不等式的均值定理
高中数学均值不等式

(一) 知识内容1.均值定理:如果,a b +∈R (+R 表示正实数),那么2a bab +≥,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式.2.对于任意两个实数,a b ,2a b+叫做,a b 的算术平均值,ab 叫做,a b 的几何平均值. 均值定理可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.3.两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.<教师备案>1.在利用均值定理求某些函数的最值时,要注意以下几点:⑴函数式中的各项必须都是正数,在异号时不能运用均值不等式,在同负时可以先进行 转化,再运用均值不等式;⑵函数式中含变数的各项的和或积必须是常数;⑶只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由 均值不等式求最值,只能用函数的单调性求最值. 运用均值不等式的前提有口诀:一正二定三相等. 2.均值不等式的几何解释:半径不小于半弦.⑴对于任意正实数,a b ,作线段AB a b =+,使,AD a DB b ==;⑵以AB 为直径作半圆O ,并过D 点作CD AB ⊥于D , 且交半圆于点C ;⑶连结,,AC BC OC ,则2a bOC +=,∵,AC BC CD AB ⊥⊥ ∴CD AD BD ab =⋅=, 当a b ≠时,在Rt COD ∆中,有2a bOC CD ab +=>=.当且仅当a b =时,,O D 两点重合,有2a bOC CD ab +===. 3.已知:a b +∈R 、(其中+R 表示正实数),有以下不等式:22221122a b a b a b ab a b ⎛⎫+++ ⎪ ⎪⎝⎭+≥≥≥≥ 其中222a b +称为平方平均数,2a b+称为算术平均数,ab 称为几何平均数,211a b+称为调和平均数.CO DBA均值不等式证明:()2221024a b a b +⎛⎫-=- ⎪⎝⎭≥∴222a b +⎛⎫ ⎪⎝⎭≥ ∵a b +∈R 、,2a b+,当且仅当“a b =”时等号成立.221024a b +-=⎝⎭≥ ∴22a b +⎝⎭≥,当且仅当“a b =”时等号成立.∵22104⎝⎭≥ ∴2⎝⎭,当且仅当“a b =”时等号成立. 2211ab a ba b=++=211a b+,当且仅当“a b =”时等号成立.了解这组不等式对解决一些不等式的证明题会有帮助,可选择性介绍.(三)典例分析:1.基础不等式【例1】 1.“0a b >,且a b ≠”是“222a b ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件2. 0a ≥,0b ≥,且2a b +=,则( )A .12ab ≤B .12ab ≥ C .222a b +≥ D .223a b +≤【变式】 设a b c ,,是互不相等的正数,则下列等式中不恒成立....的是( ) A .||||||a b a c b c --+-≤ B .2211a a a a++≥ 1【例2】 设a 、b 为非零实数,若a b <,则下列各式成立的是( )A .22a b <B .22ab a b <C .2211ab a b <D .b aa b<【变式】 若110a b <<,则下列不等式①a b ab +<②||||a b >③a b <④2b aa b +>中,正确的不等式有( )A .1个B .2个C .3个D .4个【变式】 设a 、b 、c 、d 、m 、n 均为正实数,P Q =,那么( )A .P Q ≥B .P Q ≤C .P Q <D .P 、Q 间大小关系不确定,而与m 、n 的大小有关【变式】 若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥【例3】 设实数a 、b 满足0a b <<,且1a b +=,则下列四数中最大的是( )A .12B .22a b +C .2abD .a【例4】 正实数a 、b 、c 满足a d b c +=+,a d b c -<-,则( )A .ad bc =B .ad bc <C .ad bc >D .ad 与bc 大小不定【例5】 已知a b c >>2a c-的大小关系是________.【例6】 已知实数x 、y 、z 满足条件0x y z ++=,0xyz >,设111T x y z=++,则( ) A .0T >B .0T =C .0T <D .以上都可能【例7】 若10a b >>>,以下不等式恒成立的是( )A .12a b+> B .12b a+> C .1lg 2a b b + D .1lg 2b a a +2.不等式最值问题【例8】 若0x >,则423x x++的最小值是_________.【例9】 设a 、b ∈R ,则3a b +=,则22a b +的最小值是_________.【例10】 若a 、b +∈R ,且1a b +=,则ab 的最大值是_________.