2019届金山一模初三数学试卷
上海市长宁区金山区2019届中考一模数学试题含答案

2019上海长宁区初三数学一模试题(与金山统考)(满分150分,考试时间100分钟) 2019.1.6考生注意:1、本试卷含有三个大题,共25小题;2、答题时,考生务必按照答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤一、选择题:(本题共6个小题,每题4分,共24分)1. 如果两个三角形的相似比是1:2,那么他们的面积比是( ).A. 1:2B. 1:4C. 1D. 2:12. 如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ).A. AD :AB =2:3B. AE:AC =2:5C. AD:DB =2:3D. CE:AE =3:23.在Rt △ABC 中,∠C =90°,AB =2,AC =1,则sin B 的值是( ).A. B. C. 12 D. 2 4. 在△ABC 中,若cos A =22,tan B =3,则这个三角形一定是( ). A. 直角三角形 B. 等腰三角形 C. 钝角三角形 D. 锐角三角形5. 已知1O 的半径r 为3cm ,2O 的半径R 为4cm ,两圆的圆心距12O O 为1cm ,则这两个圆的位置关系的( ).A. 相交B. 内含C. 内切D. 外切 6. 二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A. 先向左平移2个单位,再向上平移1个单位B. 先向左平移2个单位,再向下平移1个单位C. 先向右平移2个单位,再向上平移1个单位D. 先向右平移2个单位,再向下平移1个单位二、填空题:(本大题共12小题,每题4分,满分48分)7. 已知抛物线12+=x y 的顶点坐标是 .8. 已知抛物线32++=bx x y 的对称轴为直线x =1,则实数b 的值为 .9. 已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是 .10. 已知二次函数2(3)y x =-图像上的两点()3,A a 和(),B x b ,则a 和b 的大小关系是a b .11. 圆是轴对称图形,它的对称轴是 .12. 已知⊙O 的弦AB =8cm ,弦心距OC =3cm ,那么该圆的半径是 cm.13. 如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC =1,BC =22,那么sin ∠ACD 的值是 .14. 王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处 m .15. 已知△ABC 中,AD 是中线,G 是重心,设AD m =,那么用m 表示AG = .16. 如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB = .17. 的矩形称作黄金矩形。
2019年上海市金山区中考数学一模试卷-解析版

2019年上海市金山区中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1.下列函数是二次函数的是()A. y=xB. y=1x C. y=x−2+x2 D. y=1x22.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. ACAB B. BCABC. ACBCD. BCAC3.如图,已知BD与CE相交于点A,ED//BC,AB=8,AC=12,AD=6,那么AE的长等于()A. 4B. 9C. 12D. 164.已知e⃗是一个单位向量,a⃗、b⃗ 是非零向量,那么下列等式正确的是()A. |a⃗|e⃗=a⃗B. |e⃗|b⃗ =b⃗C. 1|a⃗ |a⃗=e⃗ D. 1|a⃗ |a⃗=1|b⃗|b⃗5.已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A. a<0、b>0、c>0B. a<、b<0、c>0C. a<0、b>0、c<0D. a<0、b<0、c<06.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A. 点B、点C都在⊙A内B. 点C在⊙A内,点B在⊙A外C. 点B在⊙A内,点C在⊙A外D. 点B、点C都在⊙A外二、填空题(本大题共12小题,共48.0分)7.已知二次函数f(x)=x2−3x+1,那么f(2)=______.8.已知抛物线y=12x2−1,那么抛物线在y轴右侧部分是______(填“上升的”或“下降的”).9.已知xy =52,那么x+yy=______.10.已知α是锐角,sinα=12,那么cosα=______.11.一个正n边形的中心角等于18°,那么n=______.12.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=______.13.如图,为了测量铁塔AB的高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=______米.14.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是______.15.如图,已知O为△ABC内一点,点D、E分别在边AB、AC上,且ADAB =25,DE//BC,设OB⃗⃗⃗⃗⃗⃗ =b⃗ 、OC⃗⃗⃗⃗⃗ =c⃗,那么DE⃗⃗⃗⃗⃗⃗ =______(用b⃗ 、c⃗表示).16.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于______.17.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=45,那么GE=______.18.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.在边AB上取一点O,使BO=BC,以点O为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A、B、C的对应点分别是点A′、B′、C′),那么△ABC与△A′B′C′的重叠部分的面积是______三、解答题(本大题共7小题,共78.0分)19.计算:cos245°−cot30°2sin60∘+tan260°−cot45°⋅sin30°.20.已知二次函数y=x2−4x−5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)(1)当y=0时,求x的值.(2)点M(6,m)在二次函数y=x2−4x−5的图象上,设直线MP与x轴交于点C,求cot∠MCB的值.21.如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2.求(1)背水坡AB的长度.(2)坝底BC的长度.22.如图,已知AB是⊙O的直径,C为圆上一点,D是BC⏜的中点,CH⊥AB于H,垂足为H,联OD交弦BC于E,交CH于F,联结EH.(1)求证:△BHE∽△BCO.(2)若OC=4,BH=1,求EH的长.23.如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.(1)求证:AM2=MF⋅MH.(2)若BC2=BD⋅DM,求证:∠AMB=∠ADC.24.已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=−x−2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物线y=x2+bx+c的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).25.已知多边形ABCDEF是⊙O的内接正六边形,联结AC、FD,点H是射线AF上的一个动点,联结CH,直线CH交射线DF于点G,作MH⊥CH交CD的延长线于点M,设⊙O的半径为r(r>0).(1)求证:四边形ACDF是矩形.(2)当CH经过点E时,⊙M与⊙O外切,求⊙M的半径(用r的代数式表示).(3)设∠HCD=α(0<α<90°),求点C、M、H、F构成的四边形的面积(用r及含α的三角比的式子表示).答案和解析1.【答案】C【解析】解:A、y=x属于一次函数,故本选项错误;B、y=1x的右边不是整式,不是二次函数,故本选项错误;C、y=x−2+x2=x2+x−2,符合二次函数的定义,故本选项正确;D、y=1x2的右边不是整式,不是二次函数,故本选项错误;故选:C.根据二次函数的定义判定即可.本题考查二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.2.【答案】A【解析】解:∵∠C=90°,∴sin∠B=ACAB,故选A.我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键.3.【答案】B【解析】【分析】本题考查了平行线分线段成比例定理的运用,注意:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.根据平行线分线段成比例定理即可得到结论.【解答】解:∵ED//BC,∴ABAD =ACAE,即86=12AE,∴AE=9,故选B.4.【答案】B【解析】解:A.由于单位向量只限制长度,不确定方向,故本选项错误;B.符合向量的长度及方向,故本选项正确;C.得出的是a的方向不是单位向量,故本选项错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故本选项错误.故选B.长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.本题考查了向量的性质,属于基础题.5.【答案】D【解析】解:由图象开口可知:a<0,由图象与y轴交点可知:c<0,<0,由对称轴可知:−b2a∴b<0,即a<0,b<0,c<0,故选D.根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.6.【答案】D【解析】【分析】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了含30°角的直角三角形的性质.先解直角△ABC,求出AB、AC的长,再根据点到圆心距离与半径的关系可以确定点B、点C与⊙A的位置关系.【解答】解:∵在Rt△ABC中,∠C=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=2BC=4,AC=√3BC=2√3,∵⊙A的半径为3,4>3,2√3>3,∴点B、点C都在⊙A外.故选:D.7.【答案】−1【解析】【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.计算自变量为2对应的函数值即可.【解答】解:把x=2代入f(x)=x2−3x+1得f(2)=22−3×2+1=−1.故答案为−1.8.【答案】上升的【解析】【分析】本题主要考查二次函数的增减性,掌握开口向上的二次函数在对称轴右侧y随x的增大而增大是解题的关键.根据抛物线解析式可求得其对称轴,结合抛物线的增减性可得到答案.【解答】x2−1,解:∵y=12∴其对称轴为y轴,且开口向上,∴在y轴右侧,y随x增大而增大,∴其图象在y 轴右侧部分是上升的, 故答案为:上升的.9.【答案】72【解析】 【分析】此题主要考查了比例的性质,正确表示出x ,y 的值是解题关键.直接根据已知用同一未知数表示出各数,进而得出答案. 【解答】 解:∵xy =52,∴设x =5a ,则y =2a , 那么x+y y =2a+5a 2a =72. 故答案为:72.10.【答案】√32【解析】 【分析】本题考查了特殊角的三角函数值,解决问题的关键是熟记一些特殊角的三角函数值.先确定α的度数,即可得出cosα的值. 【解答】解:∵α是锐角,sinα=12, ∴α=30°, ∴cosα=√32. 故答案为:√32.11.【答案】20【解析】 【分析】本题考查的是正多边形和圆,熟知正多边形的中心角和为360°是解答此题的关键.根据正多边形的中心角和为360°计算即可. 【解答】 解:n =360°18∘=20,故答案为:20. 12.【答案】2√5−2【解析】 【分析】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的3−√52,较长的线段=原线段的√5−12.根据黄金分割点的定义,知AP 是较长线段;则AP =√5−12AB ,代入数据即可得出AP 的长. 【解答】解:由于P 为线段AB =4的黄金分割点, 且AP 是较长线段;则AP =√5−12AB =√5−12×4=2√5−2. 故答案为2√5−2. 13.【答案】20√3【解析】 【分析】此题主要考查了解直角三角形的应用−仰角俯角问题,正确掌握锐角三角函数关系是解题关键.直接利用锐角三角函数关系得出AB 的值进而得出答案. 【解答】解:由题意可得:tan30°=AB CB=AB 60=√33, 解得:AB =20√3,答:铁塔的高度AB 为20√3m. 故答案为:20√3. 14.【答案】3<d <7【解析】 【分析】本题考查了圆与圆的位置关系:两圆的圆心距为d 、两圆的半径分别为r 、R :①两圆外离⇔d >R +r ;②两圆外切⇔d =R +r ;③两圆相交⇔R −r <d <R +r(R ≥r);④两圆内切⇔d =R −r(R >r);⑤两圆内含⇔d <R −r(R >r).