指数与对数运算专项----高考

合集下载

高考学生指数与对数函数知识点小结及典型例题

高考学生指数与对数函数知识点小结及典型例题

高考学生指数与对数函数知识点小结及典型例题高考中经常考到指数函数和对数函数的概念和性质,下面来介绍一些基础知识。

一、指数与指数幂的运算1.根式的概念:如果 $x^n=a$,那么 $x$ 叫做 $a$ 的$n$ 次方根,其中 $n>1$,且 $n\in N$。

2.分数指数幂:规定正数的分数指数幂的意义为$a^{m/n}=n\sqrt[n]{a^m}(a>0,m,n\in N^*,n>1)$,负分数指数幂没有意义。

3.实数指数幂的运算性质:$(a^r)^s=a^{rs}(a>0,r,s\in R)$,$a^r\cdot a^s=a^{r+s}(a>0,r,s\in R)$,$(ab)^r=a^r\cdotb^r(a>0,r\in R)$。

二、指数函数及其性质1.指数函数的概念:函数 $y=ax(a>0,a\neq1)$ 叫做指数函数,其中 $x$ 是自变量,定义域为 $R$。

注意:底数不能是负数、零和 $1$。

2.指数函数的图象和性质:当 $00$,非奇非偶函数,函数图象过定点 $(0,1)$;当 $a>1$ 时,函数图象在 $R$ 上单调递增,定义域为 $R$,值域为 $y>0$,非奇非偶函数,函数图象过定点 $(0,1)$。

利用函数的单调性,结合图象,可以得到一些性质,例如在 $[a,b]$ 上,$f(x)=ax(a>0,a\neq1)$ 的值域是$[f(a),f(b)]$ 或 $[f(b),f(a)]$。

三、对数函数1.对数的概念:如果 $a^x=N(a>0,a\neq1)$,那么数 $x$ 叫做以 $a$ 为底 $N$ 的对数,记作 $x=\log_a N$。

注意底数的限制 $a>0$,且 $a\neq1$。

2.对数的运算性质:如果 $a>0$,且 $a\neq1$,$M>0$,$N>0$,那么:$\log_a MN=\log_a M+\log_a N$,$\log_a\frac{M}{N}=\log_a M-\log_a N$,$\log_a M^r=r\log_aM(a>0,M>0,r\in R)$。

2025年高考数学一轮复习-拓展拔高2-指数与对数的运算【课件】

2025年高考数学一轮复习-拓展拔高2-指数与对数的运算【课件】
k>0,所以2x-3y=
=
=
>0,
lg2 lg3
lg2·lg3
lg2·lg3
25
2lg 5lg lg·(2lg5−5lg2) lg·lg32
故2x>3y,2x-5z=
=
=
<0,故2x<5z.
lg2 lg5
lg2·lg5
lg2·lg5
所以3y<2x<5z.
解法三(作商法):
令2x=3y=5z=k,由x,y,z为正数,知k>1.
1
log0.1 0.7
,c=0.70.3,则a,b,c的大小关系为(
A.a<c<b
B.a<b<c
C.b<c<a
D.c<a<b
1
【解析】选A.因为log51<log52<log5 5,所以0<a< ,
2
因为b=
1
log0.1 0.7
=log0.70.1>log0.70.7=1,
所以b>1,因为0.71<0.70.3<0.70,

即ln
ln
x<x,从而当x>1,y>1时, = < ,
e
e
e

1−
令g(t)= ,t>1,g'(t)= <0,g(t)在(1,+∞)上单调递减,
e
e

则由x>1,y>1, < 得y>x>1,所以y>x>z.
e e
思维升华
(1)若题设涉及三个指数式连等或三个对数式连等,则可利用特例法求解,也可在

指数函数与对数函数高考题(含答案)

指数函数与对数函数高考题(含答案)

指数函数与对数函数高考题1、(2009湖南文)2log )A .BC .12-D . 122、(2012安徽文)23log 9log 4⨯=( )A .14B .12C .2D .43、(2009全国Ⅱ文)设2lg ,(lg ),lg a e b e c === ( )A.a b c >>B.a c b >>C.c a b >>D.c b a >>4、(2009广东理)若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =( )A. 2log xB. 12log x C.12x D. 2x 5、(2009四川文)函数)(21R x y x ∈=+的反函数是( )A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y6、(2009全国Ⅱ理)设323log ,log log a b c π=== )A. a b c >>B. a c b >>C. b a c >>D. b c a >>7、(2009天津文)设3.02131)21(,3log ,2log ===c b a ,则( )A.c b a <<B. b c a <<C. a c b << D .c a b <<8、(2009湖南理) 若2log a <0,1()2b >1,则 ( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <09、(2009江苏)已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c =10、(2010辽宁文)设25a b m ==,且112a b+=,则m =( )11、(2010全国文)函数)1)(1ln(1>-+=x x y 的反函数是( )A.y=1x e +-1(x>0)B. y=1x e -+1(x>0)C. y=1x e +-1(x ∈R)D.y=1x e -+1 (x∈R)12、(2012上海文)方程03241=--+x x 的解是_________ .13、(2011四川理)计算21100)25lg 41(lg -÷-_______ . 14、(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________ 。