【例11】 已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意正实数x y ,恒成立,则正实数a 的最小值为( )A .8B .6C .4D .2【例12】 当___x =时,函数22(2)y x x =-有最 值,其值是 .【例13】 正数a 、b 满足9a b=,则1a b +的最小值是______.【例14】 若x 、*y ∈R 且41x y +=,则x y ⋅的最大值是_____________.【变式】 设0,0x y ≥≥,2212y x +=,则_________.【变式】 已知0x >,0y >,1x y +=,则1111x y ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的最小值为【例15】 设0a b >>,那么21()a b a b +-的最小值为( )A .2B .3C .4D .5【变式】 设221x y +=,则()()11xy xy -+的最大值是 最小值是 .【变式】 已知()23200x y x y+=>>,,则xy 的最小值是 .【例16】 已知2222,,x y a m n b +=+=其中,,,0x y m n >,且a b ≠,求mx ny +的最大值.【变式】 0,0,4,a b a b >>+=求2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值.【例17】 设x ,y ,z 为正实数,满足230x y z -+=,则2y xz的最小值是 .【例18】 ⑴已知x 、y +∈R ,且2520x y +=,当x =______,y =_____时,xy 有最大值为_______.⑵若a 、b +∈R ,且1a b +=,则ab 的最大值是_______,此时____,_____.a b ==3.均值与函数最值【例19】 求函数2y =的最小值.【例20】 求函数y =.【例21】 求函数2211()1f x x x x x =++++的最小值.【例22】 已知3x ≥,求4y x x=+的最小值.【变式】 求函数2y =【点评】 当a 、b 为常数,且ab 为定值,a b ≠时,2a b+>般方法是通过函数的单调性求最值或者通过恒等变形a b +求出a b -之差的最内能取到对应的值,所以这里需要讨论,可以看出,这种讨论很繁琐晦涩,一般不用.【变式】 函数()992(33)x x x x f x --=+-+的最小值为( )A .1B .2C .3-D .2-【例23】 ⑴求函数2241y x x =++的最小值,并求出取得最小值时的x 值.⑵求y =的最大值.【变式】 ⑴求函数211ax x y x ++=+(1x >-且0a >)的最小值.⑵求函数312y x x=--的取值范围.【点评】 第⑴题在解答过程中如果选用判别式法往往会陷入困境:由21yx y ax x +=++得:2(1)10ax y x y +-+-=,2(42)140y a y a ∆=+-+-≥,且要满足有大于1-的解,下面的讨论与求解过程十分复杂,故这里用判别式法不合适.【例24】 ⑴求函数22(2)y x x =-的最大值.⑵求2y =的最小值.⑶求函数2y =的最值.【例25】 ⑴已知54x <,求函数11454y x x =-+-的最小值.⑵求函数312y x x=--的取值范围.⑶求函数22(2)y x x =-的最大值.【变式】 ⑴已知,a b 是正常数,a b ≠,(0),,x y ∈+∞,求证:222()≥a b a b x y x y+++,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0)2,x ∈)的最小值,指出取最小值时x 的值.【变式】 分别求2213()32(0)g x x x x x x =-++->和2213()32(0)f x x x x x x=+++->的最小值.【例26】 ⑴求函数422331x x y x ++=+的最小值. ⑵解不等式:21log (6)2x x x --->.【例27】 函数()f x =的最大值为( )A .25B .12C D .1【例28】 设函数1()21(0)f x x x x=+-<,则()f x ( ) A .有最大值B .有最小值C .是增函数D .是减函数【变式】 设222()S x y x y =+-+,其中x ,y 满足22log log 1x y +=,则S 的最小值为_________.【例29】 设00,a b >>3a 与3b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1 D .14【例30】 若121200a a b b <<<<,,且12121a a b b +=+=,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a b b + C .1221a b a b + D .12【点评】 排序不等式知识:定义:设a a a ≤≤≤,b b b ≤≤≤为两组实数,c c c ,,为b b b ,,的任一称1211n n n a b a b a b -++为两个实数组的反序积之和(简称反序和)。
均值定理

ab称为正数a、b的几何平均数.
