2015年金山区初三数学一模卷

合集下载

上海市金山区2015年中考一模(即期末)_物理试题及答案

上海市金山区2015年中考一模(即期末)_物理试题及答案

23.在电路中,标有“220V 1100W”字样的用电器正常工作。求: (1)通过该用电器的电流 I; (2)20 秒内电流对该用电器做的功 W。
初三物理 第 3 页 共 6 页
图 10
L2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2015年上海市浦东新区中考数学一模试卷

2015年上海市浦东新区中考数学一模试卷

2015年上海市浦东新区中考数学一模试卷一.选择题(本大题满分4×6=24分)1.(4分)如果把Rt△ABC的三边长度都扩大2倍,那么锐角A的四个三角比的值()A.都扩大到原来的2倍B.都缩小到原来的C.都没有变化D.都不能确定2.(4分)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣23.(4分)一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米 B.3米 C.5米 D.6米4.(4分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2 B.4 C.D.5.(4分)已知在△ABC中,AB=AC=m,∠B=α,那么边BC的长等于()A.2m•sinα B.2m•cosαC.2m•tanαD.2m•cotα6.(4分)如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD 相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二.填空题(本大题满分4×12=48分)7.(4分)已知=,那么=.8.(4分)计算:=.9.(4分)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.10.(4分)二次函数y=﹣2x2﹣5x+3的图象与y轴的交点坐标为.11.(4分)在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=.12.(4分)如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.13.(4分)如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.14.(4分)已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.15.(4分)如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC=米.(可以用根号表示)16.(4分)已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.17.(4分)已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB 与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH=米.18.(4分)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.(10分)已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.20.(10分)如图,已知在△ABC中,AD是边BC上的中线,设=,=;(1)求(用向量,的式子表示);(2)如果点E在中线AD上,求作在,方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量).21.(10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)22.(10分)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:===…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=.23.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.24.(12分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m 的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.25.(14分)已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.2015年上海市浦东新区中考数学一模试卷参考答案一.选择题(本大题满分4×6=24分)1.C;2.A;3.D;4.C;5.B;6.B;二.填空题(本大题满分4×12=48分)7.;8.;9.6;10.(0,3);11.4;12.;13.a<﹣3;14.9cm2;15.;16.(﹣3,3);17.;18.(﹣,0);三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.;20.;21.;22.=sin60°;cos30°;tan45°•sin60°;(sin30°+cos60°)•tan45°÷cot45°;23.;24.;25.;。

初三数学一模考解读2015.12(定稿)

初三数学一模考解读2015.12(定稿)

C'
D
A
C
第 18 题图
D'
D
A
图5
B
12
11.重心定理: 【例题 1】如图,△ABC 中,∠BAC=90°,点 G 是△ABC 的重心, 如果 AG=4,那么 BC 的长为 . 【例题 2】已知点 G 是面积为 27cm 的△ABC 的重心, 那么△AGC 的面积等于 cm . G · A
2 2
1 2 x 共有的性质是( ) 2
B.对称轴是 y 轴; D. y 的值随 x 的值的增大而减小.
7
6. 二次函数的运动(平移) 2 【例题 1】将抛物线 y=-2x 向右平移 1 个单位,再向上平移 2 个单位后,抛物线的表达式 为( ) 2 2 2 2 A.y =-2(x-1) +2; B.y =-2(x-1) -2;C.y =-2(x+1) +2 ;D.y =-2(x+1) - 2
2
A
D
DC AB D. . AC BC
B
C
【例题 2】在△ABC 中,点 D、E 分别在边 AB、AC 上,如果 AD=2,BD=3,那么由下列条件能 够判定 DE//BC 的是( ) A)
DE 2 ; BC 3
B)
DE 2 ; BC 5
B)
C)
AE 2 ; AC 3
D)
【例题 3】如图,DE//BC, EF//AB,则下列比例式中,不成立的是(
15
14.圆的相关性质(多在选择题) 【例题 1】如果在两个圆 中有两条相等的弦,那么„„„„„„„„„„„„( ...

A.这两条弦所对的圆心角相等; B.这两条弦所对的弧相等; C.这两条弦都被与它垂直的半径平分; D.这两条弦所对的弦心距相等. 【例题 2】正多边形的中心角是 36 º,那么这个正多边形的边数是( ) (A) 10 ; (B ) 8 ; (C) ;6 (D) 5 . 【例题 3】下列说法正确的是„„„„„„„„„„„„„„„„„„„( ) (A) 相切两圆的连心线经过切点 (B) 长度相等的两条弧是等弧 (C) 平分弦的直径垂直于弦 (D) 相等的圆心角所对的弦相等 【例题 4】 半径分别为 8 cm 与 6 cm 的 O1 与 O2 相交于 A、 B 两点, 圆心距 O1O2 的长为 10 cm, 那么公共弦 AB 的长为 cm.