版高考数学一轮总复习指数与对数函数的应用题

版高考数学一轮总复习指数与对数函数的应用题

版高考数学一轮总复习指数与对数函数的应用题指数与对数函数是数学中重要的概念之一,作为高中数学的一部分,它们在高考中的应用也是不可忽视的。

本文将通过一些具体的应用题,来介绍指数与对数函数的用法。

1. 应用题1:人口增长问题某城市的人口按照指数增长,已知2010年底的人口为100万,而到2020年底的人口为180万。

问:(1)如果继续以相同的速率增长,预计到2030年底的人口将达到多少?(2)从2010年到2020年的增长速率是多少?解答:(1)假设人口增长率为r,那么根据指数增长的公式,我们有:180 = 100 * (1 + r)^(2020-2010)解得r ≈ 0.0631代入式子,我们可以计算出2030年底的人口:人口 = 100 * (1 + 0.0631)^(2030-2010) ≈ 236.01万人(2)增长速率可以用对数函数来表示,即:log(180/100) / (2020-2010) ≈ 0.00601所以从2010年到2020年的增长速率约为0.006。

2. 应用题2:科学实验中的放射性衰变假设某种物质的放射性元素以指数衰减的方式进行,已知其衰变常数为 k,问题如下:(1)如果初始时刻物质的质量为M₀,经过t个时间单位后,物质的质量为多少?(2)经过多久,物质的质量会减少到初始质量的一半?解答:(1)物质的质量可以用指数函数来表示,即:M(t) = M₀ * exp(-kt)其中,exp(-kt) 表示 e 的 -kt 次方。

(2)当物质的质量减少到初始质量的一半时,我们有:M(t) = M₀ / 2代入指数函数的表达式,解方程得:exp(-kt) = 1/2化简得 -kt = ln(1/2),再解得:t = - ln(1/2) / k所以物质的质量减少到初始质量的一半所需要的时间为 t = ln(2) / k。

通过以上两个应用题的讲解,我们可以看到指数与对数函数在实际问题中的应用非常广泛。

2024年新高考版数学专题1_3.3 指数函数、对数函数

2024年新高考版数学专题1_3.3 指数函数、对数函数

例2
(多选)(2021河北高碑店月考,11)已知函数f(x)=
2x 2x
1
+m(m∈R),则下
列说法正确的是 ( )
A.f(x)的定义域为R
B.若f(x)为奇函数,则m=- 1
2
C.f(x)在R上单调递减
D.若m=0,则f(x)的值域为(0,1)
解析 对于A,由2x+1≠0恒成立,知函数f(x)的定义域为R,所以A正确;
考点二 指数函数与对数函数的图象与性质
1.指数函数的图象与性质
a>1
0<a<1
图象
定义域 值域 性质
R
(0,+∞)
过定点(0,1),即当x=0时,y=1
当x>0时,y>1; 当x<0时,0<y<1
当x<0时,y>1; 当x>0时,0<y<1
在(-∞,+∞)上是增函数
在(-∞,+∞)上是减函数
2.对数函数的图象与性质
a>1 图象
0<a<1
定义域 值域 性质
过定点(1,0),即当x=1时,y=0 当x>1时,y>0; 当0<x<1时,y<0 在(0,+∞)上是增函数
(0,+∞) R
当x>1时,y<0; 当0<x<1时,y>0 在(0,+∞)上是减函数
3.反函数 一般地,指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反 函数,它们的定义域与值域正好互换,图象关于直线y=x对称.
对于B,由函数f(x)为奇函数,得f(-x)=-f(x),即

专题08 指数、对数的运算-2021年高考数学复习一轮复习专项练习附解析

专题08 指数、对数的运算-2021年高考数学复习一轮复习专项练习附解析

【解析】9x 3x 6 0 ,(3x 3)(3x 2) 0 ,3x 2 ,或 3x 3 (舍去) x log3 2 ,故答案为:
log3 2 .
【题组二 对数运算】
1.【答案】0
【解析】
2
log3
2
log3
32 9
log3
8
log2
9
log3
2
log3
4 328Fra bibliotek2log2
3

10.求值 1 lg 25 lg 2 lg 2
0.1 log2 9 log3 2 =

11.计算:
log (
2
(2
3)
3) =

.
12.已知 2 lg
x 2
y
lg x lg
y
,求
log (
32
2)
x y
=

【题组三 指数、对数综合计算】
1.若实数 a,b 满足 3a 4b 12 ,则 1 1
2 1) log9 27 .
(8) log3
4
27 3
log5
4
1 2
log
2
10
(3
2
3)3
7
log7
2
.
解析:
考点 8:指数、对数的运算
【题组一 指数运算】
1
1.【答案】(1)-45 (2)
3 (3)0.55(4)17(5)7(6)3
(7) (8) 2a (9)a 4
1
【解析】(1) 0.027 3
13 3
2 3
52
2 52
13 3
2 3