利用两圆相交⇔R −r <d <R +r(R ≥r)求解. 【解答】解:∵⊙O 1与⊙O 2相交, ∴3<d <7.故答案为3<d <7. 15.【答案】−25b ⃗+25c ⃗【解析】 【分析】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.根据三角形法则和平行线分线段成比例来求DE⃗⃗⃗⃗⃗⃗ . 【解答】解:∵ADAB =25,DE//BC , ∴DEBC =ADAB =25, ∴DE =25BC . ∵OB ⃗⃗⃗⃗⃗⃗ =b ⃗ 、OC ⃗⃗⃗⃗⃗=c ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗⃗ =c ⃗ −b ⃗ , ∴DE ⃗⃗⃗⃗⃗⃗ =−25b ⃗ +25c ⃗ .故答案是:−25b ⃗+25c ⃗ . 16.【答案】2√3【解析】 【分析】本题考查了相交两圆的性质,圆周角定理,正确的作出辅助线是解题的关键.连接AB 交O 1P 于C ,根据相交两圆的性质得到AB ⊥O 1P ,AC =BC ,得到∠APC =12∠APB =30°,根据直角三角形的性质得到AC =12AP =3,连接AO 2,解直角三角形即可得到结论. 【解答】解:连接AB 交O 1P 于C , 则AB ⊥O 1P ,AC =BC , ∴AP =PB ,∴∠APC =12∠APB =30°,∴AC =12AP =3, 连接AO 2, ∵AO 2=PO 2, ∴∠AO 2C =60°, ∴AO 2=ACsin60∘=√32=2√3,∴⊙O 2的半径等于2√3.17.【答案】√172【解析】 【分析】本题考查等腰三角形的性质、相似三角形的判定和性质以及锐角三角函数定义,解答本题的关键是正确作出辅助线构造相似三角形,作EF ⊥BC 于点F ,根据余弦定义求出CD 长,根据等腰三角形性质求出BC 长,根据平行关系易证△BDG∽△BFE ,再根据相似三角形的对应边成比例结合线段的和差关系求出GE 即可. 【解答】解:作EF ⊥BC 于点F ,∵AD 、BE 分别是边BC 、AC 上的中线,AB =AC =5,cos∠C =45, ∴AD ⊥BC ,AD =3,CD =4, ∴AD//EF ,BC =8,∴EF =1.5,DF =2,△BDG∽△BFE ,∴DGFE =BDBF=BGBE,BF=6,∴DG=1,∴BG=√17,∴46=√17BE,得BE=3√172,∴GE=BE−BG=3√172−√17=√172,故答案为√172.18.【答案】5.76【解析】【分析】本题考查了旋转的性质,勾股定理,相似三角形的判定和性质,正确的画出图形是解题的关键.根据勾股定理得到AB=10,根据旋转的性质得到OA′=OA=4,∠A′=∠A,根据相似三角形的性质得到OM=3,求得AM=1,根据相似三角形的性质得到S△AON=6,同理,S△AMP= 0.24,于是得到结论.【解答】解:∵在Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∴BO=BC=6,∵把△ABC逆时针旋转90°,得到△A′B′C′,∴OA′=OA=4,∠A′=∠A,∵∠A′OM=∠C=90°,∴△A′OM∽△ACB,∴OMBC =OA′AC,∴OM=3,∴AM=1,∵∠A′MO=∠AMP,∴∠APM=∠A′ON=90°,∴△AON∽△ACB,∴S△AONS△ACB =(AOAC)2=14,∵S△ABC=12×8×6=24,∴S△AON=6,同理,S△AMP=0.24,∴△ABC与△A′B′C′的重叠部分的面积是6−0.24=5.76.故答案为:5.76.19.【答案】解:原式=(√22)2−√32×√32+(√3)2−1×12=12−1+3−12 =2.【解析】直接利用特殊角的三角函数值代入进而得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.【答案】解:(1)把y =0代入y =x 2−4x −5,得x 2−4x −5=0,解得,x 1=5,x 2=−1,即当y =0时,x 的值是−1或5;(2)∵点M(6,m)在二次函数y =x 2−4x −5的图象上,∴m =62−4×6−5=7,∴点M(6,7),∵二次函数y =x 2−4x −5,与y 轴的交点为P ,∴点P 的坐标为(0,−5),设直线MP 的函数解析式为y =kx +b ,{6k +b =7b =−5,得{k =2b =−5, 即直线MP 的解析式为y =2x −5,当y =0时,x =52,即点C 的坐标为(52,0),由(1)知,当y =0时,x 的值是−1或5,∵二次函数y =x 2−4x −5与x 轴交于A 、B 两点(点B 在点A 的右侧),∴点B 的坐标为(5,0),∴cot∠MCB =6−527=12.【解析】(1)根据题目中的函数解析式,可以求得当y −0时对应的x 值;(2)根据题意可以求得点M 的坐标,点C 的坐标和点B 的坐标,从而可以求得cot∠MCB 的值.本题考查抛物线与x 轴的交点、一次函数与二次函数图象上点的坐标特征,解直角三角形,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 21.【答案】解:(1)分别过点A 、D 作AM ⊥BC ,DN ⊥BC ,垂足分别为点M 、N ,根据题意,可知AM =DN =24(米),MN =AD =6(米),在Rt △ABM 中,∵AM BM =13,∴BM =72(米),∵AB 2=AM 2+BM 2,∴AB =√242+722=24√10(米),答:背水坡AB 的长度为24√10米;(2)在Rt△DNC中,DNCN =12,∴CN=48(米),∴BC=72+6+48=126(米),答:坝底BC的长度为126米.【解析】(1)直接分别过点A、D作AM⊥BC,DN⊥BC垂足分别为点M、N,得出AM= DN=24(米),MN=AD=6(米),进而利用坡度以及勾股定理进而得出答案;(2)利用(1)中所求,进而得出BC的长.此题考查了解直角三角形的应用−坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.22.【答案】(1)证明:∵OD为圆的半径,D是BC⏜的中点,∴OD⊥BC,BE=CE=12BC,∵CH⊥AB,∴∠CHB=90°,∴HE=12BC=BE,∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B∴△BHE∽△BCO.(2)解:∵△BHE∽△BCO,∴BHBC =BEOB,∵OC=4,BH=1,∴OB=4,得12BE =BE4,解得BE=√2,∴EH=BE=√2.【解析】(1)根据两角对应相等的两个三角形相似即可证明;(2)由△BHE∽△BCO,可得BHBC =BEOB,由此即可解决问题;本题考查垂径定理,相似三角形的判定和性质,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴AMMF =DMMB,DMMB=MHAM,∴AMMF =MHAM,即AM2=MF⋅MH.(2)∵四边形ABCD是平行四边形,∴AD=BC,又∵BC2=BD⋅DM,∴AD 2=BD ⋅DM 即AD DB =DM AD ,又∵∠ADM =∠BDA ,∴△ADM∽△BDA ,∴∠AMD =∠BAD ,∵AB//CD ,∴∠BAD +∠ADC =180°,∵∠AMB +∠AMD =180°,∴∠AMB =∠ADC .【解析】(1)根据平行线分线段成比例定理即可解决问题;(2)由△ADM∽△BDA ,推出∠AMD =∠BAD ,由AB//CD ,推出∠BAD +∠ADC =180°,由∠AMB +∠AMD =180°,可得∠AMB =∠ADC ;本题考查平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)把点A 、B 坐标代入y =x 2+bx +c 得:{c =63=1+b +c ,解得:{b =−4c =6, 则抛物线的表达式为:y =x 2−4x +6;(2)y =x 2−4x +6=(x −2)2+2,故顶点坐标为(2,2),把点P 坐标代入直线l 1表达式得:2=2k ,即k =1,∴直线l 1表达式为:y =x ,设:点M(2,m)代入直线l 2的表达式得:m =−4,即点M 的坐标为(2,−4),设:点N(n,−4)代入直线l 1表达式得:n =−4,则点N 坐标为(−4,−4),同理得:点D 、E 的坐标分别为(−2,0)、(0,−2)、联立l 1、l 2得{y =x y =−x −2,解得:{x =−1y =−1,即:点C 的坐标为(−1,−1), ∴OC =√(−1−0)2+(−1−0)2=√2,CE =√2=OC ,∵点C 在直线y =x 上,∴∠COE =∠OEC =45°,∴∠OCE =90°,即:NC ⊥l 2,NC =√(−1+4)2+(−1+4)2=3√2>4,∴以点N 为圆心,半径长为4的圆与直线l 2相离;(3)①当点F 在直线l 2下方时,设:∠OBK =α,点A 、B 的坐标分别为(0,6),(1,3),则AO =6,AB =BO =√10, 过点B 作BL ⊥y 轴交于点L ,则tan∠OAB =13,sin∠OAB =√10,OK =AOsin∠OAB =√10×6√10,sinα=OK OB =35, ∵等腰△MHF 和等腰△OAB 相似,∴∠HFM =∠ABO ,则∠KBO =∠OFM =α,点C 、M 的坐标分别为(−1,−1)、(2,−4), 则CM =3√2,FM =CM sinα=5√2,CF =4√2,OF =OC +FC =5√2,则点F 的坐标为(−5,−5),∵FH =FM =5√2,OH =OF +FH =10√2,则点H 的坐标为(−10,−10);②当点F 在直线l 2上方时,同理可得点F 的坐标为(8,8),点H 的坐标为(3,3)或(−10,10);故:点F 、H 的坐标分别为(−5,−5)、(−10,−10)或(8,8)、(3,3)或(8,8)、(−10,−10).【解析】(1)把点A 、B 坐标代入y =x 2+bx +c ,即可求解;(2)求而出点N 、点C 的坐标,计算NC 得长度即可求解;(3)分点F 在直线l 2下方、点F 在直线l 2上方两种情况,求解即可.本题考查的是二次函数综合运用,难点在(3),利用等腰三角形相似得出∠KBO =∠OFM =α,再利用解直角三角形的方法求线段的长度,从而求解.25.【答案】解:(1)证明:∵多边形ABCDEF 是⊙O 的内接正六边形,∴AB =AC ,∠ABC =∠BAF =180×(6−2)6=120°,∴∠BAC =∠BCA ,∵∠BAC +∠BCA +∠ABC =180°,∴∠BAC =30°,得∠CAF =90°,同理∠ACD =90°,∠AFD =90°,∴四边形ACDF 是矩形;(2)如图1,连接OC 、OD ,由题意得:OC =OD ,∠COD =360°6=60°,∴△OCD 为等边三角形,∴CD =OC =r ,∠OCD =60°,作ON ⊥CD ,垂足为N ,即ON 为CD 弦的弦心距,∴CN =12CD =12r ,由sin∠OCD =ON OC =√32得ON =√32r , 作OP ⊥AC 垂足为P ,即OP 为AC 弦的弦心距,∴CP=12AC,∵∠OCP=90°−60°=30°,∴CP=OC⋅cos30°=√32r,得AC=√3r,当CH经过点E时,可知∠ECD=30°,∵四边形ACDF是矩形,∴AF//CD,∴∠AHC=∠ECD=30°,∴在Rt△ACH中,CH=2AC=2√3r,∵MH⊥CH,∴cos∠HCM=CHCM =√32,得CM=4r,∴MN=72r,∴在Rt△MON中,OM=√ON2+MN2=√13r,∵⊙M与⊙O外切,∴r Q+r M=OM,即⊙M的半径为(√13−1)r.(3)如图2,作HQ⊥CM垂足为Q,由∠HCD=α,MH⊥CH可得∠QHM=α,∵AF//CD,AC⊥CD,∴HQ=AC=√3r,∴CQ=HQ·1tan∠HCQ =√3r⋅1tanα,MQ=HQ⋅tan∠QHM=√3r⋅tanα,即CM=√3r(tanα+1tanα),①当0°<α<60°时,点H在边AF的延长线上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CQ−CD=√3r⋅1tanα−r,∴S=(FH+CM)⋅HQ2=(6×1tana)2.②当α=60°时,点H与点F重合,此时点C、M、H、F构成三角形,非四边形,所以舍去.③当60°<α<90°时,点H在边AF上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CD−CQ=r−√3r⋅1tanα,∴S=(FH+CM)⋅HQ2=(√3+3tanα)⋅r22.综上所述,当∠HCD=α(0°<α<90°)时,点C、M、H、F构成的四边形的面积为(6tan+3tana−√3)·r22或(√3+3tanα)⋅r22.【解析】(1)根据正多边形的性质和矩形的判定解答即可;(2)连接OC、OD,证△OCD为等边三角形得CD=OC=r,∠OCD=60°,作ON⊥CD求得ON=√32r,再作OP⊥AC,求得AC=√3r,由四边形ACDF是矩形知∠AHC=∠ECD=30°,据此得CH=2AC=2√3r,由cos∠HCM=CHCM =√32,得CM=4r,MN=72r,利用勾股定理求得OM=√ON2+MN2=√13r,依据⊙M与⊙O外切可得答案;(3)作HQ⊥CM垂足为Q,由∠HCD=α,MH⊥CH可得∠QHM=α,再由AF//CD,AC⊥CD知HQ=AC=√3r,继而求得CQ=√3r⋅1tanα,MQ=√3r⋅tanα,则CM=√3r(tanα+1tanα),再分0°<α<60°、α=60°和60°<α<90°三种情况分别求解可得.本题是圆的综合问题,解题的关键是掌握矩形的判定与性质、垂径定理、平行线的性质、圆与圆的位置关系、三角函数的应用及分类讨论思想的运用等知识点.。