3、 均 值 定 理 推 广 形 式 :
a +b a+b 2 如果a , b ∈ R ,则 ≥ ≥ ab ≥ 1 1 2 2 + a b
+ 2 2
当且仅当a=b时,等号成立。
a +b 称为a、b的平方平均数 2 2 称为a、b的调和平均数 1 1 + a b
2 2
1.重要不等式:
若a、b ∈ R, 则a + b ≥ 2ab ≥ 2ab
2 2
2 (a + b
2
2
) ≥ ( a + b)
2
当且仅当a=b时,等号成立。
2、均值定理:
若a > 0,b > 0,则a + b ≥ 2 ab
a+b a+b 即 ≥ ab. ab ≤ ( a > 0, b > 0 ); 2 2 a+b 称为正数a、b的算术平均数, 2
(
)
Q 2x 2 + ( y 2 + 1) ≥ 2 2x 2 ( y 2 + 1) = 2 2 ⋅ x y 2 + 1
2
∴2 2 ⋅ x y + 1 ≤ 3⇔ x y + 1 ≤
2
3 2 = 2 2 4
3
Q 2b + a + ab = 30 ⇔ b = 30 − a
− a 2 + 30a − ( a + 2 ) 2 + 34 ( a + 2 ) − 64 30 − a = ∴ ab = a ⋅ = a+2 a+2 a+2
)
课件5:§3.2 均值不等式

解法二:∵0<x<13,∴13-x>0. ∴y=x(1-3x)=3·x13-x≤3·x+132-x2=112, 当且仅当 x=13-x, 即 x=16时,等号成立. ∴x=16时,函数取最大值112.
变式训练 2:已知 t>0,则函数 y=t2-4tt+1的最小值为________. 【解析】∵t>0,∴y=t2-4tt+1=t+1t -4≥2-4=-2, 当且仅当 t=1t ,即 t=1 时,等号成立.
变式训练 1:某工厂第一年产量为 A,第二年的增长率为 a, 第
三年的增长率为 b,这两年的平均增长率为 x,则( )
A.x=a+2 b
B.x≤a+2 b
C.x>a+2 b
D.x≥a+2 b
【解析】∵这两年的平均增长率为 x, ∴A(1+x)2=A(1+a)(1+b), ∴(1+x)2=(1+a)(1+b),由题设 a>0,b>0. ∴1+x= 1+a1+b≤1+a+2 1+b =1+a+2 b,∴x≤a+2 b. 等号在 1+a=1+b 即 a=b 时成立.
【答案】6 4
4.若正数 a、b 满足 ab=a+b+3,则 ab 的取值范围是________.
【解析】∵a>0,b>0,∴a+b≥2 ab. ∵ab=a+b+3≥2 ab+3, ∴( ab)2-2 ab-3≥0, ∴ ab≥3 或 ab≤-1(舍去), ∴ab≥9.
【答案】[9,+∞)
5.a>0,b>0,且1a+9b=1,求 a+b 的最小值. 解:∵a>0,b>0,1a+9b=1, ∴a+b=(1a+9b)(a+b) =1+9+ba+9ba≥10+2 ba·9ba=10+2×3=16. 当且仅当ba=9b,即 b2=9a2 时等号成立.
均值不等式及其应用

2 当且仅当ab=ab 时等号成立,
1 1 2 所以 2+ 2+ab≥ab+ab≥2 2, a b 1 1 a2=b2 当且仅当 2 =ab ab
,即 a=b= 2时取等号.
