天线发射和接收性能指标
天线各指标对网络的影响

一、天线各指标对网络的影响(一)互调互调信号是两个或多个信号通过天线发射时,由于材料的非线性原因将产生三阶或更高阶的调制信号,并可能落在上行频带内,对上行信号造成干扰。
互调指标是天线的内部工艺水平和所用材质的集中表现,该指标会在天线长期使用过程中由于材料表面氧化、脱焊等原因逐渐恶化。
(二)驻波比驻波比(SWR)全称为电压驻波比(VSWR)。
在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会在天线产生反射波,反射波和入射波在天馈系统汇合产生驻波。
电压驻波比过大,将缩短通信距离,反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。
(三)增益相同的条件下,增益越高,信号覆盖的距离约远。
理论上天线增益下降1dB,覆盖距离将缩小12.2%;增益过低会造成覆盖不足,增益过高会造成越区覆盖。
(四)前后比指标前后比指标不达标的天线,天线的后瓣有可能产生越区覆盖,导致切换关系混乱、同邻频干扰,产生掉话,并增加了频率规划的难度和准确度。
(五)上旁瓣抑制上旁瓣抑制不达标,会导致高层信号混乱,同邻频干扰的几率大大增加;另外目前城区高楼较多,会对天线上旁瓣信号造成反射,增加了越区覆盖、异常覆盖情况出现的几率。
(六)交叉极化比指标交叉极化比指标反映的是正交振子的不相关性,该参数的好坏直接影响天线极化分集的效果,对改善上行信号质量有非常重要的作用。
二、天馈故障分析广西现阶段测试的主要工具为驻波比测试仪和互调测试仪,能够对驻波比、互调值和隔离度进行测试。
三阶互调指标是业界公认的无源器件综合性指标,它直接影响了产品的性能,是生产厂家在产品设计、生产、用料、工艺方面的集中体现。
同时,除天线外,还有三类因素会影响系统互调指标:一是射频器件原因,如滤波器、耦合器等器件自身互调指标不合格;二是馈线原因,如馈线进水、弯折;三是工程质量原因,如接头制作及连接不牢,接头内有金属屑等。
天线的驻波比表示天馈线与基站(收发信机)匹配程度的指标,不匹配时,发射机发射的电波将有一部分反射回来,在馈线中产生反射波,反射波到达发射机,最终产生为热量消耗掉。
发射机的性能指标介绍

发射机的性能指标介绍
发射机主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。
发射机的性能指标
可程式化输出设定,经由软体设定单一动作可多达16个输出点
尼龙加纤的强化塑胶外壳,可防止摔落及强力碰撞所造成之损坏
操作距离可打100公尺
接收机附输出电缆线,安装简单、快速
发射机三段式电源指示
可规划加速延迟设定(使天车运转更顺畅)
多重安全保护设计:
汉明码看门狗线路32位元不重复识别码
2只五速段落感摇杆
6个单速按键(含开机键)
1个紧急停止蘑菇头
1个旋转钥匙
2个2段式选择开关
2个3段式选择开关
多40个继电器输出(软体设定)
可安装常闭/常开继电器
支持被动式天线(另购)
操作温度–35℃~+80℃
发射机电源4个AA碱性电池/充电电池
接收机电源AC48/110/220/380V可选
防护等级IP65
识别码43亿组不重复识别码
汉明码≥4
广泛应用于电视,广播,雷达等各种民用、军用设备。
主要可分为调频发射机,调幅发射机,光发射机等多种类型。
天线的主要性能指标和相关知识

天线的主要性能指标1、方向图:天线方向图是表征天线辐射特性空间角度关系的图形。
以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。
一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。
平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。
描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。
一般地,GSM定向基站水平面半功率波瓣宽度为65°,在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。
2、方向性参数不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。