[试卷合集3套]上海市金山区2019届中考数学学业质量检查模拟试题
![[试卷合集3套]上海市金山区2019届中考数学学业质量检查模拟试题](https://img.taocdn.com/s3/m/2f28b2eb376baf1ffd4fadbd.png)
【答案】D
【解析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC= R.
【详解】解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC= R,
∴C(2,2),把C坐标代入反比例解析式得:k=4,即 ,由函数图象得:当0<x<2时, ,选项②错误;
当x=3时, , ,即EF= = ,选项③正确;
当x>0时, 随x的增大而增大, 随x的增大而减小,选项④正确,故选C.
考点:反比例函数与一次函数的交点问题.
9.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()
④当x>0时, 随x的增大而增大, 随x的增大而减小.
其中正确结论的个数是()
A.1B.2C.3D.4
【答案】C
【解析】试题分析:对于直线 ,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴ (同底等高运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
10.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是( )
精品2019届上海中考数学各区一模汇编-03提升题(18、23、24、25题)

2019届一模提升题汇编目录2019届一模提升题汇编目录 (1)Ⅰ第18题(填空小压轴) (3)【2019届一模徐汇】 (3)【2019届一模浦东】 (3)【2019届一模杨浦】 (3)【2019届一模普陀】 (4)【2019届一模奉贤】 (4)【2019届一模松江】 (4)【2019届一模嘉定】 (5)【2019届一模青浦】 (5)【2019届一模青浦】 (5)【2019届一模静安】 (6)【2019届一模宝山】 (6)【2019届一模长宁】 (6)【2019届一模金山】 (7)【2019届一模闵行】 (7)【2019届一模虹口】 (7)Ⅱ第23题(几何证明题) (9)【2019届一模徐汇】 (9)【2019届一模浦东】 (9)【2019届一模杨浦】 (10)【2019届一模普陀】 (10)【2019届一模奉贤】 (11)【2019届一模松江】 (11)【2019届一模嘉定】 (12)【2019届一模青浦】 (12)【2019届一模静安】 (13)【2019届一模宝山】 (13)【2019届一模长宁】 (14)【2019届一模金山】 (14)【2019届一模闵行】 (15)【2019届一模虹口】 (15)Ⅲ第24题(二次函数综合) (16)【2019届一模徐汇】 (16)【2019届一模浦东】 (17)【2019届一模普陀】 (19)【2019届一模奉贤】 (20)【2019届一模松江】 (21)【2019届一模嘉定】 (22)【2019届一模青浦】 (23)【2019届一模静安】 (24)【2019届一模宝山】 (25)【2019届一模长宁】 (26)【2019届一模金山】 (27)【2019届一模闵行】 (28)【2019届一模虹口】 (29)Ⅳ第25题(压轴题) (30)【2019届一模徐汇】 (30)【2019届一模浦东】 (31)【2019届一模杨浦】 (32)【2019届一模普陀】 (33)【2019届一模奉贤】 (34)【2019届一模松江】 (35)【2019届一模嘉定】 (36)【2019届一模青浦】 (37)【2019届一模静安】 (38)【2019届一模宝山】 (39)【2019届一模长宁】 (40)【2019届一模金山】 (41)【2019届一模闵行】 (42)【2019届一模虹口】 (43)Ⅰ第18题(填空小压轴)【2019届一模徐汇】18.在梯形ABCD 中,AB ∥DC ,∠B =90°,BC=6,CD =2,3tan 4A =.点E 为BC 上一点,过点E 作EF ∥AD 交边AB 于点F .将△BEF 沿直线EF 翻折得到△GEF ,当EG 过点D 时,BE 的长为 ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模浦东】18. 将矩形纸片ABCD 沿直线AP 折叠,使点D 落在原矩形ABCD 的边BC 上的点E 处,如果∠AED 的余弦值为35,那么ABBC =__________.【答案请加QQ 群712018203见Word 教师版】 【2019届一模杨浦】18.Rt △ABC 中,∠C =90°,AC =3,BC =2,将此三角形绕点A 旋转,当点B 落在直线BC 上的点D 处时,点C 落在点E 处,此时点E 到直线BC 的距离为 ▲ .【 答案请加QQ 群712018203见Word 教师版】GEABC DF (第18题图)ACB(第18题图)18.如图5,△ABC 中,8AB AC ==,3cos 4B =,点D 在边BC 上,将△ABD 沿直线AD 翻折得到△AED ,点B 的对应点为点E ,AE 与边BC 相交于点F ,如果2BD =,那么EF = ▲ .【答案请加QQ 群712018203见Word 教师版】【2019届一模奉贤】18.如图5,在△ABC 中,AB =AC =5,3sin =5C ,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 、C 分别与点D 、E 对应,AD 与边BC 交于点F .如果AE //BC ,那么BF 的长是 ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模松江】18.如图,在直角坐标平面xoy 中,点A 坐标为(3,2),∠AOB =90°,∠OAB =30°,AB 与x 轴交于点C ,那么AC :BC 的值为______.【 答案请加QQ 群712018203见Word 教师版】图5ABCD图5 ABC(第18题图)xyC BOA18.在△ABC 中,︒=∠90ACB ,点D 、E 分别在边BC 、AC 上,AE AC 3=,︒=∠45CDE (如图3),△DCE 沿直线DE 翻折,翻折后的点C 落在△ABC 内部的点F ,直线AF 与边BC 相交于点G ,如果AE BG =,那么=B tan ▲ .【答案请加QQ 群712018203见Word 教师版】【2019届一模青浦】17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D ,点C 落在点E ,DE 与直线BC 相交于点F ,那么CF= ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模青浦】18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的 点S 称为“亮点”. 如图,对于封闭图形ABCDE ,S 1是 “亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC , AB=2,AE=1,∠B=∠C= 60°,那么该图形中所有“亮点” 组成的图形的面积为 ▲ . 【答案请加QQ 群712018203见Word 教师版】 EDCBAS 2S 1(第18题图)18.如图6,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,联结AE .如果2tan 3DFC ∠=,那么BD AE的值是 ▲ . 【 答案请加QQ 群712018203见Word 教师版】【2019届一模宝山】18.如图4,Rt △ABC 中,∠ACB =90°,AC =4,BC =5,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C落在C ’处,连接AC ’,若AC ’∥BC ,则CP 的长为 ▲ . 【 答案请加QQ 群712018203见Word 教师版】【2019届一模长宁】18.如图,点P 在平行四边形ABCD 的边BC 上,将ABP ∆沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果5=AB ,8=AD ,34tan =B ,那么BP 的长为 ▲ .【答案请加QQ 群712018203见Word 教师版】AC(图4)B图6F BA CD EBACD第18题图18.如图,在ABC Rt ∆中,o90=∠C ,8=AC ,6=BC .在边AB 上取一点O ,使BC BO =,以点O为旋转中心,把ABC ∆逆时针旋转90,得到C B A '''∆(点A 、B 、C 的对应点分别是点A '、B '、C '),那么ABC ∆与C B A '''∆的重叠部分的面积是 ▲ .【 答案请加QQ 群712018203见Word 教师版】【2019届一模闵行】18.如图,在Rt △ABC 中,∠ACB = 90°,BC = 3,AC = 4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE // CD ,那么BE = ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模虹口】18.如图,正方形ABCD 的边长为4,点O 为对角线AC 、BD 的交点,点E 为边AB 的中点,△BED 绕着点B 旋转至△BD 1E 1,如果点D 、E 、D 1在同一直线上,那么EE 1的长为 ▲ .ABC第18题OABC (第18题图)C第18题图A BDE O【】答案请加QQ群712018203见Word教师版Ⅱ第23题(几何证明题)【2019届一模徐汇】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知菱形ABCD ,点E 是AB 的中点,AF BC ⊥于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且2AE EG ED =⋅.(1) 求证:DE EF ⊥; (2) 求证:22BC DF BF =⋅.【答案请加QQ 群712018203见Word 教师版】【2019届一模浦东】23. (本题满分12分,其中每小题各6分)已知:如图8,在平行四边形ABCD 中,M 是边BC 的中点,E 是边BA 延长线上的一点,联结EM ,分别交线段AD 于点F 、AC 于点G .(1)求证:GF EFGM EM=; (2)当22BC BA BE =⋅时,求证:∠EMB =∠ACD .【答案请加QQ 群712018203见Word 教师版】GD EF BCA (第23题图)(图8)DCM BAF GE【2019届一模杨浦】23.(本题满分12分,每小题各6分)已知:如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD DEBC AC=; (2)当点E 为CD 中点时,求证:22AE ABCE AD=.【答案请加QQ 群712018203见Word 教师版】【2019届一模普陀】23.(本题满分12分)已知:如图9,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F ,AE AF AB =⋅2,DAF EAC ∠=∠.(1)求证:△ADE ∽△ACB ;(2)求证:DF CEDE CB=.【答案请加QQ 群712018203见Word 教师版】(第23题图)EABCDF图9ABCDE23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图9,在△ABC 中,点D 在边AC 上,BD 的垂直平分线交CA 的延长线于点E , 交BD 于点F ,联结BE ,EC EA ED •=2. (1)求证:∠EBA =∠C ;(2)如果BD =CD ,求证:AC AD AB •=2.【答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版】【2019届一模松江】23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC ·CE=AD ·BC . (1)求证:∠DCA=∠EBC ;(2)延长BE 交AD 于F ,求证:AB 2=AF ·AD .【答案请加QQ 群712018203见Word 教师版】AB CDEF图9 (第23题图)EDCBAF(第23题图)EDCBA23.(本题满分12分,每小题6分)如图6,已知点D 在△ABC 的外部,AD //BC ,点E 在边AB 上,AE BC AD AB ⋅=⋅. (1)求证:AED BAC ∠=∠;(2)在边AC 取一点F ,如果D AFE ∠=∠, 求证:ACAFBC AD =.