2015年上海市各区中考一模数学试题(全含答案)

2015年上海市各区中考一模数学试题(全含答案)

2015年上海市六区联考初三一模数学试卷(满分150分,时间100分钟) 2015.1一. 选择题(本大题满分4×6=24分)1. 如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值( ) A. 都扩大到原来的2倍; B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为( ) A. 2(1)y x =+; B. 2(3)y x =-; C. 2(1)2y x =-+; D. 2(1)2y x =--;3. 一个小球被抛出后,如果距离地面的高度h (米)和运行时间t (秒)的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是( )A. 1米;B. 3米;C. 5米;D. 6米;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于( ) A. 2; B. 4; C.245; D. 365;5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于( ) A. 2sin m α⋅; B. 2cos m α⋅; C. 2tan m α⋅; D. 2cot m α⋅;6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是( )A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅;二. 填空题(本大题满分4×12=48分) 7. 已知34x y =,那么22x yx y-=+ ;8. 计算:33()22a ab -+-= ; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于 cm 10. 二次函数2253y x x =--+的图像与y 轴的交点坐标为 ; 11. 在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC = ; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于 ;13. 如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值范围是 ; 14. 已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于 ;15. 如图,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度AC = 米(结论可保留根号)16. 已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一定经过除点(1,3)外的另一点,这点的坐标是 ;17. 已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时(如图1),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH = 米18. 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为 ;三. 解答题(本大题满分10+10+10+10+12+12+14=78分)19. 已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;(1)求抛物线的表达式; (2)求△ABC 的面积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =; (1)求AD (用向量,a b 的式子表示)(2)如果点E 在中线AD 上,求作BE 在,BA BC 方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)21. 如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D 的仰角为45°,求旗杆CD 的长度;(结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)22. 用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题: (1)用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即填空:32= = = =…; (2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:AE EGAC CG=; (2)如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅24. 已知在平面直角坐标系xOy 中,二次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-; (1)求这个二次函数的解析式;(2)将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图象顶点M 的坐标;(3)在第(2)小题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =;(1)求y 关于x 的函数解析式,并写出它的定义域; (2)当4AP =时,求EBP ∠的正切值;(3)如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;2015年上海市六区联考初三一模数学试卷参考答案一. 选择题1. C2. A3. D4. C5. B6. B 二. 填空题7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12. 5313. 3a <- 14. 9 15.26 16. (3,3)- 17.3518. (3,0)- 三. 解答题19.(1)256y x x =-+; (2)(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ∆=;20.(1)12b a -; (2)略; 21. 3.84CD m ≈22.(1)sin 60︒,cos30︒,tan 45sin60︒⋅︒; (2)(sin 30cos60)tan 45cot 45︒+︒⋅︒÷︒; 23. 略;24.(1)24y x x =-; (2)(2,4)M m -; (3)92m =; 25.(1)4y x x =-(25x <≤); (2)3tan 4EBP ∠=; (3)5373+;崇明县2014学年第一学期教学质量调研测试卷九年级数学(测试时间: 100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)1、已知52a b =,那么下列等式中,不一定正确的是………………………………( ) (A)25a b = (B)52a b = (C)7a b += (D)72a b b += 2、在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定成立的是 ……………………………………………………………………( )(A)tan b a B = (B)cos a c B = (C)sin ac A= (D)cos a b A =3、如果二次函数2y ax bx c =++的图像如图所示,那么下列判断中,不正确的是………( ) (A)0a >(B)0b >(C)0c <(D)240b ac ->4、将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………( ) (A)2(1)1y x =++ (B)2(1)1y x =+-(C)2(1)1y x =-+(D)2(1)1y x =--5、下列说法正确的是……………………………………………………( )(A) 相切两圆的连心线经过切点 (B) 长度相等的两条弧是等弧(C) 平分弦的直径垂直于弦(D) 相等的圆心角所对的弦相等6、如图,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ∆的面积三等分,那么下列结论正确的是 ………………………………………( ) (A)14DE FG = (B)1DF EGFB GC==(C)ADFB(D)AD DB =(第3题图) (第6题图)二、填空题(本大题共12题,每题4分,满分48分)7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm . 8、如果两个相似三角形的面积比为1:4,那么它们的周长比为 . 