理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。
我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02。
3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。
增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。
由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。
一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。
另外,表征天线增益的参数有dBd和dBi。
DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。
相同的条件下,增益越高,电波传播的距离越远。
4、入阻输入阻抗输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。
天线的主要性能指标

天线的主要性能指标天线是无线通信系统中的重要组成部分,它的性能直接影响到通信系统的稳定性、可靠性和性能。
天线的主要性能指标可以分为以下几个方面。
1.频率范围:天线的频率范围是指天线能够工作的频率范围。
不同的无线通信系统需要不同的频率范围,因此天线的频率范围应该能够覆盖所需的频率范围。
2.增益:天线的增益是指天线在特定方向上相对于理想同轴电缆天线的功率增加量。
增益越高,天线的接收和发射效果就越好。
增益与天线的指向性有关,指向性越高,增益越高。
3.方向性:天线的方向性是指天线在空间范围内辐射和接收电磁信号的特性。
天线的方向性可以通过天线的辐射图来表示,主要包括主瓣方向和边瓣。
4.波束宽度:波束宽度是指天线主瓣的宽度,也可以理解为天线对信号的接收和发送的方向选择性。
波束宽度越小,方向选择性越好,但覆盖范围也会减小。
5.阻抗匹配:天线的阻抗匹配是指天线的输入阻抗与馈线的阻抗保持一致。
阻抗匹配不好会导致信号的反射和损耗,影响信号的传输质量。
6.驻波比:驻波比是指天线输入端口处的反射波和传输波之比。
驻波比越小,说明天线的阻抗匹配越好,信号的传输质量越好。
7.前后比:前后比是指天线在其中一方向上的辐射功率与在反方向上的辐射功率之比。
前后比越大,说明天线的方向性越好,信号的传输干扰越小。
8.极化方式:天线的极化方式有垂直极化、水平极化、圆极化等。
天线的极化方式应与无线通信系统的极化方式一致,以保证信号的传输效果。
9.环境适应性:天线的环境适应性是指天线在不同的环境条件下的性能表现。
例如,天线在恶劣天气条件下的性能是否稳定,是否受到周围物体的干扰等。
10.承载能力:承载能力是指天线能够承受的最大功率。
天线的承载能力应该能够满足无线通信系统所需的功率要求,以确保天线的稳定运行。
总之,天线的性能指标决定了它在无线通信系统中的适用性和性能表现。
无论是接收还是发射信号,在选购天线时,需要根据具体的应用需求,选择适合的天线,并通过合理的安装和调试,实现最佳的通信效果。
天线的五个基本参数

天线的五个基本参数
1 关于天线的五个基本参数
天线作为无线通讯的核心技术受到各路观众的广泛关注,五个主
要的 parametric 参数是天线特性的重要参考指标,包括增益、驻波比、半功率角、垂直波束宽度和水平波束宽度。
1 增益
增益(也被称为功率增益)是衡量天线收发能力的重要性能指标,
多用来衡量天线的信号增益真实性,一般越大表示接收和发射信号能
力越强。
一个常见单位是dBi,它是相对于理想天线的增益。
2 驻波比
驻波比是衡量天线稳定性的重要指标,表示通过某一频率的有功
功率与负载的比例,驻波比越高,表示天线稳定性越强。
3 半功率角
半功率角是衡量天线波束宽度的重要指标,是指在半功率容量点
(3dB点)处,天线发出和接收能量线与光轴之间夹角,这个角度越小,表示天线空间分布越集中,优度越高。
4 垂直波束宽度
垂直波束宽度是指一条水平线上,从天线输出的重要能量路径两
头向垂直方向投射的角度。
它受到天线结构的影响很大,我们一般认