【答案请加QQ 群712018203见Word 教师版】【2019届一模青浦】23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .【答案请加QQ 群712018203见Word 教师版】图6BCDAE FABCDEF(第23题图)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图9,在ABC ∆中,点D 、E 分别在边BC 和AB 上,且AD AC =,EB ED =,分别延长ED 、AC 交于点F .(1)求证:ABD ∆∽FDC ∆; (2)求证:2AE BE EF =⋅.【答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版】【2019届一模宝山】23.(本题满分12分)地铁10号线某站点出口横截面平面图如图8所示,电梯AB 的两端分别距顶部9.9米和2.4米,在距电梯起点A 端6米的P 处,用1.5米的测角仪测得电梯终端B 处的仰角为14°,求电梯AB 的坡度与长度. 参考数据:24.014sin ≈︒,25.014tan ≈︒,97.014cos ≈︒.【答案请加QQ 群712018203见Word 教师版】Q 9.9米B出口顶部1.5米(图8)AP6米2.4米︒14图9 AC BDEF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,点D 、E 分别在ABC ∆的边AC 、AB 上,延长DE 、CB 交 于点F ,且AC AD AB AE ⋅=⋅. (1)求证:C FEB ∠=∠;(2)联结AF ,若FD CD AB FB =,求证:FB AC AB EF ⋅=⋅.【答案请加QQ 群712018203见Word 教师版】【2019届一模金山】23.如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:MH MF AM ⋅=2.(2)若DM BD BC ⋅=2,求证:ADC AMB ∠=∠.【答案请加QQ 群712018203见Word 教师版】第23题图CEDABF A BCD HF M第23题23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,点D 为边BC 上一点,且AD = AB ,AE ⊥BC ,垂足为点E .过点D 作DF // AB ,交边AC 于点F ,联结EF ,212EF BD EC =⋅.(1)求证:△EDF ∽△EFC ;(2)如果14EDF ADC S S =V V ,求证:AB = BD .【答案请加QQ 群712018203见Word 教师版】【2019届一模虹口】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,AB=AC ,D 是边BC 的中点,DE ⊥AC ,垂足为点E . (1)求证:DE CD AD CE ⋅=⋅;(2)设F 为DE 的中点,联结AF 、BE ,求证:=AF BC AD BE ⋅⋅.【 答案请加QQ 群712018203见Word 教师版】AB CDEF(第23题图)D 第23题图AECBⅢ第24题(二次函数综合)【2019届一模徐汇】24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xoy 中,顶点为M 的抛物线C 1:2(0)y ax bx a =+<经过点A 和x 轴上的点B ,AO =OB =2,120AOB ∠=o . (1)求该抛物线的表达式; (2)联结AM ,求AOM S V ;(3)将抛物线C 1向上平移得到抛物线C 2,抛物线C 2与x 轴分别交于点E 、F (点E 在点F 的左侧),如果△MBF 与△AOM 相似,求所有符合条件的抛物线C 2的表达式.【答案请加QQ 群712018203见Word 教师版】(第24题图)【2019届一模浦东】24.(本题满分12分,其中每小题各4分)已知:如图9,在平面直角坐标系xOy中,直线12y x b=-+与x轴相交于点A,与y轴相交于点B. 抛物线244y ax ax=-+经过点A和点B,并与x轴相交于另一点C,对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)求证: △BOD∽△AOB;(3)如果点P在线段AB上,且∠BCP=∠DBO,求点P的坐标.【答案请加QQ群712018203见Word教师版】(图9)x BOAy【2019届一模杨浦】24.(本题满分12分,每小题各4分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++?与y 轴交于点C (0,2), 它的顶点为D (1,m ),且1tan 3COD ?. (1)求m 的值及抛物线的表达式;(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA =OB .若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;(3)在(2)的条件下,点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB =45°.求P 点的坐标.【答案请加QQ 群712018203见Word 教师版】O xy 1 2 3 4 1 2 3 45-1-2 -3 -1 -2 -3 (第24题图)24.(本题满分12分)如图10,在平面直角坐标系xOy 中,抛物线23y ax bx =+-(0)a ≠与x 轴交于点A ()1,0-和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .(1)求抛物线的表达式及点D 的坐标;(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标; (3)如果点F 是抛物线上的一点,且135FBD ∠=,求点F 的坐标.【答案请加QQ 群712018203见Word 教师版】图10C BAOyx24.(本题满分12分,每小题满分6分)如图10,在平面直角坐标系xOy 中,直线AB 与抛物线2y ax bx =+交于点A (6,0)和点B (1,-5). (1)求这条抛物线的表达式和直线AB 的表达式; (2)如果点C 在直线AB 上,且∠BOC 的正切值是32, 求点C 的坐标.【答案请加QQ 群712018203见Word 教师版】图10ABxyo24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线c bx x y ++-=221经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.【答案请加QQ 群712018203见Word 教师版】(第24题图)y xOBA24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,抛物线22++=bx ax y 经过点)0,4(A 、)2,2(B , 与y 轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M ,求△AMC 的面积; (3)如果这个抛物线的对称轴与直线BC 交于点D ,点E 在线段AB 上,且︒=∠45DOE ,求点E 的坐标.【答案请加QQ 群712018203见Word 教师版】图7 O 11 xy--24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CD =2,求∠CAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.【答案请加QQ 群712018203见Word 教师版】CB A xyOCB A xyO(第24题图)(备用图)24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)在平面直角坐标系xOy 中(如图10),已知抛物线2(0)y ax bx c a =++≠的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD ∆的面积是3. (1)求该抛物线的表达式; (2)求ADB ∠的正切值;(3)若抛物线与y 轴交于点C ,直线CD 交x 轴于点E ,点P 在射线AD 上,当APE ∆与ABD ∆相似时,求点P 的坐标.【答案请加QQ 群712018203见Word 教师版】BD O图10xy﹒﹒24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图9,已知:二次函数2y x bx =+的图像交x 轴正半轴于点A ,顶点为P ,一次函数132y x =-的图像交x 轴于点B ,交y 轴于点C , ∠OCA 的正切值为23. (1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ’,若,求m 的值.【 答案请加QQ 群712018203见Word 教师版】A B C O yx(图9)24.(本题满分12分,每小题4分)如图,在直角坐标平面内,抛物线经过原点O 、点)3,1(B ,又与x 轴正半轴相交于点A ,︒=∠45BAO ,点P 是线段AB 上的一点,过点P 作OB PM //,与抛物线交于点M ,且点M 在第一象限内.(1)求抛物线的表达式;(2)若AOB BMP ∠=∠,求点P 的坐标;(3)过点M 作x MC ⊥轴,分别交直线AB 、x 轴于点N 、C ,若ANC ∆的面积等于PMN ∆的面积的2倍,求NCMN 的值.【答案请加QQ 群712018203见Word 教师版】第24题图xO A By备用图xO A By24.已知抛物线c bx x y ++=2经过点()6,0A ,点()3,1B ,直线1l :()0≠=k kx y ,直线2l :2--=x y ,直线1l 经过抛物线c bx x y ++=2的顶点P ,且1l 与2l 相交于点C ,直线2l 与x 轴、y 轴分别交于点D 、E .若把抛物线上下平移,使抛物线的顶点在直线2l 上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线1l 上(此时抛物线的顶点记为N ). (1)求抛物线c bx x y ++=2的解析式.(2)判断以点N 为圆心,半径长为4的圆与直线2l 的位置关系,并说明理由.(3)设点F 、H 在直线1l 上(点H 在点F 的下方),当MHF ∆与OAB ∆相似时,求点F 、H 的坐标(直接写出结果).【答案请加QQ 群712018203见Word 教师版】第24题yxO24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy中,抛物线2y a x b x=+经过点A(5,0)、B(-3,4),抛物线的对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)联结OB、BD.求∠BDO的余切值;(3)如果点P在线段BO的延长线上,且∠P AO =∠BAO,求点P的坐标.【答案请加QQ群712018203见Word教师版】x yO(第24题图)24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴; (2)求tan ∠OAB 的值;(3)点D 在抛物线的对称轴上,如果∠BAD =45°,求点D 的坐标.【答案请加QQ 群712018203见Word 教师版】OAy 第24题图xBF EA CB DF E A CB DⅣ第25题(压轴题)【2019届一模徐汇】25. (本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD 中,AD //BC ,AC =BC =10,54cos =∠ACB ,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x . (1)如图1,当DF BC ⊥时,求AD 的长; (2)设EC 的长为y ,求y 关于x 的函数解析式,并直接写出定义域; (3)当△DFC 是等腰三角形时,求AD 的长.【答案请加QQ 群712018203见Word 教师版】(第25题图1) (第25题图)25. (本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将大小两把含30°角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C 重合,小三角尺的顶点D 、E 分别在大三角尺的直角边AC 、BC 上, 此时小三角尺的斜边DE 恰好经过大三角尺的重心G . 已知∠A =∠CDE =30°,AB =12. (1)求小三角尺的直角边CD 的长;(2)将小三角尺绕点C 逆时针旋转,当点D 第一次落在大三角尺的边AB 上时(如图10-2),求点B 、E 之间的距离;(3)在小三角尺绕点C 旋转的过程中,当直线DE 经过点A 时,求∠BAE 的正弦值.【答案请加QQ 群712018203见Word 教师版】G(图10-1)(图10-2)E DCABDCBAE25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知:梯形ABCD 中,AD //BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 分别交射线AB 、射线CB 于点E 、F .