第06天正弦定理的概念-每日一题之2017快乐暑假高二数学(文)人教版Word版含解析

合集下载

15高中数学“正弦定理”知识点全解析

15高中数学“正弦定理”知识点全解析

高中数学“正弦定理”知识点全解析一、引言正弦定理是平面几何与三角函数相结合的一个重要定理,它揭示了三角形边长与角度之间的内在关系。

本文将详细解析“正弦定理”相关知识点,帮助同学们更好地掌握这一内容。

二、正弦定理的定义1.定义:对于任意三角形ABC,设其三个内角分别为A、B、C,对边分别为a、b、c,则有:a/sinA = b/sinB = c/sinC = 2R(R为三角形外接圆的半径)。

这一比例关系被称为正弦定理。

三、正弦定理的证明正弦定理的证明方法有多种,如利用三角形的面积公式、利用向量的数量积等。

其中,通过三角形的面积公式进行证明是一种较为直观的方法。

具体步骤为:首先表示出三角形ABC的面积S,然后利用三角形的面积公式S = 1/2ab·sinC,通过等面积法可以证明正弦定理。

四、正弦定理的应用1.求解三角形的边长:当已知三角形的两个角和对应的两边时,可以利用正弦定理求解第三边。

这是正弦定理最常见的应用之一。

2.求解三角形的角度:当已知三角形的两边和其中一边的对角时,可以利用正弦定理求解三角形的其他角度。

3.判断三角形的形状:通过正弦定理可以判断三角形是否为等边三角形或等腰三角形。

例如,当a/sinA = b/sinB = c/sinC中的比例为1时,三角形为等边三角形。

4.解决与三角形相关的问题:正弦定理在解决与三角形相关的问题中具有广泛的应用,如测量问题、航海问题、建筑设计等。

结合余弦定理,可以更方便地解决一些复杂的几何问题。

五、应用举例1.测量问题:在测量中,经常需要利用正弦定理来求解不可直接测量的距离或角度。

例如,在测量山高时,可以通过测量山脚下的角度和已知的距离,利用正弦定理计算出山的高度。

2.航海问题:在航海中,正弦定理被用于计算船只的航向和航程。

通过测量两地的经纬度差和它们之间的距离,可以利用正弦定理计算出船只的航向和航程。

3.建筑设计:在建筑设计中,正弦定理可以帮助建筑师计算建筑物的角度和边长,以确保建筑物的稳定性和美观性。

正弦定理知识点总结图

正弦定理知识点总结图

正弦定理知识点总结图1. 正弦定理的基本概念正弦定理是指在一个三角形中,三条边和三角形内角之间的关系。

它的数学表达形式如下:a/sinA = b/sinB = c/sinC其中,a、b、c 分别为三角形的三条边的长度,A、B、C 分别表示三角形的三个内角,sinA、sinB、sinC 分别表示三角形的三个内角的正弦值。

2. 正弦定理的应用条件正弦定理适用于任意三角形,无论是锐角三角形、直角三角形还是钝角三角形,都可以使用正弦定理来求解。

正弦定理不仅适用于平面几何中的三角形,还可以应用于空间几何中的四面体以及其他几何图形的相关问题。

3. 正弦定理的推导为了更好地理解正弦定理,我们可以通过几何方法对其进行推导。

下面我将用一个实例来演示正弦定理的推导过程。

假设有一个三角形ABC,其三条边分别为 a、b、c,对应的内角分别为 A、B、C。

现在我们要推导出正弦定理,即 a/sinA = b/sinB = c/sinC。

首先,我们将三角形ABC的边a与边b所对的角分别为C和A,利用正弦函数的定义可以得到以下等式:sinA = b/csinC = a/b将上面两个等式联立起来,可以得到以下关系:sinA/sinC = b/c同理,我们可以利用三角形ABC的边b与边c所对的角B和A,再利用正弦函数的定义可以得到以下等式:sinA = c/bsinB = a/c将上面两个等式联立起来,可以得到以下关系:sinA/sinB = c/a由于 sinA/sinC = b/c,sinA/sinB = c/a,两式取等号可以得到:b/c = c/a进一步化简得到:a/sinA = b/sinB = c/sinC通过上述推导可以看出,正弦定理的推导是基于三角形的边长和内角之间的关系,通过正弦函数的定义可以得到正弦定理的表达式。