为越窄的波束宽度,表示发射的范围越窄,表示天线的利用效率越高。
5 水平波束宽度
水平波束宽度是指一条垂直线上,从天线输出的重要能量路径两头向水平方向投射的角度,是衡量天线射向性的重要指标。
天线的水平波束宽度越窄,表示波束能量线对水平方向的散射越少,传输效率越高。
总之,增益、驻波比、半功率角、垂直波束宽度和水平波束宽度都是专业从事无线通信设计必备的参数,这五个参数从不同的角度反映了天线的性能,所有的参数都应该按照项目特点来进行综合评估。
天线平均增益

天线平均增益天线平均增益是衡量天线性能的重要指标之一。
在通信系统中,天线是传输信号的重要组成部分,它将电磁波能量转换成电信号或将电信号转换成电磁波能量,起到信号的接收和发射作用。
而天线的平均增益就是衡量天线在接收或发射信号方面的性能的一个指标。
天线平均增益的概念是基于天线的辐射特性而提出的。
通过测量和计算,我们可以得到天线在某一方向上运行时与相同功率的参考天线的辐射强度比值,即为天线的增益。
而天线平均增益则是指天线在水平面上所有方向增益的平均值。
天线平均增益是天线性能指标之一,其中最重要的参数是短波反射、阻抗匹配、增益、方向性、频率响应等。
通常,天线平均增益是描述天线性能最好的参数之一。
它能够指出一个天线在特定频率上的大致性能,以及它能够在哪些范围内有效地通信。
在选择天线时,天线的平均增益是非常重要的指标之一。
通信系统选择适合的天线往往会影响通信质量和通信距离等因素。
天线平均增益的大小与天线的发射和接收能力有关。
对于一定的天线,在其有效收发区域内,天线平均增益越大,其发射和接收能力就越强,其通信距离也就越远。
因此,天线的平均增益可以看作是衡量天线传输能力和质量的一个指标。
在实际应用中,天线平均增益往往是衡量天线性能的重点,一些性能好的天线的平均增益可以达到30dB以上。
很明显,随着通信市场的发展,通信技术也不断更新,对天线的性能要求也不断提高。
因此,天线设计和技术也在不断升级和发展。
我们可以看到,无线通信在现代社会中已经普及,而天线平均增益一直是无线通信有关领域的重要研究方向之一。
为了提高通信质量和通信距离,未来的天线将会越来越精细化和高效化,其平均增益也将会逐渐提高。
综上所述,天线平均增益是衡量天线性能的一项重要指标。
它可以有效地反映天线的传输能力和通信质量,被广泛应用于通信系统中。
而随着通信技术的不断发展,在未来,天线平均增益将成为天线技术领域中最重要的技术指标之一。
接收机的技术指标

接收机的技术指标接收机是一种电子设备,用于接收和放大从天线或其他信号源接收到的无线电信号,并将其转换为可用于音频、视频或数据输出的信号。
接收机的技术指标涉及到很多方面,下面将详细介绍一些常见的技术指标。
1.频率范围:接收机的频率范围指的是它能够接收的信号的频率范围。
不同的接收机可以接收不同频率范围的信号,比如广播接收机通常可以接收AM、FM等调频信号。
2.灵敏度:接收机的灵敏度指的是它能够接收到弱信号的能力,一般以一些特定的信噪比来描述,例如10米微伏的信号在50dB的信噪比下能够被正确识别。
3.带宽:接收机的带宽是指它能够处理的信号频率范围,通常以赫兹(Hz)为单位表示。
较宽的接收机带宽可以接收更多的信号,但也需要较高的处理能力。
4.选择性:接收机的选择性指的是它在接收到多个信号时,能够选择感兴趣的信号而抑制其他干扰信号的能力。
选择性越好,接收机对干扰的抑制能力就越强。
5.动态范围:接收机的动态范围是指它能够同时处理的最大和最小信号强度之间的差异范围。
较大的动态范围可以处理更广泛的信号强度,从而提高接收机的性能。
6.硬件参数:接收机的硬件参数包括输入阻抗、输出阻抗、增益、效率等。
这些参数影响着接收机的性能和适用范围。
7.抗干扰性:接收机的抗干扰性指的是它在存在干扰信号时的工作表现。
抗干扰性好的接收机可以在强干扰环境中正常工作而不受干扰的影响。
8.多通道:一些接收机具有多通道接收功能,可以同时接收多个信号,并进行独立处理或合并处理。
9.解调方式:接收机可以使用不同的解调方式,如调幅解调(AM)、调频解调(FM)、调相解调(PM)等,以及数字信号解调方式等。
10.数据传输速率:对于数字接收机,数据传输速率是一个重要的技术指标。
它表示接收机能够处理的最大数据传输速率。