9、如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m = .ABCDE F G10、抛物线221y x =-在y 轴右侧的部分是 (填“上升”或“下降”).11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为 .12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是 . 13、某飞机的飞行高度为1500m ,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制点的距离为 m .14、已知正六边形的半径为2cm ,那么这个正六边形的边心距为 cm .15、如图,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么GH = .16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm ,那么公共弦AB 的长为 cm .17、如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为 米.18、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C落在Q 处,EQ 与BC 交于点G ,那么EBG ∆的周长是 cm .(第15题图) (第17题图) (第18题图)三、解答题(本大题共7题,满分78分)19、(本题满分10分)计算:2014cos301(cot 45)sin 60︒-+-︒+︒20、(本题满分10分,其中第(1)小题5分,第(2)小题5分)已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =. (1)用,a b 的线性组合表示FA ;(2)先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.CFEDABC ABCDFGH QE21、(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.(1)求AC 和AB 的长; (2)求sin BAD ∠的值.22、(本题满分10分,其中第(1)小题5分,第(2)小题5分)如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北偏东75︒的方向航行200海里到达了C 处. (1)求证:AC AB ⊥;(2)轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.23、(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠. (1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值. DDABCEF北AB C东24、(本题满分12分,其中每小题各4分)如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的一点,且90ABC ∠=︒. (1)求抛物线的解析式;(2)求点C 坐标;(3)直线112y x =-+上是否存在点P ,使得BCP ∆与OAB ∆相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由.25、(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)已知在ABC ∆中,5AB AC ==,6BC =,O 为边AB 上一动点(不与A 、B 重合),以O 为圆心OB 为半径的圆交BC 于点D ,设OB x =,DC y =. (1)如图1,求y 关于x 的函数关系式及定义域;(2)当⊙O 与线段AC 有且只有一个交点时,求x 的取值范围;(3)如图2,若⊙O 与边AC 交于点E (有两个交点时取靠近C 的交点),联结DE ,当DEC ∆与ABC ∆相似时,求x 的值.CADOB · · · (图1)BCA (备用图1)E CA D OB· ·· ·(图2) BCA(备用图2)2014学年徐汇区数学一模一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为( ) A. 22(1)2y x =--+; B. 22(1)2y x =---; C. 22(1)2y x =-++; D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是( )A.2BE EC =; B. 13EC AD =; C.23EF AE =; D. 23BF DF =;3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( ) A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅; D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( ) A. 第一象限; B. 第二象限; C. 第三象限; D. 第四象限; 6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=( )A. 1:24;B. 1:20;C. 1:18;D. 1:16;二. 填空题 7. 如果53a b =,那么a b a b -+的值等于 ;8. 抛物线2(1)2y x =-+的顶点坐标是 ;9. 二次函数245y x x =--的图像的对称轴是直线 ; 10. 计算:cot30sin60︒-︒= ;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是 (填12y y >,12y y =或12y y <);13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为 米(保留根号);15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ = (用向量a 、b 来表示); 16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为 ;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM = ;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN = ;三. 解答题19. 已知二次函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:A B C Dx1-0 13 y1-353(1(2)求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =; (1)设BA a =,BC b =,试用a ,b 表示BO ; (2)先化简,再求作:3(2)2()2a b a b +-+(直接作在原图中)21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长; 【已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号】22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ;(1)求证:DE ∥BC ;(2)联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ; (1)求证:2AG GE GF =⋅; (2)如果12DG GB =,且AG BF ⊥,求cos F ;24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B (A 在B 的左边),与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; (1)求抛物线1C 的对称轴和函数解析式;(2)把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;(3)在(2)的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标;25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E 是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设BE x =; (1)试用x 的代数式表示FC ; (2)设FGy EF=,求y 关于x 的函数关系式,并写出定义域; (3)当△AEG 是等腰三角形时,直接写出BE 的长;参考答案1、A2、C3、C4、D5、C6、B7、148、(1,2)9、x=210、3211、1512、12y y13、614、6515、16、1217、17 18、19、20、21、22、23、24、25、所以,BE=72014学年上海市宝山区初三一模数学试卷一. 