(1)当点E 为边AB 的中点时(如图1),求BC 的长; (2)当点E 在边AB 上时(如图2),联结CE ,试问:∠DCE 的大小是否确定?若确定,请求出∠DCE 的正切值;若不确定,则设AE =x ,∠DCE 的正切值为y ,请求出y 关于x 的函数解析式,并写出定义域; (3)当△AEF 的面积为3时,求△DCE 的面积.【 答案请加QQ 群712018203见Word 教师版】A BC D EF (图1) (第25题图) A B C D E F (图2)25.(本题满分14分)如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=︒,点C 是射线OP 上的一个动点. (1)如图11①,当90ACB ∠=︒,2OC =,求a 的值;(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.【 答案请加QQ 群712018203见Word 教师版】A BCPOABCPO图11①图11②25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =4,26AB CD ==,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G . (1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求△DFG 的面积;(用含m 的代数式表示) (3)当AFD ∆∽ADG ∆时,求∠DAG 的余弦值.【答案请加QQ 群712018203见Word 教师版】图11ABC D F E G 备用图ABC D25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E . (1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD ,且CE =2,ED =3,求线段PD 的长.【答案请加QQ 群712018203见Word 教师版】(备用图2)ABCD(备用图1)ABCD(第25题图)ABPC D E25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项. (1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长; (3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.【答案请加QQ 群712018203见Word 教师版】A备用图BD CA 图8B M E DC N A 备用图 BD C ME N A 图9 B D C25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.【答案请加QQ 群712018203见Word 教师版】NHG FEDC AB (第25题图)图11ABCPQM25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图11,在ABC ∆中,6AB =,9AC =,tan 22ABC ∠=.过点B 作BM //AC ,动点P 在射线BM 上(点P 不与点B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠. (1)求ABC ∆的面积;(2)设BP x =,AQ y =,求y 关于x 的函数解析式,并写出x 的取值范围; (3)联结PC ,如果PQC ∆是直角三角形,求BP 的长.【 答案请加QQ 群712018203见Word 教师版】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图10,已知:梯形ABCD 中,∠ABC =90°,∠A =45°,AB ∥DC ,DC =3,AB =5,点 P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若13AP ,求DE 的长; (2)联结CP ,若CP=EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值;若不相似,请说明理由.【答案请加QQ 群712018203见Word 教师版】备用图A BCD PEABCDF(图10)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部, 且︒=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠. (1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.【答案请加QQ 群712018203见Word 教师版】第25题图如图2BF EC N DA MB FC E N AD M如图1备用图BC NAM25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r . (1)求证:四边形ACDF 是矩形.(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).(3)设()900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).【答案请加QQ 群712018203见Word 教师版】A B C D EF G O HM第25题图第25题备用图 ABCD E FO25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD // BC ,AB = CD ,AD = 5,BC = 15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF // BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE = x ,AGy DG=.(1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEF ABCDS S =四边形四边形,求线段CE 的长.【 答案请加QQ 群712018203见Word 教师版】ABCDEFG(第25题图)ABCD(备用图)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =10,点E 为边AD 上一点,将△ABE 沿BE 翻折,点A 落在对角线BD 上的点G 处,联结EG 并延长交射线BC 于点F . (1)如果cos ∠DBC =23,求EF 的长;(2)当点F 在边BC 上时,联结AG ,设AD=x ,ABG BEFS y S ∆∆= ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CG ,如果△FCG 是等腰三角形,求AD 的长.【 答案请加QQ 群712018203见Word 教师版】第25题备用图 AB C 第25题图 E A B C F D G。
上海市2019届初三数学一模填空选择题汇编——二次函数(word版含答案)

2019 届一模填空选择题汇编——二次函数(一)选择题【 2019 届一模徐汇】2.将抛物线yx2先向右平移1 个单位长度,再向上平移 2 个单位长度后的表达式是2 2 2 2A.yx 1 +2 ; B.y x 1 +2 ; C.y x 1 -2 ;D .y x 1 -2 .【A】【 2019 届一模徐汇】6.已知抛物线 y ax2bx c 上部分点的横坐标x 与纵坐标 y 的对应值如下表:x ⋯ 1 0 1 2 3⋯y ⋯ 3 0 1 m 3⋯①抛物线开口向下;②抛物线的对称轴为直线x 1;③ m 的值为 0;④图像不经过第三象限.上述结论中正确的是..A.①④;B.②④;C.③④;D.②③.【C】【 2019 届一模浦东】3. 已知二次函数y ( x 3)2,那么这个二次函数的图像有()(A)最高点( 3,0);(B)最高点(﹣ 3,0);( C)最低点( 3,0);(D )最低点(﹣ 3,0).【B】【 2019 届一模浦东】4. 如果将抛物线y x24x 1 平移,使它与抛物线y x2 1 重合,那么平移的方式可以是()1(A)向左平移 2 个单位,向上平移 4 个单位;(B)向左平移 2 个单位,向下平移 4 个单位;(C)向右平移 2 个单位,向上平移 4 个单位;(D )向右平移2 个单位,向下平移 4 个单位;【C】【 2019 届一模杨浦】5.如果二次函数中函数值y 与自变量 x 之间的部分对应值如下表所示:x... 1 12 ...0 12 2y... 3 213 ...3 64 4那么这个二次函数的图像的对称轴是直线( A) x 0 ;( B) x 1 ;(C) x 3 ;( D) x 1.2 4【D 】【 2019 届一模普陀】1.已知二次函数y (a 1)x2 3 的图像有最高点,那么 a 的取值范围是(▲)(A) a 0 ;( B) a 0 ;(C) a 1 ;( D) a 1 .【D 】【 2019 届一模普陀】2.下列二次函数中,如果图像能与y 轴交于点 A 0,1 ,那么这个函数是(▲)2(A) y 3x2;( B) y 3x21;(C) y 3( x 1)2;( D) y 3x2x .【B】【 2019 届一模奉贤】2.关于二次函数y = 1 ( x+ 1)2的图像,下列说法正确的是(▲)2(A)开口向下;( B)经过原点;( C)对称轴右侧的部分是下降的;( D)顶点坐标是(- 1,0).【D 】【 2019 届一模奉贤】5.某同学在利用描点法画二次函数y = ax 2 + bx + c (a ? 0) 的图像时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:x ⋯0 1 2 3 4 ⋯y ⋯- 3 0 - 1 0 3 ⋯接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是(▲)ììììx = 0 ? x = 2 ? x = 3 x = 4? ?? ? ? ?.( A)í;( B)í;( C)í;( D)í?3 ?1? ??y = - ?y = - ? y = 0?y = 3 【A】3【 2019 届一模松江】2.把抛物线 y x2向右平移 1 个单位后得到的抛物线是()( A) y x21;( B) y x 21;(C) y (x 1) 2;( D) y ( x 1)2.【D 】【 2019 届一模嘉定】1.下列函数中,是二次函数的是( ▲ )( A) y 2x 1;(B)( C) y 1 x2;(D )y ( x1) 2x2;y1.x2【C】【 2019 届一模嘉定】2.已知抛物线 y x 23向左平移 2 个单位,那么平移后的抛物线表达式是( ▲ )( A) y ( x 2) 2 3 ;(B)( C) y x 21;(D )【A】y (x 2) 2 3 ;y x25.【 2019 届一模青浦】2bx c 的图像如图所示,那么下列结论中正确的是(y6.已知二次函数y ax )x= 1 A. ac 0 ;B. b 0 ;C. a c 0; D . a +b c=0 .O 1x(第 6 题图)【D 】4【 2019 届一模静安】2.下列抛物线中,顶点坐标为(2,1 ) 的是( A) y (x 2)21;( B )( C) y (x 2)21;( D )【B】y (x 2) 21;y(x 2)21.【 2019 届一模宝山】3.已知二次函数的图像经过点(1, -2),那么的值为(▲)( A);( B);( C);( D).【D 】【 2019 届一模长宁】1.抛物线 y 2( x2)23的顶点坐标是(▲ )( A)(2, 3) ;(B)(2, 3) ;(C)( 2,3) ;(D) (2,3) .【B】【 2019 届一模金山】1.下列函数是二次函数的是(▲ )y x y 1 2y1A.B.xC.y x 2 x D.x2【C 】【2019 届一模金山】5.已知抛物线y ax 2bx c a 0 如图所示,那么 a 、 b 、 c 的取值范围是(▲)5A. a 0 、 b 0 、 c 0 B. a 0 、 b 0 、 c 0y C. a 0 、 b 0 、 c 0 D . a 0 、 b 0 、 c 0xO第5题图【D 】【2019 届一模闵行】3.将二次函数y 2(x 2) 2 的图像向左平移1 个单位,再向下平移3 个单位后所得图像的函数解析式为( A) y 2( x 2) 2 4 ;( B) y 2( x1) 2 3 ;( C) y 2( x 1) 23;( D) y 2x2 3 .【C】【 2019 届一模闵行】4.已知二次函数 y a x2 b x c 的图像如图所示,那么根据图像,6WORD格式yO x(第 4 题图)下列判断中不正确的是7( A) a < 0 ;( B) b > 0;( C)c > 0 ;( D) abc > 0.【B】【 2019 届一模虹口】1.抛物线 y x21与 y 轴交点的坐标是A.(- 1, 0);B.( 1,0);C.(0, - 1); D. ( 0,1).【C】【 2019 届一模虹口】2.如果抛物线y ( a 2) x2开口向下,那么a 的取值范围为A. a 2 ;B. a 2 ;C. a 2 ; D. a 2 .【D 】(二)填空题【 2019 届一模徐汇】2 , y1)、B (3 , y2)是抛物线 y x1210.