11.电源要求:接收机的电源要求包括工作电压、功率消耗等方面的要求,这些要求决定了接收机在不同环境下的适用性。
以上介绍的只是一些常见的接收机技术指标,实际上还有很多其他因素需要考虑,如尺寸、重量、成本等。
天线基础知识

天线基础知识天线基础知识天线在无线电通信技术中是起到发射或接收电磁波的作用,天线性能的优良与否,往往在无线通信中起到事半功倍的作用。
从原理上讲,发射天线和接收天线是互易的,但在实际应用中还是有差别的。
一副在某一段频率上发射性能优良的天线,一定也是在该段频率上接收性能优良的接收天线,但随便一条能接收的天线,却不一定也是优良的发射天线。
大部分研究和讨论天线的文章、资料都偏重于发射方面,其实,关于天线的接收方面也有很大的考究,这一点,对我们侧重无线电接收的爱好者来说,往往显得尤为重要。
一般来说(除了发射和接收共用的天线),发射天线为了突出和强调发射效果,往往采用谐振天线(窄带天线),而接收天线却往往采用非谐振天线(宽带天线),即使接收天线回路在某些频率上存在谐振,但天线回路衡量谐振程度的品质因数(Q值)还是比较低的,这样的天线基本上可以看成是非谐振天线。
如果用想同一条天线来完成全波段接收,包括V/U波段,甚至到1G以上频率的接收,最好是选择一些厂家经过专门设计的宽带天线,有些宽带天线可以工作在500KHz-1500MHz的频率范围内,但宽带天线(非谐振天线)接收弱信号的效果总是不如窄带天线(谐振天线)。
至于随便拿来一条几米长的导线或是其它的天线充当全频天线来搞全频接收,肯定不会有好的效果。
衡量一个天线发射和接收性能的优劣,主要有这样几个技术指标。
一、天线效率天线效率和架设天线的导体材质、天线形状、工作频率、天线长度、天线架设高度有关。
1、天线材质尽量选择导电性能好、电阻率低的金属材料,如银、铜、铝等。
由于银线材的成本太高,所以实际应用中最好选择电工纯铜线.由铜矿石冶炼后,除去杂质,尤其要减少氧化物,再通过电解后得到电解铜,然后拉成丝。
这种电工纯铜的杂质少,电阻率很低。
一些正规国营电线厂生产的电线和漆包线都属于这类线材。
现在市场上还常常见到一些乡镇企业或个体户用回收的废旧铜冶炼后(再生铜)生产的电线,这种铜线材所含杂质较多,电阻率也较大,如果用这种线材制做天线时,天线的效果不会很好,往往还会增大接收时的白噪声,不利于弱信号的接收。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天线发射和接收性能指标日期:2010-11-27
一、天线效率
天线效率和架设天线的导体材质、天线形状、工作频率、天线长度、天线架设高度有关。
1、天线材质
尽量选择导电性能好、电阻率低的金属材料,如银、铜、铝等。
由于银线材的成本太高,所以实际应用中最好选择电工纯铜线.由铜矿石冶炼后,除去杂质,尤其要减少氧化物,再通过电解后得到电解铜,然后拉成丝。
这种电工纯铜的杂质少,电阻率很低。
一些正规国营电线厂生产的电线和漆包线都属于这类线材。
现在市场上还常常见到一些乡镇企业或个体户用回收的废旧铜冶炼后(再生铜)生产的电线,这种铜线材所含杂质较多,电阻率也较大,如果用这种线材制做天线时,天线的效果不会很好,往往还会增大接收时的白噪声,不利于弱信号的接收。
用各种线材制作天线时,截面大的线材接收效果好于截面小的线材。
由于高频信号的集肤效应,同样截面时,多股线材的接收效果好于单股线材。
铝材料一般在制作八木天线时用的较多。
2、天线的形状
为了提高天线的效率,往往在不同波段采用不同形状的天线,LW段以长线天线为主,MW段以长线天线和环状天线为主,SW段以长线天线、偶极天线和八木天线为主,FM段和V/U波段以八木天线和鞭状天线为主,800M以上的微波段以板状天线和抛物面天线为主。
3、工作频率
工作于不同频率的天线,其效率也是不同的,天线的效率一般都随工作频率的提高而增加,高频天线的效率一般都高于低频天线。
有资料表明:长波天线的效率为10%—40%,中波天线的效率为70%—80%,短波天线的效率为90%—95%,超短波(FM、V、U)和微波天线的效率为95%—99%。
4、天线的长度
当天线的有效长度接近其工作频率半波(1/2波长)的正整数倍时,天线的效率较高,若这个倍数增加时,天线的效率还会进一步提高,但波长数(天线长度)的增加与效率的提高不是成正比关系。
环型天线的直径增加时,天线效率会提高,环型天线的圈数增加时,天线的效率也会进一步提高。