选择题(24分)1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,AC =,下列判断正确的是( )A. 30A ∠=︒;B. 45A ∠=︒;C. cot 2A =; D. tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误的是( ) A.AD AE DB EC =; B. AD DE DB BC =; C. AD AE AB AC =; D. AD DEAB BC=;3. 如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等; 4. 已知非零向量a 、b 、c ,下列命题中是假命题的是( )A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ; 5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交; 6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D.二. 填空题(48分)7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ; 8. 两个相似三角形的相似比为2:3,则它们的面积比为 ;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ; 10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为 ;11. 在△ABC 中,cot 3A =,cos 2B =,那么C ∠= ; 12. B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C 和A 之间的距离为 千米;13. 抛物线2(3)4y x =--+的对称轴是 ;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y2y ;16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE = ;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =AB 的长为 ;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分别在AB边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;三. 解答题(78分) 19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒;20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC 相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;(直接写出结果)21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以及该抛物线的顶点坐标;22. 如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =AE ;23. 如图,P 为O 的直径MN 上一点,过P 作弦AC 、BD 使APM BPM ∠=∠,求证:PA PB =;24. 如图,正方形ABCD 中,(1)E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GFFH; (2)E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GFFH的值;25. (1)数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦 确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同 组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系XOY 中,上述(1)中的抛物线与x 轴交于A 、B 两点(A 在B 的左 边),请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,AC =D 为边AB 上一动点(D 和A 、B 不重合),过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设AD =x ,(1)请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值; (2)设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数及其定义域; (3)点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;2014学年第一学期长宁区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)一. 选择题(本大题共6题,每题4分,满分24分)1.如果两个相似三角形的面积比是1:6,那么它们的相似比是( ) A .1:36 B.1:6 C . 1:3 D . 1:62. 在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( )A .35 B . 45 C . 34 D . 433. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC (点D 和点A 对应,点B 和E 对应),则点M 对应是F 、G 、H 、K 四点中的( )A . FB . GC . KD . H第3题图 4. 已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( ) A . 1或7 B . 1 C . 7 D . 2 5. 抛物线22212,2,2y x y x y x ==-=共有的性质是( ) A . 开口向下; B . 对称轴是y 轴C . 都有最低点D . y 的值随x 的增大而减小 6. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的过程中速度不变,则以点B 为圆心,线段B P 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为图中的( )A .B .C .D .二. 填空题(本大题共12题,每题4分,满分48分)7. 已知线段a =2c m ,c =8c m ,则线段a 、c 的比例中项是_________c m. 8. 计算:3()3a b a --=_________.9. 已知⊙P 在直角坐标平面内,它的半径是5,圆心P (-3,4),则坐标原点O 与⊙P 的位置位置关系是_________.10. 如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个. 11. 抛物线23(1)2y x =--+的顶点坐标是________.12.抛物线223y x =-向左移动3个单位后所得抛物线解析式是________.13. 已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________. 14. 已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值随x 的增大而减小,则实数a 的值为_________.15. 某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新品研发资金y (元)关于x 的函数关系式为 y =_________.16. 如图所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为1:3,斜坡AB 的水平宽度BE =33m ,则斜坡AB =_________m.17. 如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE ,则S △ABC :S △GED 的值为_________.18. 如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分的面积是原正方形面积的14时,1sin '2B AD ∠ _________.GED CBAD 'C 'B 'D CBA第16题图 第17题图 第18题图三. (本大题共7题,满分78分)19.