已知 A( c 上两点,则 y1▲y2(填“ >”“ =”或“ <”).【】8【 2019 届一模浦东】8. 如果 y (k 3) x2k( x 3) 是二次函数,那么k 需满足的条件是__________.【 k 3】【 2019 届一模浦东】13. 如果抛物线经过点 A( 2,5)和点 B( 4 ,5),那么这条抛物线的对称轴是直线__________.【x 1 】【2019 届一模浦东】14. 已知点 A(5 ,m)、B( 3 , n)都在二次函数y 1 x2 5 的图像上,那么 m、 n 的大2小关系是: m__________ n.(填“>”、“=”或“<”)【】【 2019 届一模杨浦】12.如果开口向下的抛物线y = ax 2 + 5x + 4 - a 2 ( a ? 0) 过原点,那么 a 的值是▲.【- 2】【2019 届一模杨浦】13.如果抛物线y = - 2x2 + bx + c 的对称轴在y 轴的左侧,那么 b ▲0(填入“ <”或“ >”) .【<】【2019 届一模杨浦】14.已知点 A( x1 , y1)、B( x2 , y2)在抛物线y = x2 + 2 x + m 上,如果 0 < x1 < x2,那么 y1▲y2(填入“ <”或“ >”) .【<】9【 2019 届一模普陀】 9.如果抛物线 y2 x 2xm 1 经过原点,那么 m 的值等于 ▲ .【1】【2019 届一模普陀】1 2 先向右平移 2 个单位, 再向上平移 3 个单位, 那么平移后 .将抛物线 y( x 3 ) 4 102所得新抛物线的表达式是 ▲. 【 1 2 】y( x )1 2 1【 2019 届一模普陀】 11.已知抛物线 y2x 2bx 1 的对称轴是直线 x 1 ,那么 b 的值等于 ▲ .【 4 】【 2019 届一模普陀】17.已知二次函数 y ax 2c( a 0) 的图像上有纵坐标分别为 y 1 、 y 2 的两点 A 、 B ,如果点 A 、 B 到对称轴的距离分别等于 2、3,那么 y 1 ▲ y 2 .(填“ <”、“=”或“ >”)【<】【 2019 届一模奉贤】9.如果函数 y = (m - 1)x 2+ x ( m 是常数)是二次函数,那么 m 的取值范围是 ▲ .【 m 1】【2019 届一模奉贤】10.如果一个二次函数的图像在其对称轴左侧部分是上升的, 那么这个二次函数的解析式可以是 ▲ .(只需写一个即可)【 y 2x2(等)】10【 2019 届一模奉贤】11.如果将抛物线y = - 2x2向右平移 3 个单位,那么所得到的新抛物线的对称轴是直线▲.【x 3 】【2019 届一模松江】11.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.【 y x2等】【 2019 届一模松江】12.如果点A 4, y、B 3, y2是二次函数y2x2 +k ( k 是常数)图像上的两点,那1么y1 _______ y2.(填“ >”、“ <”或“ =”)【】【2019 届一模嘉定】7.如果抛物线 y (k 2) x2k 的开口向上,那么 k 的取值范围是▲.【 k 2 】【 2019 届一模嘉定】8.抛物线 y x 22x 与 y 轴的交点坐标是▲.【 (0,0) 】【 2019 届一模嘉定】9.二次函数 y x 24x a 图像上的最低点的横坐标为▲.【 2 】11【 2019 届一模青浦】10.二次函数y x24x 1 的图像的顶点坐标是▲ .【( 2, - 5)】【 2019 届一模青浦】11.抛物线y x 2mx 3m的对称轴是直线x 1 ,那么 m= ▲.【2 】【2019 届一模青浦】12.抛物线y x2 2 在 y 轴右侧的部分是▲.(填“上升”或“下降”)【上升】【 2019 届一模静安】13.抛物线 y ax 2(a 1) ( a 0) 经过原点,那么该抛物线在对称轴左侧的部分是▲的. (填“上升”或“下降”)【下降】【 2019届一模宝山】21图像的顶点坐标是▲ .7.二次函数 y x【( 0,- 1)】【 2019届一模宝山】8.将二次函数y2x2的图像向右平移 3 个单位,所得图像的对称轴为▲.【直线 x=3】12【 2019 届一模宝山】9.请写出一个开口向下,且经过点(0,2)的二次函数解析式▲.【y = - x 2+ 2等】【2019 届一模长宁】8.如果抛物线 y (3 m) x2 3 有最高点,那么m 的取值范围是▲.【 m 3 】【 2019届一模长宁】13.若点 A( 1,7) 、B(5,7) 、 C (2, 3) 、 D(k,3) 在同一条抛物线上,则 k 的值等于▲.【 6】【 2019届一模金山】7.已知二次函数 fx x23x 1 ,那么 f2 ▲.【 1】【 2019届一模金山】8.已知抛物线y 1 x2 1 ,那么抛物线在 y 轴右侧部分是▲(填“上升的”或2“下降的”).【上升的】【 2019 届一模闵行】9.抛物线 y x2 3 x 2 与 y 轴的公共点的坐标是▲.【( 0, 2)】13【 2019 届一模闵行】10.已知二次函数 y 1 x 23 ,如果 x > 0,那么函数值 y 随着自变量 x 的增大而2▲(填“增大”或“减小” ).【减小 】【 2019 届一模虹口】9.如果抛物线 y ax 22 经过点( 1, 0),那么 a 的值为 ▲ . 【- 2】【 2019 届一模虹口】10.如果抛物线y (m 1)x 2 有最低点,那么 m 的取值范围为 ▲ .【m>1】【 2019 届一模虹口】11.如果抛物线 y ( x m) 2m 1的对称轴是直线 x= 1,那么它的顶点坐标为▲.【( 1, 2)】14。
上海市金山区2019-2020学年中考一诊数学试题含解析

上海市金山区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=()A.15 B.13 C.12 D.52.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b23.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>04.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,155.下列各数中,为无理数的是()A38B4C.13D26.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵7.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a 8.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个9.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-310.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣311.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是_____.14.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.15.分解因式:2m2-8=_______________.16.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.17.函数y=2中,自变量x的取值范围是18.因式分解:x2﹣4= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?20.(6分)(5分)计算:.21.(6分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12;(2)解方程:x(x﹣4)=2x﹣822.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线;(3)若CF=4,求图中阴影部分的面积.23.(8分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.24.(10分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。
2019上海版九年级数学一模练习

2019九年级数学一模练习一、选择题:1.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果2AD =,3BD =,那么由下列 条件能够判定DE ∥BC 的是( ) (A )23DE BC =; (B )25DE BC =; (C )23AE AC =; (D )25AE AC =. 2.下列说法正确的是( )(A )平分弦的直径垂直于弦; (B )在同圆中,相等的弦所对的弧相等; (C )和半径垂直的直线是圆的切线;(D )弦的垂直平分线经过圆心.3. 抛物线2y x bx c =-++上部分点的横坐标x 和纵坐标y 的对应值如下表:从上表可至,下列说法中正确的是( )(A )抛物线和x 轴的一个交点的坐标是(3,0) ; (B )与y 轴的交在负半轴 ; (C )抛物线的开口向上;(D )抛物线在对称轴右侧部分是上升的. 4.既是轴对称图形又是中心对称图形的是( )(A )等边三角形; (B )平行四边形; (C )正五边形; (D )正八边形. 5.如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的 取值范围是( )(A )14r <<; (B )24r <<;(C )18r <<; (D )28r <<.6.如果二次函数c bx ax y ++=2的图像如图所示,那么下列判断中,正确的是 ( ) (A )0<a ; (B )0<c ; (C )0<++c b a ; (D )0<+-c b a . 二、填空题(本大题共12题,满分48分)7.抛物线2y ax =有最高点,则a 的取值范围是 .8.已知二次函数4)2(2+--=x y ,当2x <时,若y 随着x 的增大而 (填增大、不变或减少).9.若24a x b -=,则x = .(用a 、b 表示) 10.如果正六边形边心距为2,那么半径的长是 .A BCD E BA CDE11.在△ABC 中,90=∠C ,10AB =,6BC = ,则cos A 的值是 . 12.如果一个等边三角形的边长为4,那么半径等于 .13.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =,那么向量AC 用向量a 、b 表示为 .14.如图,在ABC ∆中, BC DE //,4AD =,6BD =,3DE =,那么BC = .15.已知ABC ∆∽'''C B A ∆,ABC ∆、'''C B A ∆的面积分别为5和20,那么=''BA AB. 16.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平 距离AD 为90米,那么该建筑物的高度BC 约为 米 (精确到11.73≈)17.已知等腰ABC ∆的腰与底边的长分别为5、6,AD 是底边上的高,圆A 的半径为3,圆A与圆D 内切,那么圆D 的半径是 .18. 如图,梯形ABCD 中,//AD BC ,∠B=90°,AD =2,BC =5,E 是AB 上一点,将BCE ∆沿着直线CE 翻折,点B 恰好与D 点重合则BE =________ .三、解答题(本大题共7题,满分78分) 19.(本大题共10分)计算:2sin30cot 6045︒⋅︒+︒-.O ABCDEF20.(满分10分)如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,DE BC ∥,12AD BD =,AE a =,CD b =.(1)请用a 、b 来表示BC 和DE ;(直接写结果)(2)在原图中求作向量DE 在a 、b 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.(满分10分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,CD ⊥AB ,垂足为点D ,F 是弧AC 的中点,OF 与AC 相交于点E ,AC =8 cm ,2EF =cm . (1)求AO 的长; (2)求sin C 的值.AECBD22.(本题共2小题,其中第(1)小题各5分,第(2)小题5分,满分10分)如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =,DE AB ⊥,垂足为点E ,联结CE , 求:(1)线段BE 的长;(2)ECB ∠的余切值.23.(本题共2小题,其中第(1)小题4分,第(2)小题各8分,满分12分)如图,在四边形ABCD 中,AB //CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,联结CF 交线段BE 于点G ,2CG GE GD =⋅. (1)求证:∠ACF =∠ABD ;(2)联结EF ,求证:EF CG EG CB ⋅=⋅.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B ,且顶点为C .(1)求这个二次函数的解析式; (2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下方的一点,且∆ABP 的面积为10,求点P 的坐标.25.(本题共3小题,其中第(1)小题各4分,第(2)、(3)小题各5分,满分14分) 如图,在梯形ABCD 中,AD // BC ,∠B = 90°,AB = 4,BC = 9,AD = 6.点E 、F 分别在边AD 、BC 上,且BF = 2DE ,联结FE .FE 的延长线与CD 的延长线相交于点P .设 DE = x ,PEy EF. (1)求y 关于x 的函数解析式,并写出函数的定义域;(2)当以ED 为半径的⊙E 与以FB 为半径的⊙F 外切时,求x 的值; (3)当△AEF ∽△PED 时,求x 的值.ABC DEFPABCD(备用图)。
