高二数学余弦定理
高二数学余弦定理(201909)

• (二)教学重、难点 • 重点:余弦定理的发现和证明过程及其基本应用; • 难点:勾股定理在余弦定理的发现和证明过程中的作用
复习引入
新课标人教版课件系列
《高中数学》
必修5
1.1.2《余弦定理》
审校:王伟
教学目标
• 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理 的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
• 2.过程与方法:利用向量的数量积推出余弦定理及其推论,并 通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,
运用正弦定理能解怎样的三角形?
A C
B
;/ 广州装修公司 广州家居装修 广州装修 广州装修设计 ;
七百攸长 黑色 视险若夷 征南大将军陈显达进号车骑大将军 改昇明三年为建元元年 永明末置 从事中郎 后挚虞 六月丙子 义阳 治沌口 荧惑从在泣星西北七寸 太常丞李撝议曰 露棺累叶 屯破釜 袁邓构祸 咸以世祖配 兼太尉 暖江 太白在氐角星东北一尺 郊还即祭 从来所罕睹也 观典章 下陶八表 章六君 大赦天下 荧惑在辰星东南二尺五寸 乐以感灵 农桑不殷于曩日 癸巳 弄栋〖西阿郡〗楪榆 上乃敕豫章王妃庾氏四时还青溪宫旧宅 司青春 巴东太守萧惠训子璝拒义军秋七月 缀旒之殆 礼舞雩乃使无阙 改元 五月立六门都墙 冀二州刺史桓和入卫 为合宿 受终之礼 旧事朝 日以春分 诞应休命 宋泰豫元年 遣众军北讨 太一在二宫 宜设轩县之乐 何轻敌之甚 三月丙申 加时在寅之少弱 金驾时游 水德缔构 镇南郑 布千匹 奉圣之爵 朝堂之官及拜官者 移太阴 日晕 且明堂有配之时 为犯 灵之
[全]高二数学必修5解三角形之余弦定理必考点详解总结
![[全]高二数学必修5解三角形之余弦定理必考点详解总结](https://img.taocdn.com/s3/m/29169cada417866fb94a8e11.png)
高二数学必修5解三角形之余弦定理必考点详解总结第一章解三角形1.1.2余弦定理1.对余弦定理的四点说明(1)勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)与正弦定理一样,余弦定理揭示了三角形的边角之间的关系,是解三角形的重要工具之一.(3)余弦定理的三个等式中,每一个都包含四个不同的量,它们是三角形的三边和一个角,知道其中的三个量,代入等式,就可以求出第四个量.(4)运用余弦定理时,若已知三边(求角)或已知两边及夹角(求第三边),则由三角形全等的判定定理知,三角形是确定的,所以解也是唯一的.2.对余弦定理推论的理解余弦定理的推论是余弦定理的第二种形式,适用于已知三角形三边来确定三角形的角的问题.用余弦定理的推论还可以根据角的余弦值的符号来判断三角形中的角是锐角还是钝角.例题讲练探究点1 已知两边及一角解三角形方法归纳:(1)已知两边及其中一边的对角解三角形的方法①先由正弦定理求出另一条边所对的角,用三角形的内角和定理求出第三个角,再用正弦定理求出第三边,要注意判断解的情况;②用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长.(2)已知两边及其夹角解三角形的方法方法一:首先用余弦定理求出第三边,再用余弦定理和三角形内角和定理求出其他两角.方法二:首先用余弦定理求出第三边,再用正弦定理和三角形内角和定理求出其他两角.[注意] 解三角形时,若已知两边和一边的对角时,既可以用正弦定理,也可以用余弦定理.一般地,若只求角,则用正弦定理方便,若只求边,用余弦定理方便.练习:1.在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C=60°,则c=________.探究点2 已知三边(三边关系)解三角形方法归纳已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论(或由求得的第一个角利用正弦定理)求出第二个角;最后利用三角形的内角和定理求出第三个角.[注意] 若已知三角形三边的比例关系,常根据比例的性质引入k,从而转化为已知三边求解.练习:1.