(完整版)指数函数与对数函数高考题及答案

(完整版)指数函数与对数函数高考题及答案

指数函数与对数函数(一)选择题(共15题)1.(安徽卷文7)设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a【答案】A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。

【方法总结】根据幂函数与指数函数的单调性直接可以判断出来.2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是【答案】D【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1<ba <0,矛盾,对于C 、D 两图,0<|b a |<1,在C 图中两根之和-b a <-1,即ba >1矛盾,选D 。

3.(辽宁卷文10)设525bm ==,且112a b +=,则m =(A(B )10 (C )20 (D )100 【答案】D解析:选A.211log 2log 5log 102,10,m m m m a b +=+==∴=又0,m m >∴=4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=125-,则A. a<b<cB. b<c<aC. c<a<b D . c<b<a 【答案】C【解析】 a=3log 2=21log 3, b=In2=21log e ,而22log 3log 1e >>,所以a<b,c=125-=,而222log 4log 3>=>,所以c<a,综上c<a<b.【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.5.(全国Ⅰ卷理10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞【答案】A【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 2a a =+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a +又0<a<b,所以0<a<1<b ,令2()f a a a =+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞【答案】C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a +≥,从而错选D,这也是命题者的用苦良心之处. 7.(山东卷文3)函数()()2log 31x f x =+的值域为A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣ 【答案】A【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。

专题02 指数运算与对数运算(解析版)-高考数学计算题型精练(新高考通用版)

专题02 指数运算与对数运算(解析版)-高考数学计算题型精练(新高考通用版)