4
bc ac ab 3.(1)设 a,b,c 都是正数,求证: a + b + c ≥a+b+c. 1 1 (2)已知 a>0,b>0,a+b=1,求证:a+b≥4.
∴y=4x· (3-2x)=2[2x(3-2x)]
2x+3-2x 2 9 ≤2 =2. 2
3 当且仅当 2x=3-2x,即 x= 时,等号成立. 4 3 3 ∵ ∈0,2, 4 ∴函数
3 9 y=4x(3-2x)0<x<2的最大值为 . 2
如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来
求解.
[题组自测] 1.已知 a、b、c∈R 且 a+b+c=1, 1 1 1 求证:(a-1)(b-1)(c -1)≥8.
证明:∵a、b、c∈R 且 a+b+c=1, 1-a1-b1-c 1 1 1 ∴ ( a - 1)( b - 1)( c - 1) = = abc b+ca+ca+b 2 bc· ac· ab 2 2 ≥ =8. abc abc 1 当且仅当 a=b=c= 时取等号. 3
3 4 已知 x>0,y>0 且x+y =1,求使 x+y≥c 恒成立的 c 的取值范围.
3 4 解:∵x>0,y>0 且x+ y=1. 3 4 ∴x+y=(x+y)(x+ y ) 3y 4x =7+ x + y ≥7+2 3y 4x x · =7+4 3, y
3y 4x 当且仅当 x = y ,即 3y=2x 时等号成立, 此时 x=3+2 3,y=4+2 3. 要使 x+y≥c 恒成立,只需 c≤7+4 3. ∴c 的取值范围是(-∞,7+4 3].
均值定理不等式

课时小结
(1)掌握重要不等式 a 2 b 2 2ab (2)掌握基本不等式
ab ab 2
作业
1,已知a>0,b>o求证: 1) 9
a
a
6,
2) a
b 2 b a
1 y x x2
2,当x>2时,求函数
的最小值
解 根据均值定理,得
ab 6 ab 3, 2 2
从而
ab 9.
6 等号成立当且仅当 a b 3, 2
此
时 ab 达到最大值9.
已知
求
a 0, b 0, 且 ab 16,
ab
的最小值.
解 根据均值定理,得
a b 2 ab 2 16 2 4 8,
2
A
a
O
C b
B
D'
例题:
求证:对于任意正实数
a ,有 1 a 2 a 等号成立当且仅当 a 1
证明 根据均值定理,对于任意正实数 a ,有
从ห้องสมุดไป่ตู้有
1 1 1 a a 2 a a 1 a 2. a
即 a 1.
1 等号成立当且仅当 a , a
拓展
已知 a 0, b 0 且 a b 6, 求 ab 的最大值.
证明:
a 2 b 2 2ab a 2 2ab b 2 (a b) 2 a, b R a b a b 0 (a b) 2 0 a 2 b 2 2ab a b a b 0 (a b) 2 0 a 2 b 2 2ab a 2 b 2 2ab
第六章 第二节 均值不等式

(a, 同号且不为零 同号且不为零). ≥ 2 ,b同号且不为零 .
3.算术平均值与几何平均值 . 设a>0,b>0,则a,b的算术平均值为 , , , 的算术平均值为 值为 ,几何平均
(2009·湖北高考 围建一个面积为 湖北高考)围建一个面积为 湖北高考 围建一个面积为360m2的矩形场 利用的旧墙需维修), 地,要求矩形场地的一面利用旧墙(利用的旧墙需维修 , 要求矩形场地的一面利用旧墙 利用的旧墙需维修 其他三面围墙要新建, 其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度 的进出口, 已知旧墙的维修费用为45元 , 为2 m的进出口,如图所示 已知旧墙的维修费用为 元/m, 的进出口 如图所示.已知旧墙的维修费用为 新墙的造价为180元/m.设利用的旧墙长度为 单位:m), 元 设利用的旧墙长度为x(单位 新墙的造价为 设利用的旧墙长度为 单位: , 修建此矩形场地围墙总费用为y(单位: 修建此矩形场地围墙总费用为 单位:元). 单位
的最大值; 的最大值;
(3)已知 >0,y>0,且x+y=1,求 已知x> , > , + = , 已知
的最小值. 的最小值
[思路点拨 思路点拨] 思路点拨 (1)题可直接利用均值不等式,(2)、(3)题先配凑利用均值 (1)题可直接利用均值不等式,(2)、(3)题先配凑利用均值 题可直接利用均值不等式 不等式的条件. 不等式的条件.