(本题满分10分)计算:201(sin30)(2015tan45).sin60cos60o oo o--+--20. (本题满分10分)如图,已知O为△ABC内的一点,点D、E分别在边AB、AC上,且11,.34AD AEDB AC==设,,OB m OC n==试用m、n表示DE.OEDCBA21. (本题满分10分)如图,AB是⊙O的弦,点C、D在弦AB上,且AD=BC,联结OC、OD.求证:△OCD是等腰三角形.22. (本题满分10分)如图,在△ABC中,AD是BC上的高,点G在AD上,过点G作BC的平行线分别与AB、AC交于P、Q两点,过点P作PE⊥BC于点E,过点Q作QF⊥BC于点F. 设AD=80,BC=120,当四边形PEFQ为正方形时,试求正方形的边长.QPFGE D23. (本题满分12分)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A -C -B 行驶,现开通隧道后,汽车直接沿直线AB 行驶. 已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)CBA24. (本题满分12分)如图,已知平面直角坐标平面上的△ABC ,AC =CB ,∠ACB =90°,且A (-1,0),B (m ,n ) C (3,0),若抛物线23y ax bx =+-经过A 、C 两点. (1) 求a 、b 的值(2) 将抛物线向上平移若干个单位得到的新抛物线恰好经过点B ,求新抛物线的解析式.(3) 设(2)中的新抛物线的顶点为P 点,Q 为新抛物线上P 点至B 点之间一点,以点Q 为圆心画圆,当⊙Q 与x 轴和直线BC 都相切时,联结PQ 、BQ ,求四边形ABQP 的面积.25. (本题满分14分)如图,已知△ABC 是等边三角形,AB =4,D 是AC 边上一动点(不与A 、C 重合),EF 垂 直平分BD ,分别交AB 、BC 于点E 、F ,设CD =x ,AE =y . (1) 求证:△AED ∽△CDF ;(2) 求y 关于x 的函数关系式,并写出定义域;(3) 过点D 作DH ⊥AB ,垂足为点H ,当EH =1时,求线段CD 的长.备用图ABCFEDCBA2014学年嘉定区九年级第一次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每小题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.对于抛物线2)2(-=x y ,下列说法正确的是(▲)(A )顶点坐标是)0,2(; (B )顶点坐标是)2,0(; (C )顶点坐标是)0,2(-; (D )顶点坐标是)2,0(-. 2.已知二次函数bx ax y +=2的图像如图1所示, 那么a 、b 的符号为(▲)(A )0>a ,0>b ; (B )0<a ,0>b ; (C )0>a ,0<b ; (D )0<a ,0<b . 3.在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边, 下列等式中正确的是(▲) (A )c a A =cos ; (B )b c B =sin ; (C )b a B =tan ; (D )abA =cot . 4.如图2,已知AB ∥CD ,AD 与BC 相交于点O ,2:1:=DO AO ,那么下列式子正确的是(▲)(A )2:1:=BC BO ; (B )1:2:=AB CD ; (C )2:1:=BC CO ; (D )1:3:=DO AD .5.已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b的是(▲)(A )a=b 2-; (B )=,3=; (C )=+2,-=-; (D=.6.在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,图1ABCDO图2半径为cm 3的圆记作圆A ,以点B 为圆心,半径为cm 4的圆记作圆B , 则圆A 与圆B 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切. 二、填空题:(本大题共12题,每小题4分,满分48分) 7.如果函数2)1(x a y -=是二次函数,那么a 的取值范围是 ▲ .8.在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的表达式为 ▲ .9.已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称,那么点N 的坐标是 ▲ .10.请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可以是 ▲ .11.已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ▲ . 12.如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 ▲ .13.如图3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,2=AB ,EC BE 3=, 那么DF 的长为 ▲ .14.在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC ▲ .15.小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰的仰角是 ▲ 度. 16.正九边形的中心角等于 ▲ 度.17.如图4,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N ,如果6=BC ,那么=MN ▲ . 18.在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D (如图5),△ABD 沿直线AD 翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD ▲.三、解答题:(本大题共7题,满分78分)N MOCBA图4DFABCD图519.(本题满分10分)计算: ︒-+︒⋅︒+︒-45cos 21260tan 30cot 2130sin 1.20.(本题满分10分)已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.21.(本题满分10分,每小题各5分)如图6,已知AB 是圆O 的直径,10=AB ,弦CD 与AB 相交于点N ,︒=∠30ANC ,3:2:=AN ON ,CD OM ⊥,垂足为点M .(1)求OM 的长; (2)求弦CD 的长.22.(本题满分10分,每小题各5分)如图7,某地下车库的入口处有斜坡AB ,它的坡度为2:1=i ,斜坡AB 的长为56米,车库的高度为AH (BC AH ⊥),为了让行车更安全,现将斜坡的坡角改造为︒14(图中的︒=∠14ACB ).(1)求车库的高度AH ;(2)求点B 与点C 之间的距离(结果精确到1米).(参考数据:24.014sin =︒,97.014cos =︒,25.014tan =︒,01.414cot =︒)23.(本题满分12分,每小题各6分)B图6ABCH图7已知:如图8,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠. (1)求证:ACAGAB AD =; (2)当BC GC ⊥时,求证:︒=∠90BAC .24.(本题满分12分,每小题各4分)如图9,在平面直角坐标系xoy 中,点A 坐标为)0,8(,点B 在y 轴的正半轴上,且34cot =∠OAB , 抛物线c bx x y ++-=241经过A 、B 两点. (1)求b 、c 的值;(2)过点B 作OB CB ⊥,交这个抛物线于点C ,以点为圆心,CB 为半径长的圆记作圆C ,以点A 为圆心,r 为半径长的圆记作圆A .若圆C 与圆A外切,求r 的值; (3)若点D 在这个抛物线上,△AOB 的面积 是△OBD 面积的8倍,求点D 的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 图8已知在△ABC 中,8==AC AB ,4=BC ,点P 是边AC 上的一个动点,ABC APD ∠=∠,AD ∥BC ,联结DC .(1)如图10,如果DC ∥AB ,求AP 的长;(2)如图11,如果直线DC 与边BA 的延长线交于点E ,设x AP =,y AE =,求y 关于x 的函数解析式,并写出它的定义域;(3)如图12,如果直线DC 与边BA 的反向延长线交于点F ,联结BP ,当△CPD 与 △CBF 相似时,试判断线段BP 与线段CF 的数量关系,并说明你的理由.图10图11。