指数与对数运算1.求值:(1))20.51π316-⎛⎫+- ⎪⎝⎭;(2)2ln 31274e log 9log 8lg 4lg 25-⋅++.【答案】(1)0(2)12【详解】(1)原式123493711041644⎛⎫=+-=+-= ⎪⎝⎭(2)原式ln923e log 3log 2lg10091212=+⋅+=++=.2.计算(1)1223182π4-⎛⎫-+ ⎪⎝⎭(2)2log 321log lg 2lg 528--+【答案】(1)5(2)1-【详解】(1)()1122222333132282π214154233--⎡⎤⎛⎫⎛⎫-++++-++=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(2)()2log 321log lg 2lg 523lg 2lg 5318--+=--++=-3.求值:(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪ ⎪⎝⎭⎝⎭;(2)2ln3427elog 9log 8lg4lg25-⋅++.【答案】(1)3(2)10【详解】(1)(213103531732248---⎛⎫⎛⎫++-⨯ ⎪⎪⎝⎭⎝⎭()()1132533353122224--=+-⨯+⨯123233122222=+-⨯+⨯12331882+=+-+12=+3=;(2)原式ln 923elog 3log 2lg10091210=-⋅+=-+=;综上,(1)原式=3;(2)原式=10.4.计算:(1)341lg2lg 3lg5log 2log 94-+-⨯;(2)21log 3231lglog 3log log 52100+-⨯++.【答案】(1)2(2)4【详解】(1)341lg2lg 3lg5log 2log 94-+-⨯2232log 9lg2lg23lg5log 2log 4-=-+-⨯32lg22lg23lg5log 2log 3=++-⨯3(lg2lg5)1=+-3lg101=-31=-2=.(2)21log 3231lglog 3log log 52100+-⨯+2log 322222log log 512log 322log 5log 32=--⨯++⨯112622=--++4=.5.求下列各式的值:(1)()10.52332770.02721259-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-;(2)55557log 352log log 7log 1.83-+-.【答案】(1)9100(2)2【详解】(1)原式210.5332333351053-⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦95510033=+-9100=(2)原式5555499log 35log log 7log 95=-+-5499log 35795⎛⎫=÷⨯÷ ⎪⎝⎭5log 252==6.计算:(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭【答案】(1)4-(2)1【详解】(11128125lg 25lg10lg10-⨯⨯=⨯()2lg10112=⨯-4=-;(2)()()2266661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭()()226666log 2log 33log 2log =++⨯()()22666log 2log 33log 2log =++⨯()()226666log 2log 32log 2log 3=++⨯()266log 2log 3=+1=.7.计算或化简下列各式:(1)()1223164⎛⎫-+ ⎪⎝⎭(2)228393(log 3log 9)(log 4log 8log 2)(lg 2)lg 20lg5+++++⨯【答案】(1)3(2)172【详解】(1)原式221111111113332362362222255122ln e 333233422++⎛⎫⎛⎫⎛⎫=⨯-++⨯⨯=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)原式=()22233322log 3log 32log 2log 2log 2lg 2lg 20lg 533⎛⎫⎛⎫+++++⨯ ⎪⎪⎝⎭⎝⎭()()()22235915log 3log 2lg 2lg 20lg5lg 2lg 21lg5322=⨯++⨯=+++⨯()()()215151517lg 2lg 2lg5lg5lg 2lg 2lg5lg5lg 2lg52222=+++=+++=++=8.计算下列各式的值:(1)2237828-⎛⎫--+⎪⎝⎭;(2)2log 331log 27lg2100++.【答案】(1)1π4+(2)92【详解】(1)02237828-⎛⎫--+⎪⎝⎭()23321213π2=-+-+141π34=-+-+1π4=+;(2)21log 33223311l 2og 27lg 2log 3lg10ln e 332310092-++=+++=-=++.9.计算下列各式的值:(1)213112726-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(2)3332log 2log 32log 8-+.【答案】(1)5.5(2)0【详解】(1)原式230.52120.54 5.5=-+-=-+=;(2)原式3333348log 4log 32log 8log log 1032⨯=-+===.10.计算下列两个小题:(1)ln 31e2lg15lg 3++;(2)0.25608π+.【答案】(1)4(2)75【详解】(1)ln 3111e2lg15lg 3lg 2lg15lg 3lg 2154333⎛⎫++=+++=+⨯⨯= ⎪⎝⎭.(2)660.750.2650.25085221289π17=⨯+⨯+=+⨯=++.11.求下列式子的值:(1)()()12623129.684-⎛⎫+--- ⎪⎝⎭.(2)ln334lg252lg2log 16log 3e +-⋅+.【答案】(1)0(2)3【详解】(1)()()()()126203122332129.68931912412 1.05444--⎛⎫+--- ⎪⎝⎭⎛⎫⎡⎤+--- ⎪⎣⎦⎝⎭==+--=(2)ln33434lg252lg2log 16log 3e lg25lg42log log 33lg1002324233+-⋅++-⋅+=-+=-+==12.计算与化简:(1)453log 27log 8log 25⨯⨯(2)12271112333662228a a b a b ---⎛⎫⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)10220.51392(0.01)54-⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭(4)222lg5lg8lg5lg20(lg2)3++⋅+.【答案】(1)9(2)b -(3)5140(4)3【详解】(1)原式3lg 33lg 22lg 592lg 2lg 5lg 3=⨯⨯=;(2)原式12711122363262328a b b-+--⎛⎫⎛⎫⎛⎫- ⎪==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(3)原式131511421040=+⨯-=(4)原式()()22lg 52lg 2lg 5lg 52lg 2lg 2=++++()()22lg 5lg 2lg 2lg 5=+++2213=+=13.