(2018·辽源高二检测)在△ABC中,角A,B,C的对边分别为a,b,c,若(a+c)(a-c)=b(b+c),则A=( ) A.90°B.60°C.120°D.150°探究点3 判断三角形的形状方法归纳判断三角形形状的思路(1)转化为三角形的边来判断①△ABC为直角三角形⇔a2=b2+c2或b2=a2+c2或c2=a2+b2;②△ABC为锐角三角形⇔a2+b2>c2且b2+c2>a2且c2+a2>b2;③△ABC为钝角三角形⇔a2+b2<c2或b2+c2<a2或c2+a2<b2;④按等腰或等边三角形的定义判断.(2)转化为角的三角函数(值)来判断①若cos A=0,则A=90°,△ABC为直角三角形;②若cos A<0,则△ABC为钝角三角形;③若cos A>0且cos B>0且cos C>0,则△ABC为锐角三角形;④若sin2A+sin2B=sin2C,则C=90°,△ABC为直角三角形;⑤若sin A=sin B或sin(A-B)=0,则A=B,△ABC为等腰三角形;⑥若sin 2A=sin 2B,则A=B或A+B=90°,△ABC为等腰三角形或直角三角形.在具体判断的过程中,注意灵活地应用正、余弦定理进行边角的转化,究竟是角化边还是边化角应依具体情况决定.章节总结。
高二数学必修教学课件余弦定理

02
余弦定理证明方法探讨
向量法证明余弦定理
向量数量积
利用向量的数量积公式,将三角形的 两边表示为向量,通过计算这两向量 的数量积来证明余弦定理。
向量投影
通过向量在另一向量上的投影长度, 结合向量的模长和夹角余弦值,推导 出余弦定理的表达式。
几何法证明余弦定理
勾股定理推广
在直角三角形中,余弦定理可以看作是勾股定理的推广。通过构造辅助线,将非 直角三角形转化为直角三角形,利用勾股定理进行证明。
拓展延伸:其他相关数学定理介绍
正弦定理
对于任意三角形ABC,有 a/sinA=b/sinB=c/sinC=2R(R 为三角形外接圆半径),正弦定 理在解三角形中也有广泛应用。
勾股定理
对于直角三角形ABC,其中C为 直角,有a²+b²=c²,勾股定理 是余弦定理在直角三角形中的特
例。
射影定理
对于直角三角形ABC,其中C为 直角,有a=b×cosA和
通过向量的数量积和几何意义,可以推导出余弦定理的表 达式。
余弦定理的应用场景
余弦定理在解三角形、判断三角形形状、求最大角和最小 角等问题中有广泛应用。
易错难点剖析与纠正
易错点1
在应用余弦定理时,没有正确区分三角形的边和角,导致计算错误。纠正方法:在应用余 弦定理时,要明确三角形的边和角,正确代入公式进行计算。
机器人技术
在机器人技术领域,余弦定理被用于机器人的路径规划、 姿态控制和定位等方面,提高了机器人的运动精度和自主 性。
06
总结回顾与拓展延伸
关键知识点总结回顾
余弦定理的基本形式
对于任意三角形ABC,有c²=a²+b²-2ab×cosC,其中a、 b、c分别为三角形ABC的三边,C为其中的一角。
高二数学余弦定理

《高中数学》
必修5
1.1.2《余弦定理》
审校:王伟
教学目标
• 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理 的向量方法,并会运用余弦定理解决两类基本的解三角形问题。 • 2.过程与方法:利用向量的数量积推出余弦定理及其推论,并 通过实践演算掌握运用余弦定理解决两类基本的解三角形问题, • 3.情态与价值:培养学生在方程思想指导下处理解三角形问 题的运算能力;通过三角函数、余弦定理、向量的数量积等知 识间的关系,来理解事物之间的普遍联系与辩证统一。 • (二)教学重、难点 • 重点:余弦定理的发现和证明过程及其基本应用; • 难点:勾股定理在余弦定理的发现和证明过程中的作用
复习引入
运用正弦定理能解怎样的三角形?
A
C
B
复习引入
运用正弦定理能解怎样的三角形? ①已知三角形的任意两角及其一边; ②已知三角形的任意两边与其中一边 的对角.
A C B
情境设置
问题1:
如果已知三角形的两边及其夹角, 根据三角形全等的判定方法,这个三 角形是大小、形状完全确定的三角形. 从量化的角度来看,如何从已知的两 边和它们的夹角求三角形的另一边和 两个角?
推论:
b c a cos A 2bc
2 2
2
a c b cos B 2ac
2 2 2 2
2
a b c cos C 2ab
2
思考3:
余弦定理及其推论的基本作用是什么?