4. 正弦定理的应用举例在实际问题中,我们可以通过正弦定理来求解三角形相关的问题。

下面我将通过几个实例来具体展示正弦定理的应用。

正弦定理含义

正弦定理含义

正弦定理含义
摘要:
1.正弦定理的定义和公式
2.正弦定理的应用场景
3.如何使用正弦定理解决问题
4.实际案例分析
正文:
正弦定理是三角形中一个重要的定理,它可以帮助我们解决三角形的相关问题。

正弦定理的含义是:在一个三角形中,任意两角的正弦值之比等于它们所对的边长之比。

用数学公式表示就是:
sinA/sinB = a/b
其中,A、B是三角形的两个角,a和b是与这两个角对应的边长。

正弦定理的应用场景非常广泛,例如在解决三角形的角度、边长问题时,可以使用正弦定理来求解。

此外,正弦定理还可以应用于物理、工程等领域,帮助我们解决实际问题。

要使用正弦定理解决问题,我们需要按照以下步骤进行:
1.确定三角形的两个角和对应的边长。

2.根据正弦定理公式,计算第三个角或边长。

3.利用计算结果,解决问题。

下面我们通过一个实际案例来分析如何使用正弦定理解决问题:
假设一个三角形的两个角分别为30度和45度,其中一个角对应的边长为
3。

我们可以使用正弦定理来求解另一个角对应的边长。

首先,根据正弦定理公式,我们有:
sinA/sinB = a/b
已知sin30°/sin45° = a/3
接下来,我们可以求解sin45°:
sin45° = √2/2
将已知条件代入公式,得到:
sin30°/√2/2 = a/3
解方程,得到:
a = 3√2/2
所以,另一个角对应的边长为3√2/2。

通过这个案例,我们可以看到,正弦定理可以帮助我们轻松地解决三角形相关问题。

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A =,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a,b和A时,解的情况如表:A为锐角A为钝角或直角图形关系式a=b sin Ab sin A<a<ba≥b a>b解的个①②③④数(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式 (1)三角形面积公式S △= ==____________=____________=____________.其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________,A2=__________,从而sin A =____________,cos A=____________,tan A=____________;sin A 2=__________,cos A2=__________, tan A2=+tan B +tan C =__________.(3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin B 2=cos A -C 2⇔2cos A +C 2=cos A -C 2⇔tan A2tan C 2=13.【自查自纠】1.(1)a sin A =b sin B =csin C =2R(2)①2R sin B 2R sin C ②b 2R c2R ③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解 ①一解②二解 ③一解 ④一解(3)余弦 (4)余弦4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b +c )r(2)π-(B +C ) π2-B +C2 sin(B +C ) -cos(B +C ) -tan(B +C ) cos B +C 2 sin B +C21tan B +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________. 解:∵sin B +cos B =2,∴2sin ⎝ ⎛⎭⎪⎫B +π4=2,即sin ⎝ ⎛⎭⎪⎫B +π4=1.又∵B ∈(0,π),∴B +π4=π2,B =π4.根据正弦定理a sin A =b sin B ,可得sin A =a sin Bb =12.∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ),即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°. 【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积. 解:(1)证明:对b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a 应用正弦定理得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,即sin B⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝ ⎛⎭⎪⎫0,3π4,∴B -C =π2.(2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8.∵a =2,A =π4,∴由正弦定理知b =a sin Bsin A =2sin 5π8,c =a sin C sin A =2sin π8.∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22 =2sin 5π8sin π8=2cos π8sin π8=22sin π4=12.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,将上式代入cos B cos C =-b2a +c得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )B .8-4 3C .1解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C+c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cosπ4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1. 【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,cos B =79,所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223. 因为a =c ,所以A 为锐角,所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.类型四 判断三角形的形状 在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以sin A cos B cos A sin B =sin 2Asin 2B ,即sin2A =sin2B . 所以2A =2B ,或2A +2B =π,因此A =B或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22ac b 2+c 2-a 22bc =a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S=900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300,故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则 v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23.据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中, CD =103tan θ,OD =103cos θ.由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°).又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°.由于θ=30°时,tan θ取得最小值,且最小值为33.于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v =282=14(海里/小时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理得ABsinα=BCsin∠BAC,即12sinα=28sin120°,从而sinα=12sin120°28=3314. 1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A+B+C=π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A=sin(B+C),cos A=-cos(B+C),sin A2=cosB+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想."。