上海市金山区2019-2020学年中考数学一模试卷含解析

上海市金山区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④2.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数kyx(k≠0)的图象经过点C.则下列结论不正确的是()A.□OACB的面积为12B.若y<3,则x>5C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.3.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是()A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=44.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)5.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6aD .3a ﹣a =36.已知二次函数y=(x+m )2–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y=mnx的图象可能是( )A .B .C .D .7.把a•1a-的根号外的a 移到根号内得( ) A .aB .﹣aC .﹣a -D .a -8.如图所示,点E 是正方形ABCD 内一点,把△BEC 绕点C 旋转至△DFC 位置,则∠EFC 的度数是( )A .90°B .30°C .45°D .60°916 ) A .±4B .4C .2D .±210.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是( )A .50和48B .50和47C .48和48D .48和4311.如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .812.如图直线y =mx 与双曲线y=kx交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.) 13364-______________.14.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____. 15.等腰ABC ∆中,AD 是BC 边上的高,且12AD BC =,则等腰ABC ∆底角的度数为__________. 16.化简:21211x x +=+-_____________. 17.分解因式:34x x -=______.18.在矩形ABCD 中,AB=4,BC=9,点E 是AD 边上一动点,将边AB 沿BE 折叠,点A 的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE 的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”思想求方程23x x +=的解;应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.20.(6分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,过点D 作⊙O 的切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AB =25,DE =10,弧DC 的长为a ,求DE 、EC 和弧DC 围成的部分的面积S .(用含字母a 的式子表示).21.(6分)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5 km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)22.(8分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.23.(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).24.(10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?25.(10分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表x ﹣1 1 1 3y ﹣1 3 5 3下列结论:①ac<1;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=1的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>1.其中正确的结论是.26.(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.27.(12分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据正方形的判定定理即可得到结论.【详解】与左边图形拼成一个正方形, 正确的选择为③, 故选C . 【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键. 2.B 【解析】 【分析】先根据平行四边形的性质得到点C 的坐标,再代入反比例函数ky x=(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断. 【详解】解:Q A(4,0),B (1,3),4BC OA ==,∴ ()5,3C , Q 反比例函数ky x=(k≠0)的图象经过点C , ∴5315k =⨯=, ∴反比例函数解析式为15y x=. □OACB 的面积为4312b OA y ⨯=⨯=,正确; 当0y <时,0x <,故错误;将□OACB 向上平移12个单位长度,点B 的坐标变为()1,15,在反比例函数图象上,故正确; 因为反比例函数的图象关于原点中心对称,故将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上,正确. 故选:B. 【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键. 3.D 【解析】解:由对称轴x=2可知:b=﹣4, ∴抛物线y=x 2﹣4x+c ,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.4.B【解析】【分析】作出图形,结合图形进行分析可得.【详解】如图所示:①以AC为对角线,可以画出▱AFCB,F(-3,1);②以AB 为对角线,可以画出▱ACBE ,E (1,-1); ③以BC 为对角线,可以画出▱ACDB ,D (3,1), 故选B. 5.A 【解析】 【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解. 【详解】A .(a 2)3=a 2×3=a 6,故本选项正确;B .a 2+a 2=2a 2,故本选项错误;C .(3a )•(2a )2=(3a )•(4a 2)=12a 1+2=12a 3,故本选项错误;D .3a ﹣a=2a ,故本选项错误. 故选A . 【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键. 6.C 【解析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y=mx+n 的图象经过第一、二、四象限,反比例函数mny x=的图象在第二、四象限. 故选D. 7.C 【解析】 【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a )【详解】 解:∵﹣1a>0, ∴a <0,∴原式=﹣(﹣a)=.故选C.【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.8.C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边∆为等腰直角三角形.相等,故CEF9.B【解析】【分析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.10.A【解析】【分析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A.【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.11.B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.12.B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=12|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】解:364-=-1.故答案为:-1.14.5 6【解析】【分析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【详解】如图:共有12种情况,在第三象限的情况数有2种,故不再第三象限的共10种,不在第三象限的概率为105= 126,故答案为56.【点睛】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.15.75︒,45︒,15︒【解析】【分析】分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【详解】①如图,若点A是顶角顶点时,∵AB=AC ,AD ⊥BC ,∴BD=CD ,∵12AD BC =, ∴AD=BD=CD ,在Rt △ABD 中,∠B=∠BAD= ()118090=452︒︒︒﹣; ②如图,若点A 是底角顶点,且AD 在△ABC 外部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠ACD=30°,∴∠BAC=∠ABC=12×30°=15°; ③如图,若点A 是底角顶点,且AD 在△ABC 内部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠C=30°,∴∠BAC=∠ABC=12(180°-30°)=75°; 综上所述,△ABC 底角的度数为45°或15°或75°;故答案为75︒,45︒,15︒.【点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.16.11x - 【解析】【分析】根据分式的运算法则即可求解.【详解】原式=1211(1)(1)(1)(1)(1)(1)1x x x x x x x x x -++==+-+-+--. 故答案为:11x -. 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.17.x (x+2)(x ﹣2).【解析】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.18.7或5【解析】【分析】由BA G A EF ∠='∠',BGA EFA ∠=∠'',得EA F A BG ∆~'∆',所以EF A F A G BG =''.再以①13A F A G =''和②13A G A F =''两种情况分类讨论即可得出答案. 【详解】因为翻折,所以4A B AB '==,90BA E ︒∠=',过A '作A F AD '⊥,交AD 于F,交BC 于G ,根据题意,BC AD ∥,A F BC ∴'⊥.若A '点在矩形ABCD 的内部时,如图则GF=AB=4,由90EA B ︒∠='可知90EA F BA G ︒'∠+∠='.又90EA F A EF ︒''∠+∠=.BA G A EF ∴∠='∠'.又BGA EFA ∠=∠''.∴EA F A BG ∆~'∆'.∴EA F A BG ∆~'∆'. ∴EF A F A G BG=''. 若13A F A G ='' 则3A G '=,1A F '=.2222437BG A B A G '--'==则37EF =377EF ∴=. 37477AE AF EF BG EF ∴=-=-==. 若13A G A F ='' 则1A G '=,3A F '=.22224115BG A B A G =-'-='=则115EF = .5EF ∴=.AE AF EF BG EF ∴=-=-==. 【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)-2,1;(2)x=3;(3)4m.