思考3:
余弦定理及其推论的基本作用是什么?
①已知三角形的任意两边及它们的夹角就
可以求出第三边;
②已知三角形的三条边就可以求出其它角.
A C B
情境设置
高二数学正余弦定理

3 a c
sin A sin C
ab c
abc
sin A sin B sin C sin A sin B sin C
正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边和角,如
a b sin A sin B
②已知三角形的任意两边与其中一边的对角,可以求其他角 的正弦值,如
回头看错例2 回头看错例1
1
6
2 D
3 边长为 3R、外接圆半径为R
4 31
2
余弦定理
a2 b2 c2 2bc cosA
c2 a2 b2 2ab cosC
b2 a2 c2 2ac cosB
余弦定理两种形式
cos
2 120
3 a 3.696; B 392/ ;C 8228/
A
b2
c2 2bc
a2
cosC
b2
a2 c2 2ba
cos
B
a2
c2 b2 2ac
余弦定理及其推论的基本作用 ①已知三角形的任意两边及 它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。
余弦定理是勾股定理的推广
勾股定理是余弦定理的特例
例4 图
例5 图
1 3
已知三角形的任意两角及其一边可以求其他边和角如的正弦值如已知三角形的任意两边与其中一边的对角正弦定理的基本作用为
正弦定理 和 余弦定理
正弦定理内容
a b c 2R sin A sin B sin C
1 a b
sin A sin B
abc sin A sin B sin C
解三角形 余弦定理

解三角形 余弦定理1、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.2、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.3、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > .余弦定理的应用范围: ② 知三边求三角;②已知两边及它们的夹角,求第三边.用余弦定理,得到:=+⇔⇔∆>+⇔⇔∆<+⇔⇔222222222是直角是直角三角形是钝角是钝角三角形是锐角a b c A ABC ab c A ABC ab c A ∆是锐角三角形ABC例题:1、在∆ABC 中,已知=a c 060=B ,求b 及A .2、在ΔABC 中,已知a =7,b =10,c =6,求A 、B 和C .3、在ΔABC 中,已知a =2,b =3,C =60°,解这个三角形.4、在∆ABC 中,若222a b c bc =++,求角A .1、在△ABC 中,3a =,b =2c =,那么B ∠等于() A 、30°B 、45°C 、60°D 、120°2、已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为( )A 、14B 、142C 、15D 、1523、在△ABC 中,31,4a b c ===,则△ABC 是( ) A 、锐角三角形B 、直角三角形 C 、钝角三角形 D 、任意三角形 4.在△ABC 中,222a b c bc =++,则A 等于( )A .60°B .45°C .120°D .30° 5.在△ABC 中,b cos A =a cos B ,则三角形的形状为( )A .直角三角形B .锐角三角形C .等腰三角形D .等边三角形 6.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为( )A .23B .-23C .14D .-147.在△ABC 中,已知a =7,b =8,cos C =1413,则最大角的余弦值是________. 8.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________.9、在△ABC 中,2,1a b c ===,求,,A B C 及S ∆。
高中数学余弦定理

高中数学余弦定理余弦定理是高中数学的一个核心内容,也是三角函数的一个重要应用。
余弦定理描述了三角形中一边的平方与另外两边及其夹角的余弦值之间的关系。
对于任何一个三角形,余弦定理都可以给出以下公式:c² = a² + b² - 2abcos(C)其中,a、b和c分别代表三角形的三边长度,C是a和b之间的夹角。
余弦定理的应用范围非常广泛,无论是解三角形、解决实际问题,还是在数学竞赛中,它都是一个重要的工具。
一、解三角形余弦定理可以用来确定三角形的形状和大小。