正弦定理:描述三角形的边角关系,并可用于测量、几何、三角函数等领域的定理

正弦定理:描述三角形的边角关系,并可用于测量、几何、三角函数等领域的定理

正弦定理:描述三角形的边角关系,并可用于测量、几何、三角函数等领域的定理正弦定理是描述三角形边角关系的一项重要定理。

它不仅可以应用于测量、几何和三角函数等领域,还具有广泛的应用价值。

本文将详细介绍正弦定理的原理和推导过程,并探讨其在实际问题中的应用。

第一章:正弦定理的基本概念1.1 三角形的边角关系三角形是由三条边及其对应的三个角组成的图形。

在三角形中,边与边之间存在一定的关系,同时边与角之间也存在一定的关系。

正弦定理就是描述三角形边角关系的一个重要定理。

1.2 正弦定理的概述正弦定理是描述三角形边角关系的一种数学表达方式。

它可以通过三角形的三个边的长度和对应的角的正弦函数之间的关系来表示。

正弦定理的数学表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形的三条边的长度,A、B、C分别表示对应的三个角的大小。

第二章:正弦定理的推导过程2.1 推导正弦定理的几何方法为了推导正弦定理,我们可以利用三角形的基本几何性质。

首先,根据三角形的内角和定理可知,三角形的三个内角之和为180度。

然后,利用正弦函数的定义可以得到每个角的正弦值。

最后,通过简单的代数运算,我们可以将三角形的边和角的关系表示为正弦定理的形式。

2.2 推导正弦定理的三角函数方法除了几何方法外,我们还可以利用三角函数的性质来推导正弦定理。

首先,根据三角恒等式sin(A+B)=sinAcosB+cosAsinB,我们可以将正弦定理的分子转化为两个三角函数的乘积。

然后,通过简单的代数运算和三角函数的定义,我们可以推导出正弦定理的数学表达式。

第三章:正弦定理的应用3.1 正弦定理在测量中的应用正弦定理在测量领域中有着广泛的应用。

例如,在三角测量中,我们可以利用正弦定理来测量无法直接测量的边长或角度。

通过已知的边长和角度,我们可以利用正弦定理来计算未知的边长和角度。

3.2 正弦定理在几何中的应用正弦定理在几何中也有着重要的应用。

解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案

解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案

解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。

2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 602sin b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD =AC·sinC 752sin(4530)=+45cos30cos45sin 30)=+1)2==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。

正弦定理(课堂使用)

正弦定理(课堂使用)

在三角函数求值中的应用
计算特殊角的三角函数值
对于一些特殊角度(如30°、45°、60°),可以通过正弦定理计算出对应的三 角函数值。
求解复合三角函数的值
通过正弦定理可以将复合三角函数分解为基本三角函数,从而简化计算过程。
05
课堂练习与思考
基础练习题
95% 85% 75% 50% 45%
0 10 20 30 40 5
正弦定理的逆定理
如果一个三角形的三边长与三个角的 正弦值之比相等,则这三个角是三角 形的三个内角。
正弦定理的平方形式
在一个三角形中,任意一边的平方等 于其他两边平方和减去两倍的这两边 与它们所对的角的正弦的乘积。
正弦定理在三角形中的推广
任意三角形的正弦定理
在一个三角形中,任意一边的正弦值等于其他两边长度与相 应角的正弦值的乘积之和除以第三边长度。
总结词:简洁明了
详细描述:通过三角恒等式来证明正弦定理,这种方法简洁明了,能够快速得出结论,适合需要快速理解和应用的场合。
03
正弦定理的推论
特殊角度的正弦值
30度角的正弦值
sin(30°) = 1/2
45度角的正弦值
sin(45°) = √2/2
60度角的正弦值
sin(60°) = √3/2
正弦定理的变形形式
已知三角形的两角及其一角的对 边的正弦值,可以求出该边的长 度。
在三角函数图像和性质中的应用
确定函数周期
正弦函数的周期性决定了其图 像的重复性,通过正弦定理可 以确定函数的周期。
判断函数单调性
正弦函数在某些区间内单调递 增或递减,通过正弦定理可以 判断函数的单调性。
研究函数对称性
正弦函数具有轴对称和中心对 称的特性,通过正弦定理可以 研究这些对称性。