[特别警示 证明不等式时要注意灵活变形,多次利用基 特别警示] 证明不等式时要注意灵活变形, 特别警示 本不等式时,要注意每次等号是否都成立,同时也要注意 本不等式时,要注意每次等号是否都成立, 基本不等式的变形形式的应用. 基本不等式的变形形式的应用
2.2 均值定理课件-2023届广东省高职高考数学第一轮复习第二章不等式

知识点1 知识点2 知识点3
1.均值定理
如果 a,b∈R+,则有 a+b≥2 ab,当且仅当 a=b 时,等号成立.
知识点1 知识点2 知识点3
2.利用均值定理求最值
如果 a,b∈R+,且 ab 为定值,则当且仅当 a=b 时,a+b 有最小值 2 ab. 如果 a,b∈R+,且 a+b 为定值,则当且仅当 a=b 时,ab 有最大值a+2 b2.
【融会贯通】 已知 0<x<4,求 x(4-x)的最大值. 解:∵ 0<x<4,∴ x>0,4-x>0,x+(4-x)=4 根据均值定理:x+(4-x)≥2 x(4-x)⇒2≥ x(4-x)⇒4≥x(4-x) 当且仅当 x=4-x,即 x=2 时取最大值 4.
例3 已知 x>1,则 x+x-4 1的最小值是(
时,函数 y=5-x-4x有最大值,其值为 1.
12.求函数 y= xx2+2+21的最小值.
【解析】
根据均值定理:
x2+2 x2+1
=
x2+1+1 x2+1
=
x2+1 +
1 x2+1
≥
2
x2+1· x21+1=2,故当且仅当 x2+1= x21+1时,即 x=0 时,函数
y= xx2+2+21的最小值为 2.
例2 已知 0<x<8,求 x(8-x)的最大值. 【分析】 在应用均值定理 a+b≥2 ab求最值时,要把握不等式成立的三 个条件及结论,一正二定三相等. 【解】 因为 0<x<8,所以 x>0,8-x>0,x+(8-x)=8, 根据均值定理:x+(8-x)≥2 x(8-x)⇒8≥2 x(8-x)⇒16≥x(8-x), 当且仅当 x=8-x,得 x=4,故 x=4 时取最大值 16.
不等式的证明--均值定理

作业
课本P48,习题2-1,B.4
这个也是均值定理 均值定理
练习:1
若a > 0, b > 0, c > 0
) ;
a, b, c的算术平均数是 a + b + c (
3
a, b, c的几何平均数是
(
3
abc
)
2
对于一正数数列 {a n }
)
a 1 , a 2 , a 3 , ..., a n 的算术平均数是 ( a 1 + a 2 + ... + a n n a1 , a 2 ,..., a n的几何平均数是 ( n a a ... a )
均值定理
教学目标:
1.掌握均值定理 2.会用均值定理证明不等式
知识回顾
学过的不等式证明方法:作差比较法 作差比较法的要领是:1,作差;2,与0比较
a > b ⇔ a = b ⇔ a < b ⇔
a − b > 0 a − b = 0 a − b < 0
课前练习
课本P47,A,3(1),(3)
3.已知 : a ∈ R , 求证 : (1) a 2 + 7 > 5a;
例5
a + b ≥ ab , ( a > 0 , b > 0 ), 求证 : 2 当且仅当 a = b 时 , 等号成立 .
a + b − 2 ab a +b 证明 : Q − ab = 2 2 ( a)2 +( b)2 −2 a b ( a − b)2 = = ≥0 2 2 a+b ∴ ≥ ab 2
1 2 n
练习3
求证:
对 ∀ 实数 a , 都有 a 2 + 4 ≥ 4 a , 并说明 , 当且仅当 a = 2时 , 等号成立 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学 必修五 NO 使用时间: 班级: 组别:
课题:均值不等式一学案
1.掌握均值定理的内容,特别是等号成立的条件;
2.理解均值定理的内容及几何意义,会用均值定理去解实际简单的最值问题。
1.不等式的对称性用字母可以表示为 .