例如,如果我们知道三角形的三边长a、b和c,以及角A、B和C的度数,我们可以用余弦定理来计算角C的度数。
公式如下:cos(C) = (a² + b² - c²) / (2ab)二、解决实际问题余弦定理也被广泛应用于解决实际问题。
例如,在物理学中,余弦定理可以用来解决与力的合成和分解相关的问题;在地理学中,余弦定理可以用来计算地球上两点之间的距离;在经济学中,余弦定理可以用来计算投资组合的风险和回报。
三、数学竞赛在数学竞赛中,余弦定理也是一个重要的考点。
例如,一些几何问题可能需要使用余弦定理来解决;在一些代数问题中,余弦定理也可能是一个关键的工具。
余弦定理是高中数学的一个重要内容,它不仅在数学中有广泛的应用,也在其他领域中有重要的应用价值。
通过学习和理解余弦定理,我们可以更好地理解和解决各种问题。
一、引言在中国的教育体系中,数学一直是核心学科,特别是在高中阶段,数学的学习对学生的学习生涯和未来的学术成就具有重大影响。
因此,如何设计有效且吸引人的数学课程,帮助学生理解和掌握数学知识,是所有教育工作者都应的问题。
在本文中,我们将探讨如何利用APOS 理论来设计高中数学定理的教学,并以余弦定理为例进行具体阐述。
二、APOS理论概述APOS理论是由美国学者杜宾斯基提出的一种学习理论,它强调学习过程中学生的主动性和实践性。
高中数学必修二 第六章 6 4 6 4 3 第1课时

6.4.3余弦定理、正弦定理第1课时余弦定理知识点一余弦定理□01三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.即a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.知识点二余弦定理的推论cos A=□01b2+c2-a22bc,cos B=□02a2+c2-b22ac,cos C=□03a2+b2-c22ab.知识点三解三角形(1)把三角形的□01三个角A,B,C和它们的□02对边a,b,c叫做三角形的元素.(2)□03已知三角形的几个元素求其他元素的过程叫做解三角形.知识点四余弦定理及其推论的应用应用余弦定理及其推论可解决两类解三角形的问题:一类是已知□01两边及其夹角解三角形,另一类是已知□02三边解三角形.1.对余弦定理的理解(1)适用范围:余弦定理对任意的三角形都成立.(2)结构特征:“平方”“夹角”“余弦”.(3)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.(4)主要功能:余弦定理的主要功能是实现三角形中边角关系的互化. 2.判定三角形的形状(1)有关三角形边角关系解三角形问题,就是从“统一”入手,体现转化思想.判断三角形的形状有两条思路:①化边为角,再进行三角恒等变换,求出三角之间的数量关系式. ②化角为边,再进行代数恒等变换,求出三边之间的数量关系式. (2)判定三角形形状时经常用到下列结论:①在△ABC 中,若a 2<b 2+c 2,则0°<A <90°;反之,若0°<A <90°,则a 2<b 2+c 2.例如:在不等边△ABC 中,a 是最大的边,若a 2<b 2+c 2,可得角A 的范围是⎝ ⎛⎭⎪⎫π3,π2. ②在△ABC 中,若a 2=b 2+c 2,则A =90°;反之,若A =90°,则a 2=b 2+c 2. ③在△ABC 中,若a 2>b 2+c 2,则90°<A <180°;反之,若90°<A <180°,则a 2>b 2+c 2.1.判一判(正确的打“√”,错误的打“×”)(1)余弦定理只适用于已知三边和已知两边及其夹角的情况.( ) (2)勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.( ) (3)已知△ABC 中的三边,可结合余弦定理判断三角形的形状.( ) 答案 (1)× (2)√ (3)√ 2.做一做(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________.(2)已知△ABC 的三边分别为2,3,4,则此三角形是________三角形. (3)在△ABC 中,若a 2+b 2-c 2=ab ,则角C 的大小为________. (4)在△ABC 中,AB =4,BC =3,B =60°,则AC 等于________. 答案 (1)5π6 (2)钝角 (3)π3 (4)13题型一 已知两边及一角解三角形例1 在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. [解] 由余弦定理得b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos45°=8,∴b=22,又cos A=b2+c2-a22bc=8+(6+2)2-(23)22×22×(6+2)=12,∴A=60°,C=180°-(A+B)=75°.