上海中考数学一模2015年25题汇编(含答案)

上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。

2015年上海市金山区中考数学一模试卷及答案解析(pdf版)教程

2015年上海市金山区中考数学一模试卷及答案解析(pdf版)教程

8. (4 分) (2015•金山区一模)计算:2(2 ﹣ )+3( ﹣
)= 7 ﹣ 3

考点: *平面向量. 分析: 直接利用平面向量的加减运算法则求解即可求得答案,注意去括号时符号的变化. 解答: 解:2(2 ﹣ )+3( ﹣ )=4 ﹣2 +3 ﹣ =7 ﹣3 .
菁优网 版 所 权 有
故答案为:7 ﹣3 . 点评: 此题考查了平面向量的运算.此题难度不大,注意掌握平面向量的运算法则是解此题 的关键. 9. (4 分) (2015•金山区一模)将抛物线 y=2(x﹣1)2 +1 向上平移 3 个单位,那么平移后 得到的抛物线的解析式是 y=2(x﹣1)2 +4 . 考点: 二次函数图象与几何变换. 线的解析式.
23. (12 分) (2015•金山区一模)已知⊙O 与⊙O1 相离,OC 与 O1 D 分别是⊙O 与⊙O1 的 半径,OC∥O1 D,直线 CD 交 OO1 于点 P,交⊙O 于点 A,交⊙O1 于点 B. 求证: (1)OA∥O1 B; (2) = .
24. (12 分) (2015•金山区一模)如图,已知直线 y=2x+6 与 x 轴、y 轴分别交于 A、D 两 点,抛物线 y=ax2 +bx+2(a≠0)经过点 A 和点 B(1,0) .
A.
B.
C.
D.
考点: 锐角三角函数的定义.
菁优网 版 所 权 有
分析: 利用正弦函数的定义即可直接求解. 解答: 解:sinA= = . 故选 C. 点评: 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边, 余弦为邻边比斜边,正切为对边比邻边. 3. (4 分) (2015•金山区一模)已知△ ABC∽△DEF ,点 A、B、C 对应点分别是 D、E、F, AB:DE=9:4,那么 S△ ABC:S△ DEF 等于( ) A. 3:2 B. 9:4 C. 16:81 考点: 相似三角形的性质. D.81:16

全套2015年初中数学中考模拟试卷+答案+答题卡

全套2015年初中数学中考模拟试卷+答案+答题卡

2015年中考模拟试卷 数学卷考生须知:1. 本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2. 答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4. 考试结束后,上交试题卷和答题卷。

一.仔细选一选(本小题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。

1. 下列计算正确的是( )A .-2+∣-2∣=0 B. 02÷3=0 C. 248= D.2÷3³13=2 2.抛掷三枚均匀的硬帀,三枚都是同一面朝上的概率是 ( )(原创) A.12 B. 23 C. 14 D. 132的相反数的倒数的积是( )(原创)A .4- B. 16- C. -4.化简22x y y x x y+--的结果( )(原创) A. x y -- B. y x - C. x y - D. x y +5. Rt △ABC 中,斜边AB =4,∠B =060,将△ABC 绕点B 旋转060,顶点C 运动的路线长是( ) A.3π B. π C. 23π D. 43π6.在△ABC ∣1cos 2C -∣=0,且∠B ,∠C 都是锐角,则∠A 的度数是 ( )(改编自05年中考第10题)A. 015 B. 060 C. 075 D. 0307.点P 在第三象限内,P 到X 轴的距离与到y 轴的距离之比为2:1P 的坐标为 ( )(改编自08年中考第3题)A .(1,2)- B. (2,1)-- C. (1,2)-- D. (1,2)-8.要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水,假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需要安装这种喷水龙头的个数最少是 ( )A.3B.4C.5D.69.已知方程32530a a a -+=三个根分别为1a ,2a ,3a ,则计算123()a a a ++213()a a a ++312()a a a +的值( )(原创)A .5- B.6 C. 6- D.310.如图,钝角等腰三角形AOB ,EFG 的顶点O ,B ,E 在x 轴上,A ,F 在函数0)y x =〉图像上,且AE 垂直X 轴于点E ,∠ABO =∠FGE =0120,则F 点的坐标为( )(原创)A. 11(,)22B. 1)C. 3(,22 D. 1(22二.认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解:2(2)8a b ab +- =____12平坦的草地上有A ,B ,C 三个小球,若已知A 球与B 球相距3米,A 球与C 球相距1米,则B 球与C 球的距离可能的范围为____13. 函数y =x 的取值范围____14. 如图,正三角形ABC 内接于圆O ,AD ⊥BC 于点D 交圆于点E ,动点P 在优 弧BAC 上,且不与点B ,点C 重合,则∠BPE 等于 ____(原创)15. 已知如图,平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点C ,点D 的坐标分别为 (0,4),(5,0),12OC OA =,点P 在BC 边上运动(不与B ,C 重合),当△ODP 是腰长为5的等腰三角形时,点P 的坐标为____ (改编自09年片月考卷第18题)16. 点P (a,-a )在曲线y 上,则点P 叫做曲线y 上的一个不动点,那么若曲线25y x x k =++不存在这样的不动点,则k 的取值范围是___(原创) 三.全面答一答(本题有8小题,共66分)17.(本小题满分6分)若关于x 的方程2233x m x x -=--无解,求m 的值 18. (本小题满分6分) 学校操场上有一块如图所示三角形空地,量得AB =AC =10米,∠B =022.5,学校打算种上草皮,并预定 53.610⨯平方厘米草皮,请你通过计算说明草皮是否够用。

