物理习题3
物理习题3答案

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J+ (B) 02)(ωR m J J + (C)02ωmRJ(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。
(B )动量不变,动能改变。
(C )角动量不变,动量不变。
(D )角动量改变,动量改变。
(E )角动量不变,动能、动量都改变。
[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度aτ=,法向加速度a n=。
[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。
木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。
题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。
医用物理学课后习题答案

习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。
3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。
(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。
(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒 1.4×10-4m3的快慢由水管自上面放人容器中。
问容器内水面可上升的高度? (0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。
提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
解:该装置结构如图所示。
3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。
(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。
(0.22m·s —1)(2)会不会发生湍流。
(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。
(131Pa)3-12 20℃的水在半径为 1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。
大学物理学 习题三 三大守恒定律

习题三 三大守恒定律院 系: 班 级:_____________ 姓 名:___________ 班级个人序号:______1.质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为[ C ](A) mv . (B)mv . (C) mv . (D) 2mv .2.对功的概念有以下几种说法: [ C ](1) 保守力作正功时,系统内相应的势能增加. (2) 质点运动经一闭合路径,保守力对质点作的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零. 在上述说法中:(A) (1)、(2)是正确的. (B) (2)、(3)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.3. A 、B 两条船质量都为M ,首尾相靠且都静止在平静的湖面上,如图所示.A 、B 两船上各有一质量均为m 的人,A 船上的人以相对于A 船的速率u 跳到B 船上,B 船上的人再以相对于B 船的相同速率u 跳到A 船上. 取如图所示x 坐标,设A 、B 船所获得的速度分别为v A 、v B ,下述结论中哪一个是正确的? [ C ] (A) v A = 0,v B = 0. (B) v A = 0,v B > 0. (C) v A < 0,v B > 0. (D) v A < 0,v B = 0. (E) v A > 0,v B > 0.4. 一人造地球卫星到地球中心O 的最大距离和最小距离分别是R A 和R B .设卫星对应的角动量分别是L A 、L B ,动能分别是E KA 、E KB ,则应有 [ E ](A) L B > L A ,E KA > E KB . (B) L B > L A ,E KA = E KB . (C) L B = L A ,E KA = E KB . (D) L B < L A ,E KA = E KB . (E) L B = L A ,E KA < E KB .5.物体在恒力F 作用下作直线运动,在时间t 1内速度由0增加到v ,在时间t 2内速度由v 增加到2 v ,设F 在t 1内作的功是W 1,冲量是I 1,在t 2内作的功是W 2,冲量是I 2.那么,[ C ](A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1. (C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1.6.质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v(v A > v B )的两质点A 和B ,受到相 同的冲量作用,则[C ](A) A 的动量增量的绝对值比B 的小. (B) A 的动量增量的绝对值比B 的大. (C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等.x237.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为[ B ](A) 20R F . (B) 202R F .(C) 203R F . (D) 204R F .8.质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 [ C ](A) 7 N·s . (B) 8 N·s . (C) 9 N·s . (D) 10N·s .9.如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 [ C ](A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π. (D) 0.10.质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ),从t =2 s 到t =4 s 这段时间内,外力对质点作的功为 [ B ](A) 1.5 J . (B) 3 J . (C) 4.5 J .(D) -1.5 J .二、填空题1. 质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则物体的角速度ω=_____________________.12 rad/s2. 如图所示,轻弹簧的一端固定在倾角为α的光滑斜面的底端E ,另一端与质量为m 的物体C 相连, O 点为弹簧原长处,A 的平衡位置, x 0点沿斜面向上缓慢移动了2x 0距离而到达B ____________________. 2 mg x 0 sin α3.湖面上有一小船静止不动,船上有一打渔人质量为60 kg .如果他在船上向船头走了4.0米,但相对于湖底只移动了 3.0米,(水对船的阻力略去不计),则小船的质量为____________________. 180 kg4. 如图所示,钢球A 和B质量相等,正被绳牵着以4 rad/s 的角速度绕竖直轴转动,二球与轴的距离都为r 1=15 cm .现在把轴上环C 下移,使得两球离轴的距离缩减为r 2=5 cm .则钢球的角速度__________. 36 rad/s参考解:系统对竖直轴的角动量守恒.rad/s 36/22210==r r ωω5.二质点的质量各为m 1,m 2.当它们之间的距离由a 缩短到b 时,它们之间万有引力所做的功为____________.)11(21ba m Gm --6.某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m 的过程中,力F 所做的功为__________.290 J7.两块并排的木块A和B,质量分别为2m 和m ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间均为∆t ,木块对子弹的阻力为恒力F ,则子弹穿出木块B 后,木块B 的速度大小为______________________.4 1.33F t F t3m m∆∆或8.地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常量为G ,则地球绕太阳作圆周运动的轨道角动量为L =_______________.GMR m9.一块木料质量为45 kg ,以 8 km/h 的恒速向下游漂动,一只10 kg 的天鹅以 8 km/h 的速率向上游飞动,它企图降落在这块木料上面.但在立足尚未稳时,它就又以相对于木料为2 km/h 的速率离开木料,向上游飞去.忽略水的摩擦,所有速率均为水平速率,则木料的末速度为________ km/h .5.46 (5.4—5.5均可) 三、计算题1. 一小球在弹簧的作用下振动(如图所示),弹力F = - kx ,而位移x = A cos ωt ,其中k 、A 、ω 都是常量。
大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为0.02s 时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
大学物理习题答案03刚体运动学

⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。
若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。
(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。
(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。
(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。
[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。
(1)021 F F,=0合外F ,动量守恒。
(2)2211r F r F A =合。
21F F,但21r r时0A 外,因此E不⼀定守恒。
(3)21F F,2211d F d F M =合。
两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。
2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。
则物体 (A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) ⾓动量不变,动量不变。
(D) ⾓动量改变,动量改变。
(E)⾓动量不变,动能、动量都改变。
[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。
r 减⼩,v 增⼤。
因此p 、E k 均变化(m不变)。
3. 有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。
[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。
另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。
大学物理习题解答3第三章热力学

第三章热力学本章提要1.准静态过程系统连续经过的每个中间态都无限接近平衡态的一种理想过程。
准静态过程可以用状态图上的曲线表示。
2.内能系统内所有分子热运动动能和分子之间相互作用势能的和,其数学关系式为(,)E E V T=内能是态函数。
3.功功是过程量。
微分形式:VpA dd=积分形式:⎰=21dV VV pA4.热量两个物体之间或物体内各局部之间由于温度不同而交换的热运动能量。
热量也是过程量。
5.热力学第一定律热力学第一定律的数学表达式:Q E A=∆+热力学第一定律的微分表达式:d d dQ E A=+由热力学第一定律可知,第一类永动机是不可能造成的。
6.理想气体的热功转换〔1〕等体过程:d 0A = 热量增量为m m (d )d d V V MQ E C T μ,,==或m 21m 21V ,V ,MQ E E C (T T )μ=-=-〔2〕等压过程: 热量增量为(d )d d d d p Q E A E p V =+=+因m 21()V ME C T T μ∆,-=212121()()V V MA p V p V V R T T μd ==-=-⎰那么)()(21212T T R MT T R i M Q P -+-=μμ 〔3〕等温过程:d 0E =热量增量为(d )d d V Q A p V ==因2121d ln V T V V MV MA RT RT V V μμ==⎰那么2112lnln T T V pMM Q A RT RT V p μμ=== 〔4〕绝热过程:d 0Q = 根据热力学第一定路可得d d 0E A +=那么m d d d d V ,MA p V E C Tμ==-=-或221121m ()d d V V V ,V V MA E E p V C T μ=--==-⎰⎰)(112211V p V p A --=γ 在绝热过程中理想气体的p 、V 、T 三个状态参量之间满足如下关系:常量=γpV常量=-1γTV 常量=--γγT p 17.热容量等体摩尔热容量:m (d )d d d V V Q EC T T,== 等压摩尔热容量:m (d )d d d d d p p Q E VC p TT T,==+ 对于理想气体,假设分子自由度为i ,那么m 2V ,i C R = m 22P,i C R +=迈耶公式:m m p,V ,C C R =+比热容比:m m22p,V ,C i C γ+==8.焓在等压过程中,由热力学第一定律可得2121()()P Q E p V E E V V =∆+∆=-+-由于12P P P ==,上式可写为222111()()P Q E p V E pV =+-+ 如果令H E pV =+21P Q H H H =-=∆焓是一个态函数。
大学物理练习题3动量与能量守恒定律