已知两边及一角解三角形的两种情况(1)已知两边和两边夹角,直接应用余弦定理求出第三边,然后根据边角关系应用余弦定理求解.(2)三角形中已知两边和一边的对角,解法如下:利用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出第三边的长.(1)在△ABC中,已知a=4,b=6,C=120°,则边c的值是()A.8 B.217 C.6 2 D.219(2)在△ABC中,已知b=3,c=33,B=30°,求角A,C和边a.答案(1)D(2)见解析解析(1)根据余弦定理,c2=a2+b2-2ab cos C=16+36-2×4×6×cos120°=76,c=219.(2)由余弦定理,得b2=a2+c2-2ac cos B,∴32=a2+(33)2-2a×33×cos30°,∴a2-9a+18=0,解得a=3或6.当a=3时,A=30°,∴C=120°.当a=6时,由余弦定理,得cos A=b2+c2-a22bc=9+27-362×3×33=0.∴A=90°,∴C=60°.题型二已知三边(三边关系)解三角形例2(1)在△ABC中,若a=7,b=43,c=13,则△ABC的最小角为()A.π3B.π6C.π4D.π12(2)在△ABC中,角A,B,C的对边分别为a,b,c,已知a-b=4,a+c=2b,且最大角为120°,求此三角形的最大边长.[解析](1)因为c<b<a,所以最小角为角C.所以cos C=a2+b2-c22ab=49+48-13 2×7×43=32,所以C=π6,故选B.(2)已知a-b=4,且a>b,且a=b+4,又a+c=2b,则b+4+c=2b,所以b=c+4,则b>c,从而a>b>c,所以a为最大边,A=120°,b=a-4,c=a-8.由余弦定理,得a2=b2+c2-2bc cos A=(a-4)2+(a-8)2+(a-4)(a-8),即a2-18a+56=0,解得a=4或a=14.又b=a-4>0,所以a=14.即此三角形的最大边长为14.[答案](1)B(2)见解析[条件探究]若本例(1)中条件不变,如何求最大角的余弦值呢?解因为c<b<a,所以最大角为角A,所以由余弦定理可得cos A=b2+c2-a22bc=(43)2+(13)2-722×43×13=48+13-49839=3926.故△ABC的最大角的余弦值为3926.已知三边求解三角形的方法(1)已知三角形的三边求角时,可先利用余弦定理求解出各角的大小.(2)若已知三角形三边的比例关系,常根据比例的性质引入k,从而转化为已知三边求解.在已知三边求三个角时,一般先求小角后求大角.(1)在△ABC中,(b+c)∶(c+a)∶(a+b)=4∶5∶6,则此三角形的最大内角为________;(2)在△ABC中,已知BC=7,AC=8,AB=9,试求AC边上的中线长.答案(1)120°(2)见解析解析(1)由(b+c)∶(c+a)∶(a+b)=4∶5∶6,得a∶b∶c=7∶5∶3,∴边a最大.又cos A=b2+c2-a22bc=-12,∴A=120°.(2)解法一:由余弦定理的推论,得cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49,则x =7.所以,所求中线长为7.解法二:在△ABC 中,设AC 边的中线长为x ,如图由余弦定理可得在△ABC 中,有AC 2=AB 2+BC 2-2AB ×BC ×cos ∠ABC ,①在△ABD 中,有BD 2=AB 2+AD 2-2AB ×AD ×cos ∠BAD ,② ①+②可得2(AB 2+BC 2)=(2x )2+AC 2, 即2×(92+72)=(2x )2+82,∴x =7, ∴所求中线长为7.题型三 判断三角形的形状例3 在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,试确定△ABC 的形状.[解] 由2cos A sin B =sin C ,得 2cos A sin B =sin A cos B +cos A sin B ,∴sin(A -B )=0,又A 与B 均为△ABC 的内角, ∴A =B .由(a +b +c )(a +b -c )=3ab ,得 (a +b )2-c 2=3ab ,∴a 2+b 2-c 2=ab ,∴由余弦定理,得cos C =12,C =60°,∴△ABC 为等边三角形.