(1)21023213(2)(9.6)(3)(1.5)48---+;(2)log 535﹣2log 573+log 57﹣log 595.【答案】(1)12;(2)2【详解】解:(1)21023213(2)(9.6)(3)(1.5)48---+1﹣2327()8+2.25=32﹣1﹣2333(2⎡⎤⎢⎥⎣⎦+2.25=32﹣1﹣94+94=12;(2)log 535﹣2log 573+log 57﹣log 595=log 5[35÷(499)×7÷95]=log 5(35×949×7×59)=log 525=2.14.化简求值:(1)2133325-⎛⎫+ ⎪⎝⎭;(2)7log 2log lg 25lg 47++.【答案】(1)12-(2)112【详解】(1)原式1213331182212122-=-⨯+=-+=-.(2)原式331311log 3lg100222222=++=++=.15.化简或求值:(1)0.5207120.1π93-⎛⎫+-+⎪⎝⎭;(2)7lg142lg lg 7lg183-+-;【答案】(1)101;(2)0;(3)1.【详解】(1)0.5207120.1π93-⎛⎫+-+ ⎪⎝⎭1225151100110011019333⎛⎫=+-+=+-+= ⎪⎝⎭;(2)7lg142lg lg 7lg183-+-27lg14lg lg 7lg183⎛⎫=-+- ⎪⎝⎭9lg 1471849⎛⎫=⨯⨯÷ ⎪⎝⎭lg1=0=;(3211-=.16.计算:(1))()1211610.259-⎛⎫-- ⎪⎝⎭(2)25lg 42lg 5log 5log 8lg10++⨯+.【答案】(1)23-(2)6【详解】(1)原式4214333=--+=-(2)原式2lg 5lg8lg 4lg 51lg 2lg 5=++⨯+3222log 813log 26=++=+=17.计算下列各式的值:(1)()6221103321642e 453π-⎛⎫⎛⎫+--+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)ln 2352log 27lg2lg5log 16log e ---⋅.【答案】(1)2023(2)2【详解】(1)()6221103321642e π453-⎛⎫⎛⎫+--+⨯ ⎪⎪⎝⎭⎝⎭611223243245⎛⎫=+-+⨯ ⎪⎝⎭232345=+⨯2023=.(2)()ln 235log 27lg2lg5log 16log e-+-⋅ln25=31log 16log e --⋅()ln 2521=24log 2log 5e =2222-⋅+-+=2.18.计算下列各题:(1)()20.5312816410.751627---⎛⎫⎛⎫+-÷+ ⎪ ⎪⎝⎭⎝⎭;(2)()70log 23log lg 25lg 479.8+++-.【答案】(1)94(2)132【详解】(1)原式20.523814279999116364416164⎛⎫⎛⎫⎛⎫=-÷+=-+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)原式323100313log 3lg lg 4212lg 4lg 43422=++++=+-++=.19.化简求值(1)1131227(0.002)2)8--⎛⎫+- ⎪⎝⎭;(2)()266661log 3log 2log 18log 4⎡⎤-+⨯÷⎣⎦.【答案】(1)372-(2)1【详解】(1)原式)113131232271350010285002-⨯⎛⎫⎛⎫⎛⎫=+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3372022=+-=-.(2)原式()()266666612log 3log 3log log 63log 43⎡⎤=-++⋅⨯÷⎢⎥⎣⎦()()()26666612log 3log 31log 31log 3log 4⎡⎤=-++-+÷⎣⎦()()22666612log 3log 31log 3log 4⎡⎤=-++-÷⎣⎦()666666621log 3log 6log 3log 212log 2log 2log 2--====.20.(1)计算:1222301322(2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)已知7log 23log 27lg252lg27x a =++-,求33x xx xa a a a--++的值.【答案】(1)12;(2)739.【详解】(1)原式123232223333391991122222444212⎛⎫⎛⎫⎛⎫⎛⎫+=--+=-+=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎡⎤⎡⎤=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎭⎦⎝⎭.(2)()33log 32lg52lg2232lg5lg223223x a =++-=++-=+-=,所以()()()()3322331xx xx x xx xx x x xx xa a aa a a a a a a a a a a -------++⋅-++==+++()()()22222222117311131.39xxxxxx aaaa aa --⎛⎫⎛⎫=+-=+-=+-=+-= ⎪ ⎪⎝⎭⎝⎭21.求值:(1))1213250.02719-⎛⎫+-⎪⎝⎭;(2)2350.2log 27log 82log 10log 4⨯--.【答案】(1)4(2)7【详解】(1))()12131121233255351020.02710.31149310333---⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤+-=+-=+-=+=⎢⎥ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)()13322350.25555ln 3ln 23ln 33ln 2log 27log 82log 10log 42log 25log 22log 212log 292ln 2ln 3ln 2ln 3-⨯--=⨯-⨯-=⨯-++=-=.22.求值:()1220348π49-⎛⎫+-+ ⎪⎝⎭;(2)3323log 54log 2log 3log 4-+⋅.【答案】(1)172;(2)5.【详解】(11215321022532233317(2)(2)1[(]22122248(π4)()9-=++++-+=++=+.(2)322332332322log 454log 54log 2log 3log 4log log 3log 3log 23252log 3-+⋅=+⋅=+=+=.23.计算下列式子(1)()7l 0o 2g lg25+lg4l 79og .8+++-2334lo g log ⨯【答案】(1)132(2)8-【详解】(1)()7l 0o 2g lg25+lg4l 79og .8+++-3233133lg1002122122log =+++=+++=.(22334lo g log ⨯()222log lo 4lg100036281312g log =-⨯=--=-⨯-.24.计算:()031438162-⎛⎫---+ ⎪ ⎪⎝⎭;(2)223lg 2lg 5log log 64++-.【答案】(1)118(2)-2【详解】(1)原式()13314334311111122124488⨯⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=---+=-++= ⎪⎝⎭(2)原式()22lg 25log 32log 312=⨯+---=-25.