【解析】【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=,()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(2x =,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-11==≠-,所以1-不是原方程的解.x =的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,BP =CP∴ 10=∴ 10=两边平方,得()22891009x x -+=-+整理,得49x =+两边平方并整理,得28160x x -+=即()240x -=所以4x =.经检验,4x =是方程的解.答:AP 的长为4m .【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.20.(1)见解析;(2)75﹣154a. 【解析】【分析】(1)连接CD ,求出∠ADC=90°,根据切线长定理求出DE=EC ,即可求出答案;(2)连接CD 、OD 、OE ,求出扇形DOC 的面积,分别求出△ODE 和△OCE 的面积,即可求出答案【详解】(1)证明:连接DC ,∵BC是⊙O直径,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC为直径,∴AC切⊙O于C,∵过点D作⊙O的切线DE交AC于点E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:连接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的长度是a,∴扇形DOC 的面积是×a×=a ,∴DE 、EC 和弧DC 围成的部分的面积S=××10+×10﹣a=75﹣a . 【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.21.35km【解析】试题分析:如图作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,可得AH=3737CH x tan tan =︒︒,在Rt △CEH 中,可得CH=EH=x ,由CH ∥BD ,推出AH AC HD CB =,由AC=CB ,推出AH=HD ,可得37x tan ︒=x+5,求出x 即可解决问题.试题解析:如图,作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,∠A=37°,∵tan37°=CH AH , ∴AH=3737CH x tan tan =︒︒, 在Rt △CEH 中,∵∠CEH=45°,∴CH=EH=x ,∵CH ⊥AD ,BD ⊥AD ,∴CH ∥BD ,∴AH AC HD CB=, ∵AC=CB ,∴AH=HD ,∴37x tan ︒=x+5, ∴x=5?37137tan tan ︒-︒≈15, ∴AE=AH+HE=1537tan ︒+15≈35km , ∴E 处距离港口A 有35km .22.答案见解析【解析】【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.【详解】解:∵E是AC的中点,∴AE=CE.在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.23.CD的长度为17cm.【解析】【分析】在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案. 【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=BE EC,∴BE=ECtan30°(cm);∴CF=AE=34+BE=(cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣﹣17,答:CD的长度为17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.24.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.25.①③④.【解析】试题分析:∵x=﹣1时y=﹣1,x=1时,y=3,x=1时,y=5,∴a-b1 {35cca b c+=-=++=,解得a1{33ca=-==,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正确;对称轴为直线332(1)2x=-=⨯-,所以,当x>32时,y的值随x值的增大而减小,故②错误;方程为﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一个根,正确,故③正确;﹣1<x<3时,ax2+(b﹣1)x+c>1正确,故④正确;综上所述,结论正确的是①③④.故答案为①③④.【考点】二次函数的性质.26.(1)4yx=;(2)点P的坐标是(0,4)或(0,-4).【解析】【分析】(1)求出OA=BC=2,将y=2代入1y x32=-+求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2.将y=2代入1y x 32=-+3得:x=2,∴M (2,2).把M 的坐标代入ky x =得:k=4,∴反比例函数的解析式是4y x =;(2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形.∵△OPM 的面积与四边形BMON 的面积相等,∴1OP AM 42⋅⋅=.∵AM=2,∴OP=4.∴点P 的坐标是(0,4)或(0,-4).27.(1)证明见解析;(2).【解析】试题分析:连接OD.根据圆周角定理得到∠ADO +∠ODB =90°,而∠CDA =∠CBD ,∠CBD =∠BDO.于是∠ADO +∠CDA =90°,可以证明是切线. 根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.试题解析:(1)连接OD.∵OB =OD ,∴∠OBD =∠BDO.∵∠CDA =∠CBD ,∴∠CDA =∠ODB.又∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°,∴∠ADO +∠CDA =90°,即∠CDO =90°,∴OD ⊥CD.∵OD是⊙O的半径,∴CD是⊙O的切线;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,BC=6,∴CD=4.∵CE,BE是⊙O的切线,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018学年第一学期初三期末质量检测
数学试卷
(满分150分,考试时间100分钟)(2019.1)
考生注意:
1.本试卷含三个大题,共25题;
2.务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列函数是二次函数的是( ▲ ) A .x y = B .x y 1=
C .2
2x x y +-= D .21x
y = 2.在ABC Rt ∆中,o
90=∠C ,那么B ∠sin 等于( ▲ ) A .
AB AC B .AB BC C .BC AC D .AC
BC
3.如图,已知BD 与CE 相交于点A ,BC ED //,8=AB ,12=AC ,6=AD ,那么AE 的长等于( ▲ )
A .4
B .9
C .12
D .16
4.已知是一个单位向量,、是非零向量,那么下列等式正确的是( ▲ ) A
= B
= C
= D
=
5.已知抛物线()02
≠++=a c bx ax y 如图所示,那么a 、b 、c 的取值范围是( ▲ )
A .0<a 、0>b 、0>c
B .0<a 、0<b 、0>c
C .0<a 、0>b 、0<c
D .0<a 、0<b 、0<c
第3题图
A B
C
D
E
A
B
C
第6题图
6.如图,在ABC Rt ∆中,o 90=∠C ,2=BC ,
60=∠B ,⊙A 的半径为3,那么下列说法正确的是( ▲ )
A .点
B 、点
C 都在⊙A 内 B .点C 在⊙A 内,点B 在⊙A 外 C .点B 在⊙A 内,点C 在⊙A 外
D .点B 、点C 都在⊙A 外 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】
7.已知二次函数()132
+-=x x x f ,那么()=2f ▲ .
8.已知抛物线12
12
-=x y ,
那么抛物线在y 轴右侧部分是 ▲ (填“上升的”或“下降的”). 9.已知
25=y x ,那么=+y
y x ▲ . 10.已知α是锐角,2
1
sin =
α,那么=αcos ▲ . 11.一个正n 边形的中心角等于
18,那么=n ▲ .
12.已知点P 是线段AB 上的黄金分割点,BP AP >,4=AB ,那么=AP ▲ . 13.如图,为了测量铁塔AB 的高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为
30,那么铁塔的高度=AB ▲ 米.
14.已知⊙1O 、⊙2O 的半径分别为2和5,圆心距为d ,若⊙1O 与⊙2O 相交,那么d 的取值范围是 ▲ .
15.如图,已知O 为ABC ∆内一点,点D 、E 分别在边AB 和AC 上,且5
2
=AB AD ,BC DE //,设b OB =、c OC =,那么=DE ▲ (用b 、c 表示).
16.如图,已知⊙1O 与⊙2O 相交于A 、B 两点,延长连心线21O O 交⊙2O 于点P ,联结PA 、PB ,若
60=∠APB ,6=AP ,那么⊙2O 的半径等于 ▲ .
17.如图,在ABC ∆中,AD 、BE 分别是边BC 、AC 上的中线,5==AC AB ,5
4
cos =∠C ,那么=GE ▲ . A
B
C
第13题图 B
A C D
E
O
第15题
图
第20题图
18.如图,在ABC Rt ∆中,o
90=∠C ,8=AC ,6=BC .在边AB 上取一点O ,使BC BO =,以点O 为旋转中心,把ABC ∆逆时针旋转
90,得到C B A '''∆(点A 、B 、C 的对应点分别是点A '、B '、C '),那么ABC ∆与C B A '''∆的重叠部分的面积是 ▲ .
三、解答题(19—22题,每题10分,23—24每题12分,25题14分,共78分)
19.计算:
30sin 45cot 60ta 60
sin 230cot 45cos 22
⋅-+-n . 20.已知二次函数542
--=x x y ,与y 轴的交点为P ,与x 轴交于A 、B 两点.(点B 在点A 的
右侧)
(1)当0=y 时,求x 的值.
(2)点()m M ,6在二次函数542
--=x x y 的图像上,设直
线MP 与x 轴交于点C ,求MCB ∠cot 的值.
21.如图,已知某水库大坝的横断面是梯形ABCD ,坝顶宽AD 是6米,坝高24米,背水坡AB 的坡度为1:3,迎水坡CD 的坡度为1
:2. 求(1)背水坡AB 的长度. (2)坝底BC 的长度.
22.如图,已知
AB 是⊙O 的直径,C 为圆上一点,D 是BC ⌒的中点,AB CH ⊥于H ,垂足为H ,联结OD 交弦BC 于E ,交CH 于F ,联结EH . (1)求证:BHE ∆∽BCO ∆.
(2)若4=OC ,1=BH ,求EH 的长.
P
第16题
第21题图
A
B
C
D
1:3
1:2
G A B
C
D E
第17题
C
第18题
E B
A
O
C F H
D
23.如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延
长线交于点H .
(1)求证:MH MF AM ⋅=2.
(2)若DM BD BC ⋅=2
,求证:ADC AMB ∠=∠.
24.已知抛物线c bx x y ++=2
经过点()6,0A ,点()3,1B ,直线1l :
()0≠=k kx y ,直线2l :2--=x y ,直线1l 经过抛物线c bx x y ++=2的顶点P ,且1l 与2l 相交于点C ,直线2l 与x 轴、
y 轴分别交于点D 、E .若把抛物线上下平移,使抛物线的顶点在
直线2l 上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线1l 上(此时抛物线的顶点记为N ). (1)求抛物线c bx x y ++=2
的解析式.
(2)判断以点N 为圆心,半径长为4的圆与直线2l 的位置关系,并说明理由.
(3)设点F 、H 在直线1l 上(点H 在点F 的下方),当MHF ∆与OAB ∆相似时,求点F 、H 的坐标(直接写出结果).
25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r .
(1)求证:四边形ACDF 是矩形.
(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).
(3)设(
)
900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三
角比的式子表示).
第24题
第25题备用图 A B
C
D H
F M
第23题。