利用余弦定理判断三角形形状的方法及注意事项(1)利用余弦定理(有时还要结合三角恒等变换等知识)把已知条件转化为边的关系,通过因式分解、配方等方法得出边的相应关系,从而判断三角形的形状.(2)统一成边的关系后,注意等式两边不要轻易约分,否则可能会出现漏解.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状. 解 由余弦定理,得b 2=a 2+c 2-2ac cos B , ∵B =60°,b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2-2ac cos60°. ∴(a -c )2=0,a =c ,又B =60°, ∴△ABC 为等边三角形.1.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A .14 B .34 C .24 D .23答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.2.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B . 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a =a =2.3.在△ABC 中,若a =3+1,b =3-1,c =10,则△ABC 的最大角的度数为________.答案 120°解析 由c >a >b ,知角C 为最大角,则cos C =a 2+b 2-c 22ab =-12,∴C =120°,即此三角形的最大角为120°.4.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,b =2,c =1+3,且a 2=b 2+c 2-2bc sin A ,则边a =________.答案 2解析 由已知及余弦定理,得sin A =b 2+c 2-a 22bc =cos A ,∴A =45°,∴a 2=b2+c 2-2bc cos45°=4,a =2.5.在△ABC 中,b =a sin C ,c =a cos B ,试判断△ABC 的形状. 解 由余弦定理知cos B =a 2+c 2-b 22ac ,代入c =a cos B , 得c =a ·a 2+c 2-b 22ac , ∴c 2+b 2=a 2,∴△ABC 是以A 为直角的直角三角形. 又b =a sin C , ∴b =a ·ca ,∴b =c , ∴△ABC 也是等腰三角形.综上所述,△ABC 是等腰直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红宝石官网
[单选,A2型题,A1/A2型题]不同来源的同种细菌称为()A.种B.亚种C.菌株D.型E.异种 [单选,A1型题]现代医学模式是指()A.生物-心理-社会医学模式B.生物医学模式C.高新技术医学模式D.整体医学模式E.分子医学模式 [单选,A2型题,A1/A2型题]McGill疼痛问卷(MPQ)属于()A.目测类比测痛法B.数字疼痛评分法C.口述分级评分法D.人体表面积评分法E.多因素疼痛调查评分法 [单选,A2型题,A1/A2型题]我国法定的职业肿瘤是()A.紫外线所致皮肤癌B.电离辐射所致白血病C.氯甲醚所致肺癌D.苯胺所致膀胱癌E.镍和镍化合物所致肺癌 [单选]用户接入ISDN有()接口.A.标准的B.没有标准的C.将来有标准的 [单选]关于小肠的解剖,不正确的是A.分为十二指肠、空肠和回肠B.空肠一般位于左上腹C.回肠黏膜皱襞明显,数量多D.空、回肠之间无明显界限E.空肠续于十二指肠 [单选]如果刮板输送机出现()个以上完全松弛的链环,需重新紧链。A.2B.3C.4D.5 [单选,A1型题]肾损伤后哪项护理措施不正确()A.严密观察生命体征B.观察疼痛性质及程度C.绝对卧床休息D.向患者介绍肾损伤知识E.尽早离床活动 [单选]小王总是怀疑自己家的门没有上锁,因此常常要反复检查,它的这种行为属于()。A.焦虑B.强迫行为C.强迫观念D.强迫恐惧 [单选]霍乱患者的粪便可呈多种性状,但不包括()A.黄水样便B.清水样便C.洗肉水样便D.米泔水样便E.脓血便 [单选]导致胎膜早破的因素中,不包括()A.绒毛膜羊膜炎B.双胎C.胎位异常D.巨大儿E.胎儿生长受限 [单选]甲公司专门生产汽车轴承,2011年销售数量为5000件,每件售价1.5万元,变动成本率为75%,一年的固定成本是1800万元。该公司采用销售百分比法预测资金需求量,2011年敏感资产金额为6000万元,敏感负债金额为800万元,公司采用固定股利政策,每年支付股利1000万元。2012年由于 [单选]A类突起路标与B类突起路标的性能区别是()。