计算:223327-⋅+;(2)()()()221004lg 2log 2lg 5lg 23++-.【答案】(1)27-(2)1【详解】(1)依题意,223327⋅+()22233433=--⋅+(2224332=--⋅+(224272=--+231227=-+=-(2)()()()221004lg 2log 2lg 5lg 23++-()()4lg 2lg 2lg 5lg 2lg 5lg 23lg100⎛⎫=+++- ⎪⎝⎭4lg 2lg 2lg 5lg 232⎛⎫=++- ⎪⎝⎭43lg 25lg 322=⋅+52lg 2lg2=+25lg 2lg 2=+5lg 412⎛⎫=⋅= ⎪⎝⎭26.求值:(1)01310.0277-⎛⎫+- ⎪⎝⎭;(2)ln 21lg20lg4lg e 5-++.【答案】(1)73;(2)2.【详解】(1)()()111341334170.0270.3120.31273---⎛⎫+-+-=+-=⎪⎝⎭;(2)ln 21201lg20lg4lg e lg 2lg122545⎛⎫-++=⨯+=+= ⎪⎝⎭.27.求值:(1)))2202220223272264-⎛⎫-+-+ ⎪⎝⎭;(2)()9log 1620427log 9log 643lg 2lg 5lg 12022lg 5⨯++⨯+++.【答案】(1)3(2)7【详解】(1)原式()20222162113999++-=++=.(2)原式()3log 4223log 3log 43lg 2lg 5lg 2lg 524lg 2lg 5lg 2lg 5=⨯++⨯++=++++6lg 2lg5617=++=+=.28.计算(1))2log 3lg12lg1001-+-(2))0.523124-⎛⎫+⎪⎝⎭【答案】(1)2;(2)1π3-.【详解】(1))2log 3lg12lg1001-+-)32lg101=-+-321=-+2=;(2))0.523124-⎛⎫+ ⎪⎝⎭20.5233233π22-⎡⎤⎛⎫⎛⎫=+-+⎢⎥ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦13π322-⎛⎫=+-+ ⎪⎝⎭1π3=-.29.计算下列各式的值:(1)11421481⎛⎫+ ⎪⎝⎭;(2)33252log 2log 12l 8og 5log -+⨯.【答案】(1)143(2)2【详解】(1)114211423314813⎛⎫ ⎪⎝⎭=+-=.(2)33252log 2log 12l 8og 5log -+⨯321log log 32381==-+=+.30.求下列各式的值:(1)134440.06425--⎛⎫---⋅⎪⎝⎭(2)2log 3232lg25lg8log 27log 223+-⨯+.【答案】(1)1516(2)2【详解】(1)原式1159151910.41621616=--⨯=--=.(2)原式()232lg52lg23log 3log 232lg5lg2332=+-⨯+=+-+=.31.求解下列问题:(1)2433641)27--⎛⎫++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100--⋅.【答案】(1)2916(2)74-【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.32.计算下列各式的值:(1)2log 23log lg 5lg 22++.(2)cos 20sin 50cos50cos70︒︒-︒︒.【答案】(1)72(2)12【详解】(1)2log 2317log lg 5lg 22lg10222++=++=;(2)cos 20sin 50cos50cos70cos 20sin 50cos50sin 20︒︒-︒︒=︒︒-︒︒()1sin 50202=︒-︒=.33.计算下列各式,写出演算过程(1)1222318324272-⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)5525lg 42lg 52log 10log 20log 5log 8++---⋅.【答案】(1)72(2)12-【详解】(1)解:原式23324344722392992⎡⎤⎛⎫=-+=+-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(2)解:原式()225101ln 53ln 211lg 45log 213202ln 2ln 522=⨯+--⋅=+--=-.34.化简求值:(1)213240330.250.53π)0.0648---⎛⎫⨯--+ ⎪⎝⎭(2)2log 314319lg 25lg 2log 9log 822-++-⨯++.【答案】(1)7318;(2)4.【详解】(1)213240330.250.53π)0.0648---⎛⎫⨯---++ ⎪⎝⎭212433331132124225---⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯--++⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦45731129218=--++=;(2)2log 314319lg 25lg 2log 9log 822-++-⨯++2221221log 322233312log 3lg 5lg 2log 3log 2ln e 22=++-⨯++323314log 3lg 5lg 2log 33log 222=++-⨯++()32314lg 52log 33log 222=+⨯-⨯++41324=+-+=.35.求值:(1)()11202929.3log 443-⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭(2)5log 2lg2lg5lg15+++【答案】(1)1(2)3【详解】(1)()111222029233339.3log 412121432222-⎡⎤⎛⎫⎛⎫⎛⎫---+=--+=--+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)5log 2lg 2lg 5lg15lg1002123+++=++=+=.36.化简求值:1020.5+(2)0.21log 53212lg5log 25lg 4-⎛⎫-++ ⎪⎝⎭.【答案】(1)3(2)2【详解】(1)原式3322=++=(2)原式155log 522lg5log 22lg 25=-++()15log 52112lg 5lg 2log 255-⎛⎫=+-+ ⎪⎝⎭151log 511552⎛⎫-+ ⎪⎝⎭=11255=-+2=37.计算下列各式的值:(1)1013352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭(2)1433log lg 253log 3lg 43+-+【答案】(1)3(2)1【详解】(1)解:113352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭112133334413355⎛⎫⎛⎫=⨯+⨯- ⎪ ⎪⎝⎭⎝⎭11213333443355+⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭;(2)1433log lg 253log 3lg 4+-+343331log 3log 32lg53log 32lg 24=-+-⨯+3312(lg5lg 2)44=-++-12lg101=-+=.38.