2.不等式的传递性用字母可以表示为____________________. 3.不等式的加减法则是指不等式两边都加上(或减去)同一个数(或整式)不等号方向不变,用字母可以表示为 ;由此性质和传递性可以得到两个同向不等式可以相加,用字母可以表示为 . 4.不等式的乘法法则是指不等式两边都乘以同一个不为零的正数,不等号方向不变用字母可以表示为 ;同时乘以同一个不为零的负数,不等号方向改变,用字母可以表示为 ;由此性质和传递性可以得到两个同向同正的不等式具有可乘性,用字母可以表示为 。
5.乘方、开方法则要注意性质仅针对于正数而言,若底数(或被开方数)为负数时,需先
变形。
如:a<b<0,则a 2 b 2,a 3 b 3 6.倒数法则是对同号的两个数而言的,即只要两个数同号,那么大数的倒数就一定小,用字母可以表示为 ;若两个数异号,由于正数大于所有负数,所以倒数的大小自然易判断,如-3<5,那么倒数大小关系为 。
均值定理 如果,,R b a ∈那么
ab b a ≥+2。
当且仅当b a =时,等号成立。
证明:
算术平均数:
几何平均数:
均值定理可以表述为:
【思考与讨论】
均值不等式与不等式ab b a 222≥+的关系如何?请对此进行讨论。
下面我们给出均值不等式的一个几何直观解释,以加深同学们对均值不等式的理解。
我们可以令正实数b a ,为两条线段的长,用几何作图的方法,作出长度为
2
b a +和ab 的两条线段,然后比较这两条线段的长。
具体作图如下:
⑴作线段b a AB +=,使;,b DB a AD ==
⑵以AB 为直径作半圆O;
⑶过D 点作CD ⊥AB 于D ,交半圆于点C ; ⑷连接AC,BC,OC,则2
b a CO +=。
例1已知,0>ab 求证:2≥+b a a b ,并推导出式中等号成立的条件。
例2(1)一个矩形的面积为1002
m 。
问这个矩形的长和宽各为多少时,矩形的周长最短?最短周长是多少?
(2)已知矩形的周长为36m 。
问这个矩形的长和宽各为多少时,它的面积最大?最大面积是多少?
由例2的求解过程,可以总结出以下规律:
例3求函数())0(322>-+-=x x
x x x f 的最大值,以及此时x 的值。
巩固检测
1、若a 、b 为正数且a+b=4,则ab 的最大值是________.
2、已知x>1.5,则函数y =2x+3
24-x 的最小值是_________.
高二数学 必修五 NO 使用时间: 班级: 组别:
课题:均值不等式二学案
1.掌握均值定理的内容,特别是等号成立的条件;
2.进一步理解均值定理的内容及几何意义,灵活运用均值定理去解决实际简单的最值问题。
⒈正数a 、b 的算术平均数为 ;几何平均数为 .
⒉均值不等式是 。
其中前者是 ,后者是 .如何给出几何解释?
⒊在均值不等式中a 、b 既可以表示数,又可以表示代数式,但都必须保证 ;另外等号成立的条件是 .
⒋试根据均值不等式写出下列变形形式,并注明所需条件)
(1)a 2+b 2 ( ) (2)2b a ( ) (3)a b +b a ( ) (4)x +x
1 (x>0) (5)x +x 1 (x<0) (6)ab ≤ ( )
⒌在用均值不等式求最大值和最小值时,必须注意a+b 或ab 是否为 值,并且还需要注意等号是否成立.