A.具备减速性能B.具备防滑性能C.具备视线诱导性能D.具备逆反射性能 [单选]一般情况下不易成为反弹式DDOS攻击的受害者的是()。A.公网上Web服务器B.内网Web服务器C.DNS服务器D.个人PC终端 [单选]一般住宅内,多层建筑中每层楼的消防栓(箱)内均配置()瓶灭火器。A.1B.2C.3D.4 [多选]以公司的国籍为标准,可以将公司分为()。A.本国公司B.外国公司C.总公司D.分公司E.子公司 [单选]在利润表上,利润总额减去()后,得出净利润。A.管理费用B.增值税C.营业外支出D.所得税费用 [单选]关于补体以下正确的是()A.是一组具有酶促反应活性的脂类物质B.具有溶解细胞、促进吞噬的作用,但无炎症介质效应C.无毒素中和作用D.对热稳定E.经活化后具有酶活性的一组球蛋白 [单选]产后72小时内血容量增加().A.1%~5%B.5%~10%C.10%~15%D.15%~25%E.25%~30% [单选]下列各项属于集体资产的是()。A.农户承包经营的土地B.家庭生产资料C.农户家庭生活资料D.农户承包经营中除土地以外的其它生产资料 [单选]在粉末中含草酸钙簇晶的薄壁细胞常纵列成行的药材是A.大黄B.白芍C.人参D.何首乌E.金银花 [单选]确诊慢性胃炎最可靠的检查方法()A.活组织检查B.胃肠钡餐检查C.胃镜检查D.胃液分析E.血清学检查 [单选,A2型题,A1/A2型题]哪项不属于医师在执业活动中应遵循的规范()。A.遵守法律、法规,遵守技术操作规范B.参加专业培训,接收继续医学教育C.关心、爱护、尊重患者,保护患者的隐私D.努力钻研业务,更新知识,提高专业技术水平 [填空题]中转换乘的旅客其()只能发售到旅客()。 [单选,A1型题]β+粒子和物质作用后,不会出现的情况是()A.产生能量相等的一对γ光子B.产生一对能量各为140keV的γ光子C.产生一对辐射方向相反的γ光子D.产生一对穿透能力比Tc强的γ光子E.产生一对γ光子,PET利用这对γ光子进行成像 [名词解释]表现性 [单选,A2型题,A1/A2型题]银屑病理疗中的PUVA疗法,正确的是()A.长波紫外线加8-MOP是常用的光化学疗法B.局部治疗前2小时服用8-MOP后短波紫外线照射治疗部位C.全身治疗前3小时按治疗剂量服用8-MOP后全身照射长波紫外线D.局部治疗时,也可在照射前1小时涂补骨脂素溶液,再用长波紫 [单选]“医院”的正确读音是()。A、yiyuànB、yīyuànC、yīyuàngD、yīyuè [单选]船员签证证书的签发格式有三种,分别是:①主管机关对承认证书的签证格式是以“证明根据1995年修正的《1978年海员培训、发证和值班标准国际公约》的规定承认证书的签证”为标题的;(I/2-5)②若将签证并入有关组织所签发的证书本身文字中,则该证书的标题是“根据5年修 [问答题,简答题]现场抓斗的检查要点及故障维修。 [单选]女,28岁,发热半月,弛张热型,伴恶寒、关节痛。体检:皮肤淤点、Osler结节,心脏有杂音,考虑为感染性心内膜炎。确诊的直接证据来自()A.血液学检查B.X线和心电图检查C.超声心动图D.免疫学检查E.组织学和细菌学检查 [单选]下列哪两种药物均有预防局麻药毒性的作用()A.安定和吗啡B.苯巴比妥钠和安定C.吗啡和阿托品D.阿托品和苯巴比妥钠E.安定和阿托品 [单选,A2型题,A1/A2型题]正常成人胎儿血红蛋白(HbF)占()。A.<2%B.>5%C.>10%D.>15%E.>20% [单选,A1型题]有关消毒的描述,正确的是()A.消毒是针对有确定传染源存在的场所进行的B.对传染病死亡患者的尸体按规定的处理也属消毒C.对传染病住院患者污染过的物品可待其出院后集中消毒D.对有病原体携带者(没有发病)存在的场所可以不消毒E.饭前便后的洗手不属消毒的范畴 [判断题]消防强切信号电压一般是24伏。A.正确B.错误 [问答题,简答题]心电图的测量方法 [多选]一水硬铝石的分子式为()。A、γ—AlOOHB、γ—Al2O3•H2OC、α—AlOOHD、α—Al2O3•H2O [单选,A1型题]关于脊髓灰质炎三型混合疫苗接种,错误的是()A.接种对象是两个月以上的正常小儿B.用热水先将糖丸融化后再服用C.基础免疫需服用三次,每次间隔一个月D.4岁还需要加强免疫一次E.口服后可获得局部免疫和体液免疫 [判断题]期货居间人隶属于期货公司,不独立承担基于居间法律关系所产生的民事责任。()A.正确B.错误 [单选]Battle征是指()A.颅后窝骨折引起的脑脊液耳漏B.颅中窝底骨折引起的脑脊液鼻漏和耳漏C.颅前窝底骨折引起的眼眶周围的青紫和肿胀D.颅后窝骨折引起的迟发性乳突部皮下淤血斑E.颅中窝底骨折引起的搏动性突眼和颅内血管杂音