抛物面天线的直径增加时,天线效率的提高会更明显。
5、架设高度
一般来说,天线架设得越高其效果越好,当然这个高度是相对的,实际架设时还要根据环境和架设的成本投资来取舍。
但接收天线在 V 段以上频率使用时,并不是架设得越高越好,这是因为 V 段以上的频率,其场强在空间的垂直分布是不均匀的,有时天线位置架设得低一点的效果反而好于高处的效果。
二、天线的方向性
我们衡量一个天线在发射和接收电磁波性能的优劣时,还要了解天线性能指标的另一个参数——天线的方向性,也就是天线在360°的空间里对各个方向发射和接收电磁波的能力。
实际应用中,我们主要关心的是天线在水平方向上的发射和接收电磁波的能力,或者要求天线在我们希望的某些方向上有尽可能大的发射和接收电磁波的能力。
天线的理论基础是电磁场理论,通过麦克斯韦方程加简化了的边界条件可以计算出并确定天线在各个方向上的发射和接收电磁波的结果,这一结果我们可
以用极坐标表达的天线方向图来描述。
通过计算得到的这一结果往往太理想化了,有时和实际的天线还有较大的误差。
所以,正规生产天线厂家的产品,往往是在电磁消声室里通过实测的的方法得到该类型天线的方向图,我们可以根据自己的需要选择合适方向图的成品天线。
业余条件下,自制天线的方向图,可以参考已知同类型天线的方向图。
提到天线的方向图,还要了解电磁波的极化。
所谓极化,就是电磁波的电场分量在传播时,是与大地平行的还是垂直的,这样,便有了水平极化和垂直极化之分。
公众广播电台的LM、MW、SW、FM、TV广播基本上都是采用水平极化方式,业余电台在HF段也是采用水平极化方式。
业务电台的V、U段通信(我们经常使用的对讲机,寻呼机等,包括业余电台的V、U段通信)、AIR、GSM、CDMA等,基本上是采用垂直极化的方式,接收时,为了得到最好的接收效果,接收天线在实际安装时,应尽量与所接收电磁波的极化方式一致,也就是天线的有效单元是采用水平还是垂直方式安装。
但800兆以上的频率,接收天线的极化影响并不明显,而且是频率越高,越不明显。
另外,接收位置的信号场强高时,接收天线的极化效应不明显,场强弱时,接收天线的极化效应明显。
环型天线是个例外,低阻的环型天线是接收电磁波的磁场分量,高阻环型天线的接收对电磁波的磁场分量和电场分量兼而有之,正是由于环型天线结构和接收原理的特殊性,实际使用时我们可以不用去考虑环型天线的极化效应,只需考虑天线的方向性。
另外,无线电波在传输的过程中,经过多径传播后,往往不能保证到达接收位置时还保持严格的极化方式,总会发生一些改变。
例如,短波无线电信号传播时在电离层和大地之间的多次弹跳,无线电波经过高山大川时的绕射,城市里高大建筑物对无线电波的反射,等等。
说到天线的方向性,基本上可以分为两大类,全向天线和定向天线。
1、全向天线
全向天线的方向图是一个以天线所在位置为圆心的一个圆形,或是一个不规则的圆形。
公众广播电台为了得到尽可能大的广播覆盖区域,也可以看成是完成点对面的通信,特别是中波和调频广播,还有电视广播,主要是完成本地区的覆盖,它的发射天线采用的就是全向天线。
但短波广播电台却是例外。
我们常见到的对讲机(包括各种手持对讲机、接收机)使用的天线,车载对讲机在移动车辆上使用的吸盘天线、夹持天线都属于全向天线, 鞭状天线也是典型全向天线。
我们爱好者经常用到的长线天线也可以算是全向天线。
2、定向天线
定向天线的方向图,可以看成是天线位置在花芯的,一朵花的花瓣的图形,不过这朵花的花瓣可能只有一、两个,或是有几个,也可能这些花瓣有大有小,有宽有窄,有长有短,这些花瓣,我们把它称为波瓣。
不同类型的定向天线,其方向图也是不一样的。
有时,为了特别强调天线在某一方向上的效果,我们可以采用波瓣长而窄的定向天线。
在进行抗干扰接收时,或是进行中波和调频广播的远程接收时,常常这样做。
短波公众广播电台是用来完成跨地区、跨国界、跨洲际的广播,它的发射天线常常采用定向天线。
业务通信电台在V/U段进行点对点的通信时也要用到定向天线。
我们常常用到的半波偶极天线、折合振子天线、斜拉天线、倒V天线、八木天线、环型天线等都是属于定向天线。
有时我们也可以把一个全向天线和一个定向天线组合在一起,来得到一个具有特殊方向图的组合天线,也可以把几个具有相同方向图的定向天线组合在一起,来得到一个全向天线。