2015-2016年上海九年级数学一模汇总包含答案

2015-2016年上海九年级数学一模汇总包含答案

2015-2016学年第一学期徐汇区学习能力诊断卷数学一、选择题1. 下列两个图形一定相似的是( )A.两个菱形;B.两个矩形;C.两个正方形;D.两个等腰梯形.2. 如图1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )A.;B.;C.;D.. 3. 将抛物线向右平移2个单位,再向上平移2个单位后所得的抛物线的表达式是()A.;B.;C.;D.4. 点G 是△ABC 的重心,如果AB=AC=5,BC=8,那么AG 的长是()A.1;B.2;C.3;D.4.5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向;B.南偏西60°方向;C.南偏东30°方向;D.南偏东60°方向.6. 如图2,梯形ABCD 中,AD ∥BC ,∠DAC =90°,AB=AC ,点E 是边AB 上一点,∠ECD =45°,那么下列结论错误的是( )A.∠AED=∠ECB ;B. ∠ADE=∠ACE ;C.BE=AD ;D.BC=CE. 一、 填空题7. 计算:=______________;8. 如果,那么=__________;9. 已知二次函数,如果y 随x 的增大而增大,那么x 的取值范围是_________;10. 如果两个相似三角形的面积比是4:9,那么它们对应高的比是_____________;11. 如图3所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是_______米; 12. 已知点M (1,4)在抛物线上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__________;图2 图3B13. 点D 在△ABC 的边AB 上,AC=3,AB =4,∠ACD=∠B ,那么AD 的长是__________;14. 如图4,在平行四边形ABCD 中,AB=6,AD =4,∠BAD 的平分线AE 分别交BD 、CD 于F 、E ,那么=________; 15. 如图5,在△ABC 中,AH ⊥BC 于H ,正方形DEFG 内接于△ABC ,点D 、E 分别在边AB 、AC 上,点G 、F 在边BC 上,如果BC=20,正方形DEFG 的面积为25,那么AH 的长是________;16. 如图6,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,tan ∠ACD =,AB=5,那么CD 的长是_________;17. 如图7,在梯形ABCD 中,AD ∥BC ,BC=2AD ,点E 是CD 的中点,AC 与BE 交于点F ,那么△ABF 和△CEF的面积比是___________;18. 如图8,在Rt △ABC 中,∠BAC=90°,AB=3,cosB=,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D落在边BC 上,联结CE ,那么CE 的长是________.二、 解答题19. 计算:4sin45°-2tan30°cos30°+20. 抛物线经过点(2,1).(1) 求抛物线的顶点坐标;(2) 将抛物线沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果AB =2,求新抛物线的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
PB PC (1)求证: APC ∽ ACB ;
(2)若 AP 2 , PC 6 ,求 AC 的长. B C
21.(本题满分 10 分) 如图,小明在广场上的 C 处用测角仪正面测量一座楼房墙上的广告屏幕 AB 的长度,测得屏幕 下端 B 处的仰角为 30 ,然后他正对大楼方向前进 10 米到达 D 处,又测得该屏幕上端 A 处的仰角 为 45 ,已知该楼高 18.7 米,测角仪 MC 、 ND 的高度为 1.7 米.求广告屏幕 AB 的长. A
- 6 -
- 7 -
- 8 -
- 9 -
(1)求抛物线的解析式; (2)在线段 AD 上取一点 F (点 F 不与点 A 重合),过点 F 作 x 轴的垂线交抛物线于点 G 、 交 x 轴于点 H .当 FG GH 时,求点 H 的坐标; ( 3)设抛物线的对称轴与直线 AD 交于点 E ,抛物线与 y 轴的交点为 C ,点 M 在线段 AB 上,当 AEM 与 BCM 相似时,求点 M 的坐标. D y
8.计算: 2 2a b 3 a
2





1 b ________ 3
9.将抛物线 y ( 2 x - 1) 1 向上平移 3 个单位,那么平移后得到的抛物线的解析式是 10.如图,已知 ABC 中,点 D 、 E 分别在边 AB 、 AC 上, DE ∥ BC , 若 AD 4 , BD 2 , DE 3 ,那么 BC 11.在 RtABC 中, C 90 ,如果 AC : BC 3 : 4 ,那么 cosA 的值为 12.已知⊙ O 的半径为 5 ,点 A 在⊙ O 外,那么线段 OA 的的取值范围是 13. 如 图 , 斜 坡 AB 的 坡 度 i 1 : 3 , 该 斜 坡 的 水 平 距 离 AC 6 米 , 那 么 斜 坡 AB 的 长 等 于 米 14.如图,已知直线 AB 与 ⊙O 相交于 A 、 B 两点, OAB 30 ,半径 OA 2 ,那么弦 AB =_________ A B D B 第 10 题 E C C 第 13 题 A B 第 14 题 O
A
O
x
- 5 -
25.(本题满分 14 分) 如图,在 ABC 中, AB AC 10 , BC 12 ,点 E 、 F 分别在边 BC 、 AC 上(点 F 不与点
A 、 C 重合) EF ∥ AB .把 ABC 沿直线 EF 翻折,点 C 与点 D 重合,设 FC x .
(1)求 B 的余切值; (2)当点 D 在 ABC 的外部时, DE 、 DF 分别交 AB 于 M 、 N ,若 MN y ,求 y 关于 x 的函数关系式并写出定义域; (3)(下列所有问题只要直接写出结果即可) 以 E 为圆心、 BE 长为半径的⊙ E 与边 AC ①没有公共点时,求 x 的取值范围. ②一个公共点时,求 x 的取值范围. ③两个公共点时,求 x 的取值范围. B E C F A