大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F ϖ作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F ϖ的冲量大小I = ,力F ϖ对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
大学物理习题3-5

度aA和aB分别为:
[]
(A) aA=0, aB=0 ; ( B) aA>0, aB<0 ;
(C) aA<0, aB>0; (D) aA<0, aB=0;
mB g
kx kx
mA g 图1
思路:整体和局部受力分析
F撤销之前,对于整体:匀速运动,系统受力平衡
F (mA mB )g 0
mB
v2 r
0
(有做单摆运动的趋势,
受力分析:
T
T2
mg和T '的合力提供向心力)
T ' mB g cos T :T ' 1 cos2
mg T '
图3
mB g cos
mB g
mB g sin
答案:1/ cos2
5.如图所示,A,B,C三物体,质量分别为M=0.8kg, m=m0=0.1kg,当它们如图a放置时,物体正好做匀速 运动。(1)求物体A与水平桌面的摩擦系数;(2) 若按b放置时,求系统的加速度及绳的张力。
②质点系的功能定理
W外 +W内非 =E2 -E1
即系统机械能的增量等于外力功与内部非保守力功之总和。
③机械能守恒定理 如果W外=0,即系统与外界无机械能交换,同时W内非=0,即系 统内部无机械能与其他形式能量的转换,则系统的机械能始终 保持一个常数,即
Ek E p
说明:
1、动能是状态量,是质点因运动而具有的做功本领。
m0
mM
a m g T M (m m0 ) g
mM
mM
6.质量为m的子弹以速度v0水平射入沙土中,设子 弹所受阻力与速度反向,大小与速度成正比,比例系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习十五 气体动理论基础(一) 班级 学号 姓名
1. 室内生起炉子后温度从15℃升高到27℃ ,而室内气压不变,则此时室内的分子数减少了:
(A) 0.5% ; (B) 4% ;
(C) 9% ; (D) 21% .
[ ]
2.分子平均平动动能与温度的关系式
KT V
m 2
3212
适应条件为:
(A)处于任何状态的气体 ; (B)理想气体 ;
(C)平衡态下的气体 ; (D )平衡态下的理想气体 。
[ ]
3.在容积为10-2m 3的容器中,装有质量为100 g 的气体,若气体分子的方均根速率为200m ·s -1,则气体的压强为______________.
4.容器中储有1mo l 的氮气,压强为1.33Pa,温度为7℃,则:
(1) 1m 3
中氮气的分子数为______________; (2) 容器中氮气的密度为______________;
(3) 1m 3中氮分子的总平动动能为______________.
(玻耳兹曼常量k= 1.38×10-23J ·K -1、 N 2 气的摩尔质量M mol =28×10-3kg ·mo l -1 、 摩尔气体常数R=8.31J ·mo l -1·K -1)
5.容器内有2.66kg 氧气,已知其气体分子的平动动能总和是4.41×105J ,求:
(1)气体分子平均平动动能; (2)气体温度.
(氧气M mol =32×10-3kg ·mo l -1、N 0=6.02×1023mo l -1、k= 1.38×10-23J ·K -1)
6.一氧气瓶的容积为V ,充了气未使用时压强为P 1,温度为T 1;使用后瓶内氧气的质量减少为原来的一半,其压强降为P 2,试求此时瓶内氧气的温度T 2及使用前后分子热运动平均速率之比2
1
v v .
练习十六 气体动力学基础(二) 班级 学号 姓名
1.设某种气体的分子速率分布函数为 f(v),则速率在v 1—v 2区间内的分子的平均速率为:
(A)
⎰
2
1
)(v v dv v vf ; (B) ⎰
2
1
)(v v dv v f v ;
(C)
⎰
⎰
2
1
2
1
v )( /)(v v v dv v f dv v vf ; (D)
⎰
⎰
∞
)( /)(2
1
dv v f dv v f v v .
[ ]
2.气缸内盛有一定量的氢气(可视为理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞次数Z 和平均自由程λ的变化情况是:
(A )Z 和λ都增大一倍; (B )Z 和λ都减为原来的一半; (C )Z 增大一倍而λ减为原来的一半 ; (D) Z 减为原来的一半而λ增大一倍.
[ ] 3.1mo l 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27°C ,这瓶氧气的内能为__________J ;分子的平均平动动能为__________J ;分子的平均总动能为__________J.(摩尔气体常量R=8.31J·mo l -1·K -1 摩尔兹曼常量k=1.38×10-23J·K -1)
4.图1所示曲线处于同一温度T 时氦(原子量4)、氖(原子量
子量40)三种气体分子的速率分布曲线。
其中曲线(a )是气分子的速率分布曲线;曲线(c )是________
5.一飞机在高处测得空气密度为地面空气密度的0.5求飞机所处的高度。
6.有2×10-3m 3刚性双原子分子理想气体,其内能为6.75×102J (1分子的平均平动动能及气体的温度。
(玻耳兹曼常量k=1.38×10-23
练习十七 热力学基础(一) 班级 学号 姓名
1.氮、氖、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使它们在体积不变的情况下吸收相等的热
量,则:
(A)它们的温度升高相同,压强增加相同;
(B)它们的温度升高相同,压强增加不相同 ; (C)它们的温度升高不相同,压强增加不相同;
(D)它们的温度升高不相同,压强增加相同。
[ ]
2.一定量的理想气体,经历某过程后,它的温度升高了。
则根据热力学定律可以断定:
(1) 该理想气体系统在此过程中吸收了热;
(2) 在此过程中外界对该理想气体系统作了正功;
(3) 该理想气体系统的内能增加了;
(4) 在此过程中理想气体系统既从外界吸了热,又对外作了正功。
以上正确的断言是: (A )(1)、(3) ; (B )(2)、(3); (C )(3); (D )(3)、(4);
(E )(4). [ ]
3.某理想气体等温压缩到给定体积时外界对气体作的功|A 1|,又经绝热膨胀返回原来体积时气体对外作功|A 2|,则整个过程中气体:
(1) 从外界吸收的热量Q =______________; (2) 内能增加了ΔE =______________. 4.若理想气体依照2
V
a P
的规律变化,其中a 为常数,则气体体积由V 1膨胀到V 2所做的功为_____________;膨胀时
气体的温度是升高还是降低?______________.
5.气缸内有2mol 氦气,初始温度为27℃,体积为20l ,先将氦气定压膨胀,直至体积加倍,然后绝热膨胀,直至回复初温为止。
若把氦气视为理想气体。
试求:
(1) 在p-V 图上大致画出气体的状态变化过程. (2) 在这过程中氦气吸热多少? (3) 氦气的内能变化多少? (4) 氦气所做的总功是多少?
6.质量为0.02kg 的氦气(视为理想气体),温度由17℃升为27℃,若在升温过程中:
(1) 体积保持不变; (2) 压强保持不变;
(3) 不于外界交换热量.
试分别求出气体内能的改变、吸收的热量、外界对气体所做的功。
练习十八 热力学基础(二) 班级 学号 姓名
1.用公式T C E ∆=∆νν(式中νC 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能增加时,此式:
(A)只适用于准静态的等容过程; (B)只适用于一切等容过程; (C)只适用于一切准静态过程;
(D)适用于一切始末态为平衡态的过程。
[ ]
2.对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比A/Q 等于:
(A )1/3 ; (B )1/4 ;
(C )2/5 ; (D )2/7 。
[ ]
3.某种气体(视为理想气体)在标准状态下的密度为ρ=0.0894kg/m 3,则在常温下该气体的定压摩尔热容C p =_______________
4.图1过程中:
(1)温度升高的是(2)气体吸热的是
5.一定量的某种理想气体进行如图2T A =300K ,求:
(1)气体在状态B 、C (2)(3)和)。
6.1mo l 氦气作如图3为等容过程,。
已知V 1=16.4l , V 2试求:
(1)Ta=?、T b =?、T c =(2)Ec=?;
(3)。