6.⑴函数f(x)=x(2-x)的最大值是 ;此时x 的值为___________________;. ⑵函数f(x)=2x(2-x)的最大值是 ;此时x 的值为___________________; ⑶函数f(x)=x(2-2x)的最大值是 ;此时x 的值为___________________; ⑷函数f(x)=x(2+x)的最小值是 ;此时x 的值为___________________。
例⒈已知a 、b 、c ∈(0,+∞),且a+b+c=1,求证
a 1 +
b 1+c
1≥9.
例⒉(1)已知x<45,求函数y=4x -2+5
41-x 的最大值. (2)已知x>0,y>0,且+x 1y
9=1,求x +y 的最小值。
(3)已知a 、b 为常数,求函数y=(x-a)2+(x-b)2的最小值。
一.选择题:
⒈下列命题正确的是( )
A.a 2+1>2a B.│x+x 1│≥2 C.ab
b a +≤2 D.sinx+x sin 4最小值 ⒉以下各命题(1)x 2+112+x 的最小值是1;(2)1222++x x 最小值是2;(3)若a>0,b>0,a+b=1则(a+a 1)(b+b
1)的最小值是4,其中正确的个数是( ) A.0 B.1 C.2 D.3 ⒊设a>0,b>0则不成立的不等式为( ) A.a b +b
a ≥2 B.a 2+
b 2≥2ab C.a b 2+b a 2≥a +b D.b a 11+≥2+b
a +2 ⒋设a 、
b ∈R +,若a+b=2,则b
a 11+的最小值等于( ) A.1 B.2 C.3 D.4
⒌已知a ≥b>0,下列不等式错误的是( )
A.a 2+b 2
≥2ab B.222b a a +≥ C.b a ab ab +≤2 D.112--+≥b a ab
1.
2
b a +;ab 2.2b a +≥ab ;算术平均数2b a +;几何平均数ab ;圆中的相交弦定理的推论(略)。
3.a ,b ∈R +;a=b
4.⑴≥2ab (a,b ∈R )⑵≥ab ( a ,b ∈R +)⑶≥2(a 、b 同号)或≤-2(a 、b 异号) ⑷≥2⑸≤-2⑹≤(
2b a +)2(a,b ∈R ); 5.定。
6.⑴1,1;⑵2,1;⑶
21,2
1;⑷-1,-1。
【典例解析】 例1.解析:原式=(
a 1 +
b 1+
c 1)(a+b+c )=3+(b a a b +)+(c a a c +)+(b
c c b +)≥3+2+2+2=9当且仅当a=b=c=31时取等号。
例⒉解析:
(1)∵x<
45 ∴4x-5<0 ∴y=4x -2+541-x =(4x-5)+541-x +3≤-2+3=1当且仅当4x-5=5
41-x 时即4x-5=-1,x =1时等号成立,∴当x =1时,取最大值是1 (2)解法一、原式=(x +y )(+x 1y 9)=y x x y 9++10≥6+10=16当且仅当x
y =y x 9时等号成立,又+x 1y
9=1∴x=4,y=12时,取得最小值16。
解法二、由+x 1y 9=1得(x-1)(y-9)=9为定值,又依题意可知x>1,y>9∴当且仅当x-1=y-9=3时即x=4,y=12时,取最小值16。
(3)解法一、转化为二次函数求最值问题(略)
解法二、∵222n m +≥(2)2
n m +∴y=(x-a)2+(x-b)2=y=(x-a)2+(b-x)2≥2[2)()(x b a x -+-]2=2)(2b a -,当且仅当x-a=b-x 即x=2
b a +时,等号成立。
∴当x=2
b a +时取得最小值2)(2b a -。
一元二次不等式及其解法 例1解不等式:
(1);0322>+-x x (2)0322<+-x x 。
例2解不等式0412>--x x 。
例3解不等式0442>++x x 。
例4解不等式03422>-+-x x 。
例5求函数()()
23223log 32x x x x x f -++-+=的定义域。