B
M C
- 3 -
N D E
22.(本题满分 10 分) 抛物线 y ax bx c( a 0) 向右平移 2 个单位得到抛物线 y a ( x 3) 1 ,且平移后的抛
2
2
物线经过点 A( 2, 1) . (1)求平移后抛物线的解析式; (2)设原抛物线与 y 轴的交点为 B ,顶点为 P ,平移后抛物线的对称轴与 x 轴交于点 M ,求
B D O A C P O1
AP AC BP BD
- 4 -
24.(本题满分 12 分) 如 图 , 已 知 直 线 y 2x 6 与 x 轴 、 y 轴 分 别 交 于 A 、 D 两 点 , 抛 物 线
y ax 2 bx 2(a 0) 经过点 A 和点 B (1, 0) .
2015 年金山区数学一模 (试卷含答案)
2015.1 (时间 100 分钟,满分 150 分) 一、选择题(本题共 6 小题,每题 4 分,满分 24 分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应 位置上.】 1.抛物线 y 2 x 1 的顶点坐标是(

A
15.已知⊙ A 与⊙ B 的半径分别为 3 和 2 ,若两圆相交,那么这两圆的圆心距 AB 的取值 范围是 1 6 . 如 图 , 在 RtABC 中 , ACB 90 , CD ⊥ AB , CD = 4 , cosA =

2 , 那 么 3
BC =
17.如图, 在 ABC 中, AD、BE 分别是边 BC、AC 上的中线, AD、BE 相交于点 G .设 AB
- 2 -G
A
B
D
C
B
C
三、(本题共有 7 题,满分 78 分) 19.(本题满分 10 分)
cos 30 tan 60 cos 45 计算: 2 sin 45 tan 45 cot 30

20.(本题满分 10 分) 如 图 , ABC 中 , PC 平 分 ACB , P
2
) (C) (1,0) ; (D) (1,2) . )
(A) ( 2,1) ;
(B) (0,1) ;

2.在 RtABC 中, C 90 , AB 5, BC 3 ,那么 sin A 的值等于( (A)
3 ; 4
(B)
4 ; 3
(C)
3 ; 5
(D)
4 . 5
3. 已 知 ABC ∽ DEF , 点 A 、 B 、 C 对 应 点 分 别 是 D 、 E 、 F , AB : DE 9 : 4 , 那 么

a , AD b ,那么 BE

(用 a 、 b 的 式子表示)



18.如图,在 RtABC 中, C 90 , AC 4 , BC 3 .将 ABC 绕着点 C 旋转 90 ,点 A 、
B 的对应点分别是 D 、 E ,那么 tan ADE 的值为
C A E A D 第 16 题 B
a (a 0) ,当 x 0 时,它的图像 y 随 x 的增大而减小,那么二次函数 x
) y y
y ax 2 ax 的图像只可能是(
y y
O (A)
x
O (B)
x
O (C)
x
O (D)
x
ቤተ መጻሕፍቲ ባይዱ
二、填空题(本题共 12 题,每小题 4 分,满分 48 分)
- 1 -
7.已知
x 2 x y ,那么 y 3 x y
S ABC : S DEF 等于(
(A) 3 : 2 ;
) (C) 16 : 81 ; (D) 81 : 16 . ) (D) 5 .
(B) 9 : 4 ;
4.正多边形的中心角是 36 º,那么这个正多边形的边数是( (A) 10 ; (B) 8 ; (C); 6
5. 已 知 ⊙ M 与 ⊙ N 的 半 径 分 别 为 1 和 5 , 若 两 圆 相 切 , 那 么 这 两 圆 的 圆 心 距 MN 的 长 等 于 ( ) (A) 4 ; (B) 6 ; (C) 4 或 5 ; 6.已知反比例函数 y (D) 4 或 6
BPM 的面积.
y
O
x
23.(本题满分 12 分) 如图,已知 ⊙ O 与 ⊙ O1 外离, OC 与 O1 D 分别是 ⊙ O 与 ⊙ O1 的半径, OC ∥ O1 D .直线
CD 交 OO1 于点 P ,交⊙ O 于点 A ,交⊙ O1 于点 B .
求证:(1) OA ∥ O1 B ;(2)
相关文档
最新文档