化简求值:(1)312log 14lg 2lg529-⎛⎫++- ⎪⎝⎭;(2)71113sin cos tan 634πππ++.【答案】(1)32(2)1【详解】(1)原式()1220233lg 25211322-⎡⎤⎛⎫=+⨯-=+-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(2)原式πππsin πcos 4πtan2ππ634⎛⎫⎛⎫⎛⎫=++-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππsincos tan π634⎛⎫=-+++ ⎪⎝⎭11πtan 1224=-++=39.化简或求值(1)11034781(0.064)()()|0.1|816---++-(2)7lg142lg lg 7lg183-+-【答案】(1)3110(2)0(3)5π-【详解】(1)11034781(0.064)()()|0.1|816---++-1310.10.42=-++53112210=-++1310=+31.10=(2)27lg142lg lg 7lg1837lg14lg lg 7lg1839lg 1471849lg10.-+-⎛⎫=-+- ⎪⎝⎭⎛⎫=⨯⨯÷ ⎪⎝⎭==(3)325.πππ+=-+-=--=-40.计算求值(1)2ln 38916log 27log 6log 6e ⨯÷+;(2)419log 8log 34--【答案】(1)11(2)2-【详解】(1)2ln 38916log 27log 6log 6e⨯÷+ln92361log 3log 64log 2e 2=⨯⨯+62236log 22log 392log 3log 2911log 3=⨯+=⨯+=;(2)419log 8log 34--2331log 2log 322=---314222=+-=-.41.计算:(1)()110520.01321π---+;(2)3log 22log 8lg 2lg53++-.【答案】(1)5(2)2【详解】(1)()110520.01321102125π---+=---=;(2)()3log 22log 8lg 2lg 53lg 25223=+++-⨯-=.42.计算:(1)1123182427-⎛⎫-+ ⎛⎫ ⎪⎝⎪⎭⎝⎭(2)2lg 2lg 2lg5(lg5)+⋅+.【答案】(1)94(2)1【详解】(1)解:1123182427-⎛⎫-+ ⎛⎫ ⎪⎝⎪⎭⎝⎭1132233223-⎡⎤⎛⎫-⎢⎥ =⎪⎝⎭⎢⎥⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦1123223323232⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎛⎫= ⎪⎝⎝⎭⎭⎝⎭33992244-+==.(2)解:2lg 2lg 2lg5(lg5)+⋅+()lg 2lg5lg 2lg5=++()lg 2lg 5lg 25=+⋅⨯()lg 2lg 5lg 251=+=⨯=.43.化简求值:)2138227--⎛⎫++⎪⎝⎭;(2)3log 211lg 9lg 240292361lg 27lg 35+-+-+.【答案】π(2)3【详解】(1)原式2335259π32π3π4344⎛⎫⨯- ⎪⎝⎭⎛⎫=-+-=-+++-= ⎪⎝⎭.(2)原式32log 21lglg10lg 3lg 24083414336lg8lg10lg 9lg 5+-=+=+=-+=-+.44.求值:(1)230323(8)π)-+-;(2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯.【答案】(1)2(2)0【详解】(1)2331032223(π)3313212-=-+⨯=-+=(2)()22824log 27(lg 5)(lg 2)lg 5lg log 16log 9+-+⨯32322222log 3(lg 5)(lg 2)2lg 5lg 2log 3=+-+⨯2(lg 5lg 2)1110=+-=-=45.计算:(1)ln 2lg252lg2e ++(2)()20.5133890.1252749--⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭【答案】(1)4(2)19【详解】(1)原式lg25lg42lg1002224=++=+=+=.(2)原式2132(0.5)3()332313724712939⨯⨯-⨯-⎛⎫⎛⎫⎛⎫=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.46.(1)求值:3204161)++;(2)求值:5log 2lg25lg45log +++.【答案】(1)12;(2)112.【详解】(1)原式()343432132112=++=++=(2)原式()323lg 2542log 3=⨯++3lg10022=++112=47.求值:(1)()1430513π38-⎛⎫-- ⎪⎝⎭;(2)()2273log 8log 7log log 81+⨯.【答案】(1)4(2)5【详解】(1)()143015545143π32312381-+⎛⎫-- =+=⎝+⎭-⎪-=;(2)()2273274log 8log 7log log 813log 7log +⨯=+⨯273log 72l 5og 22==++=⨯.48.(1))1334ln 22811e 162022⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭(2)()314163log 4log 2log log 3⎛⎫+ ⎪⎝⎭【答案】(1)5;(2)12.【详解】(1)原式31442433333214152222⨯⎛⎫⎛⎫=++-=++-= ⎪ ⎪⎝⎭⎝⎭.(2)原式()(3344341log 4log 2log log log 2log 32=-=⨯=.49.计算:(1)212232327(1)(()[(3)]28--+⋅+-;(2)232lg5lg 4log 3log 4log +-⋅+【答案】(1)5(2)32【详解】(1)22122233323272349(1)()()[(3)]1()[()]3135283294--+⋅+-=+⋅+=+⨯+=(2)232lg5lg 4log 3log 4log +-⋅+lg 32lg 23332lg 52lg 22(lg 5lg 2)2lg 2lg 3222=+-⨯+=+-+=50.计算下列各式的值:(1)2ln 21elglg 202--;(2)232lg 25lg8log 27log 23+-⨯.【答案】(1)3.(2)1-.【详解】(1)22ln 2ln 2111e lg lg 20e (lg lg 20)4lg(20)4lg10413222--=-+=-⨯=-=-=.(2)2232323232lg 25lg8log 27log 2lg(258)log 27log 2lg103log 3log 22313+-⨯=⨯-⨯=-⨯=-=-.51.化简下列各式:(1)75sincos cos(5)tan 224ππππ++-+;(2)24log 32log 0.252lg 42lg 5⋅++++⋅【答案】(1)-1(2)1592【详解】(1)原式3sincos cos 11011122πππ=+++=-+-+=-.