模型
一、道格拉斯(Douglas)生产函数
m
1 (
m
x0
1) e r0 t
人口增长率随人口数量变化曲线以及人口数量 随时间变化曲线如下
dx d t uiiuiui
x0
xm 2
xm
x
xm
x
t
图 3-1 人口增长率和人口数量曲线
阻滞增长模型与美国人口统计数据从 1800 年到 1960 年都吻合较好,1960 年后,误 差变大。这时因为到 1960 年美国的实际人口 已经突破了用过去数据确定的最大人口容量。 人口容量不易准确得到是阻滞增长模型的不 足之处,实际上人口容量也是随人们对自然资 源的开发水平不断提高而改变的。更复杂的人 口模型需考虑随时间和人口变化的人口增长 率、同样随时间改变的人口容量以及与育龄妇 女和人口年龄分布有关的人口基数,此外还需 考虑天灾、战争等随机性因素对人口的影响。
( 1 )不考虑广告作用时,销售速度具有 自然衰减的性质,即产品销售速度随着时间而 减少,满足这一性质的销售速度有
ds s (t ) dt
为比例系数或称衰减因子。 ( 2 )产品的销售速度会因广告而增加, 但增加是有一定限度的,当产品在市场上趋于 饱和时,销售速度将趋于极限值,这时无论采 取那种形式作广告(不包括其它的促销手段), 都不能使销售速度增加。
0
3、 在(3.8)式中, 若令 t , 则得出 x(t) , 这与事实不符。实际上 x(t ) 是有上界的,因为一 般而言每户只需购买 1~2 只电饭煲就够了。 因此需要修改模型。 设需求量有一个上界,记作 K ,它的意义是 产品的市场容量。与人口的阻滞增长模型类 似,构造一个新的与产品销量有关的增长率。 实际上统计学家发现,若 t 时刻电饭煲销量为 x(t ) ,则尚未使用的人数大致为 K x (t ) ,可以认为
第二节
新产品的推销与广告
一、新产品推销模型
第二次世界大战后,日本的家电业迅速崛 起,下面首先考察日本家用电器业界建立的电 饭煲销售模型。 记时刻 t 时已售出的电饭煲总数 为 x(t ) 。由于使用方便,已在使用的电饭煲实际 上在起着宣传品的作用,吸引着尚未购买的顾 客。可粗略地假设每一个电饭煲在单位时间内 平均吸引 k 个顾客,那么在 t t 时刻电饭煲销售 的增量为
第一节 人口增长模型
人口的增长是人们普遍关注的问题。使用了 不同的人口模型计算所得到的同一时间人口 的预报在数字上有较大的差别。那么人口是如 何预报的呢?先看一种简单的计算方法。 人口的增长也是因为有人口的基数和 一定的增长率(人口出生率减去死亡率),设某 一年的人口为 x0 ,年增长率为 r0 ,可以认为今 后 k 年内的人口数为 (3.1) 这里实际暗含着年增长率不变的假设。
(3.2)
就是描述人口随时间变化的带初始条件的微 分方程。 建模过程中你可能注意到,人口是离散的 变量,而求导或微分只能对连续的量使用。那 么这种情况下可不可以用求导或微分这种数 学工具呢?当研究对象是一个很大的群体,如 考察一个国家或一个地区的人口数量,个体的 微小变化对总体的影响很小可以忽略时,可视 该群体为连续量,并认为其导数存在,这样就 可以使用微积分这一数学工具。
第二部分 微分方程与差分方程方法
第二章 微分方程方法
动态模型一般具有两个特点:一、方程与 时间相关,即自变量中含有时间;二、方程中 出现导数或微分。在处理实际问题时,有时很 难找出变量之间的直接函数关系,却容易找到 这些变量和它们的微小增量或变化率之间的 关系式(有时人们特别关心这些变量的增加幅 度和变化快慢 ),这种关系式中通常含有导数 或微分,故称微分方程模型。
x x0 (1 r0 ) k
一、指数增长模型(Malthus模型)
设 t 时刻的人口为 x(t) ,经过一段短的时间 t 后,在 t t 时刻,人口数量变化为 x(t t) 。由基本 假设,在这段短的时间 t 内,人口数量的增加 量应与当时的人口 x(t) 成比例,不妨设比例系数 为 r ,即 t 内人口的增量可写为
律可用“微元分析法”进行分析,选取研究对 象后,研究对象在一定时间内量的变化一般遵 循广义物质守恒律,即 净变化率=输入率-输出率 物质不会自动产生,也不会自动消失。通过对 时间取极限可以得到微分方程。 3.列出方程和定解条件(初始条件和边界条 件)。
4.解方程。可以找到精确解的微分方程只是极少 数,多数情况下需要进行数值分析或找到数值解, 对于自治的常微分方程 (组) ,可以运用稳定性分析 方法,转换到相平面去分析解的性态。 5.解的讨论。所得的方程的解是否有意义?是否 反映了原问题的实质?模型是否可以深化和改进? 这些问题可以通过解的讨论加以回答。
dx x (t )[ K x (t )] dt
记比例系数为 k ,则 x(t ) 满足
dx kx (t )[ K x (t )] dt
(3.9)
分离变量并积分之,可解得
K x (t ) 1 C e Kkt x ( 0) x 0
(3.10)
0
x(t t ) x(t ) r0 x(t )t
等式两边同除以 t ,当 t 0 时
x (t t ) x (t ) r0 x (t ) t 0 t lim
等号的左边即是导数 d x d t , 已知初始时刻人口数 量为 x ,则
0
d x r0 x (t ) dt x ( 0) x 0作一些 分析: 1、 若取 t 0 时为新产品诞生的时刻, 则 x(0) 0 , 于是(3.8)式推出 x(t ) 0 。 这一结果显然与事实不 符,这是因为模型只考虑了实物广告的作用, 忽略了厂方可以通过其他方式宣传新产品从 而打开销路。 2、 2 、若通过努力已有 x 数量的产品投入使 用,则调查情况表明实际销售量在开始阶段的 增长情况与(3.8)式十分相符。
其中 C 是由初始条件确定的积分常数。
二、广告模型
信息社会使广告成为调整商品销售的强 有力手段,广告与销售之间有什么内在联系? 如何评价不同时期的广告效果?下面研究一 个广告模型。 首先认为广告对产品的销售速度有直接 的促进作用,以销售速度为研究对象,设 s(t ) 为t 时刻的产品销售速度,并作以下假设:
m m 0 m 0 m
r( x ) r0 (1
x ) xm
(3.4)
这样 Malthus 模型公式(3.2)变为
x d x r0 x (1 ) xm dt x(0) x0