高中数学必修正弦定理

高中数学必修正弦定理
02 优化数据处理方法
采用更精确的数据处理算法,减少数据计算过程 中的误差。
03 完善理论模型
不断改进理论模型,使其更接近实际情况,减少 模型误差。
计算技巧总结与提高
熟练掌握正弦定理的 公式和推导过程,理
解其物理意义。
学会利用图形辅助计 算,将抽象问题具体 化,降低计算难度。
掌握一些常用的数学 方法和技巧,如代数 运算、三角函数性质 等,以便在解决问题 时能够灵活运用。
实际问题中应用举例
在测量问题中,如已知两地之间的距离和方位角,可利用正弦定理求出第三地相对 于前两地的位置。
在航海、地理等领域中,正弦定理可用于计算两点之间的最短距离(即大圆航线) 。
在物理问题中,如已知物体的位移和速度方向之间的夹角,可利用正弦定理求出物 体的合速度。
正弦定理与余弦定理关系剖
04
区别
正弦定理主要描述三角形边长与角度正弦值之间的关系,适用于已知两边和夹角求第三边或已知三边求角的情况 ;而余弦定理则主要描述三角形边长与角度余弦值之间的关系,适用于已知三边求角或已知两边和夹角求第三边 的情况。
综合运用举例
已知三角形的两边长a、b和夹角C,求第三边c的长度。此时可以先利用余弦定理求出c²的 值,再开方得到c的长度。
不同方法间联系与比较
几何法与向量法联系
几何法和向量法都是基于图形和向量的性质进行推导,两种方法在某些步骤上 可以相互转化。
解析法与几何法、向量法比较
解析法更注重数学公式的推导和计算,而几何法和向量法则更侧重于图形和向 量的直观性质。在实际应用中,可以根据问题的具体特点选择合适的方法进行 证明。
正弦定理在解三角形中应用

余弦定理基本概念及表达式
余弦定理定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1【解析】由正弦定理知 ,所以 ,则 ,所以 ,所以 ,故 .
3. 【解析】因为 ,所以 ,又 ,所以 ,即 .
学霸推荐
1.在 中,角A,B,C的对边分别为a,b,c,若a= b,A=2B,则
A. B. C. D.
2.在 中, , ,则 _____________.
3.在 中,角 所对的边分别为 ,已知 ,则 _____________.
1.C【解析】 由正弦定理 及a= b,可得 = .又A=2B,所以 = ,化简可得cosB= ,所以 .故选C.学*
第06天正弦定理的概念
高考频度:★★★★☆难易程度:★★☆☆☆
典例在线
(1)在 中,一定成立的等式是
A.asinA=bsinBB.acosA=bcosBC.asinB=bsinAD.acosB=bcosA
(2)若 中,a=8,A=45°,B=60°,则b的值为
A. B. C. D.
(3) 的内角A,B,C所对的边分别为a,b,c,若sinA= ,b= sinB,则a=
A.3 B. C. D.
【参考答案】(1)C;(2)B;(3)D.
(3Байду номын сангаас由 ,得 .故选D.
【解题必备】(1)正弦定理的概念:在 中,若角A,B,C对应的三边分别是a,b,c,则各边和它所对角的正弦的比相等,即 (注意:正弦定理对任意三角形都成立).
(2)一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.
相关文档
最新文档