(2)原式421log 322242221log ln e 2lg 4lg55123)log (lg 24lg 4-=++++=++++1159281lg100222=-+++-=.52.计算下列各式的值:(1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)07log 2(9.8)log lg25lg47+-++.【答案】(1)3;(2)132【详解】(1)原式2323334122⎛⎫⨯-- ⎪⎝⎭⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭3=(2)原式()323log 3lg 25421=+⨯++3232=++132=53.计算求值:(1))()140231101108200-⎛⎫-++- ⎪⎝⎭;(2)(42log 923lg 2lg 250082log 9log 4⨯+⨯++⋅.【答案】(1)36(2)9【详解】(1)原式()()43431010220236⎡⎤=++-=+-=⎣⎦;(2)原式()2log 3212lg 32lg 2lg 22lg 528lg 524lg 2lg 3⎛⎫=++⨯++⋅ ⎪⎝⎭()22lg 2lg 52lg 22lg 5342lg 5lg 2lg 52lg 27=++++=+++()2lg 5lg 27279=++=+=.54.计算下列各式的值:(1)(332212234-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭(2)5log 3333322log 4log log 2527-++【答案】(1)1(2)6【详解】(1)(33332221392213424-⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33233233331112222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦(2)5log 3333322log 4log log 2527-++23332log 423log 27333627⎛⎫=÷⨯+=+=+= ⎪⎝⎭55.求下列各式的值:(1)1220.2531222854--⎛⎫⎛⎫+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)158311lglog 9log 125log 10032+--.【答案】(1)56-(2)163-【详解】(1)()112112220.25344311315222812212544266---⎡⎤⎛⎫⎛⎫⎛⎫+⨯-=+⨯-⨯=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)3235158352311516lglog 9log 125log lg10log 9log 5log 22231003233--+--=---=---+=-.56.化简求值:())13320,0a b a b ->>;(2)7log 52225lg5lg 2lg 2lg5log 5log 47+++⨯+.【答案】(1)1(2)7【详解】(1)因为0,0a b >>()31332221b a ab --⎡⎤==⎢⎥⎣⎦,()31333222a a b b --=,所以原式332233221a b a b--==;(2)7log 52225lg5lg 2lg 2lg5log 5log 47+++⨯+()25lg 5lg 2lg 2lg 5log 5log 25=+++⨯+()25lg 5lg 2lg 2lg 5log 5log 25=+++⨯+lg 5lg 2157=+++=.57.计算:(1)21304816π27-⎛⎫-+ ⎪⎝⎭;(2)3ln 22552lg 4lg log 5log 4e 8++⋅+.【答案】(1)154-(2)11【详解】(1)解:原式()231344291521524344-⎡⎤⎛⎫=-+-=--=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(2)解:原式()32ln 25ln 52ln 2lg 4e 128118ln 2ln 5⎛⎫=⨯+⋅+=++= ⎪⎝⎭.58.计算:(1)5log 3311845log 11log 27log 2log 8-⋅++;(2)若33m m --=99m m -+的值.【答案】(1)116(2)9914m m -+=.【详解】(1)原式31122133log 113log 3log 2log 232=-⨯++131133326=-++=.(2)将等式33m m --=99212m m -+-=,则9914m m -+=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与对数的运算
热点一指数运算、化简、求值
1、分数指数幂的概念和运算法则:为避免讨论,我们约定a>0,n,m ∈N *,且m n
为既约分数,分数指数幂可
如下定义:1
n a =
m m n a == -1
m
n m
n a a =
2.有理数指数幂的运算性质
()Q b a ∈>>βα,00,, (1);a a a αβαβ+⋅= (2)();a
a αβαβ= (3)();a
b a b ααα= 当a >0,p 为无理数时,a p 是一个确定的实数,上述有理数指数幂的运算性质仍适用.
3.指数幂的一般运算步骤
有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b 2=(a-b )(a+b ),(a±b )2=a 2±2ab +b2,(a ±b)3=a3±3a 2
b +3a b2±b3,a 3-b 3=(a -b )(a 2+a b+b 2),a 3+b3=(a +b )(a 2-ab +b 2)的运用,能够简化运算. 【例2】1.用分数指数幂形式表示下列各式(式中a>0):
(1
)2a (2
)3a
;
2.计算:11112
00.253473(0.0081)3()81(3)88-----⎡⎤⎡⎤-⨯⋅+⎢⎥⎢⎥⎣⎦⎣⎦; 热点二 对数的运算、化简、求值
1.对数的概念:如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N的对数,记作x =log a N,其中 a 叫做对数的底数, N 叫做真数.(a x=N x=log a N)
(2)对数的性质:①a log a N = N ; ②log aa N
= N (a >0且a ≠1). 3.对数的运算法则:如果 a>0,a ≠1,M>0, N >0 有:
)
()()
(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 4.对数换底公式:a
N N m m a log log log = ( a >0 ,a a≠1 ,m >0 ,m ≠1,N>0). 5.两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a .② b m
n b a n a m log log = 【例3】1.计算:
(1)lo g535-2log 573
+log 57-l og 51.8; (2) (lg5)2+lg 2·lg50.
(3)错误!;
(4)2(l g\r(2))2+lg 错误!·lg5+错误!; 3.计算:log 535+2lo g错误!错误!-log 5错误!-lo g514;
4.设log 34·log48·log8m =log 416,求m;
5.计算:①3log 12.05 , ②4log 16log 327. --。

相关文档
最新文档