不等式的基本定理
2.基本不等式

则x y 的最大值是
。
解决最大(小)值问题
结论:利用
求最值时要注意下面三条:
(1)一正:各项均为正数
(2)二定:两个正数积为定值,和有最小值。 积定,和最小 两个正数和为定值,积有最大值。 和定,积最大
(3)三相等Βιβλιοθήκη 求最值时一定要考虑不等式是否能取 “=”。
题型三:构造积为定值,利用基本不等式求最值
ab叫做a,b的 几何平均数
这样,基本不等式可以表述为: 两个正数的算术平均数不小于它们的几何平均数。
注意:
重要不等式与基本不等式有什么区别与联系?
题型一:利用基本不等式判断代数式的大小关系
例1:设a>0,b>0,给出下列不等式
(1)a 1 2 (2)(a 1 )(b 1) 4
1.利用基本不等式求最值需注意的问题 (1)各数(或式)均为正; (2)和或积其中之一为定值; (3)等号能否成立,
即“一正二定三相等”,这三个条件缺一不可.
注意:要特别注意不等式成立的条件及等号成 立的条件.
创设应用基本不等式的条件 合理拆分项或配凑因式是常用的技巧,而 拆与凑的目标在于使等号成立,且每项为正 必 要时需出现积为定值或和为定值.
第一讲 不等式和绝对值不等式 2、基本不等式及其应用
一、重要不等式(定理一):
一般地,对于任意实数a,b,我们有
a2+b2≥2ab
(当且仅当a=b时,取“=”号)
文字语言:两个数的平方和不小于它们积的2倍
二、基本不等式(定理二)
如果a, b>0, 那么
当且仅当a=b时,等号成立。
如果a,b都是正数,我们就称 a b为a,b的 算术平均数 2
关于不等式的公式

关于不等式的公式
不等式的基本公式包括但不限于以下几种:
1. 加法公式:如果a > b,则a + c > b + c。
2. 减法公式:如果a > b,则a - c > b - c。
3. 乘法公式:如果a > b,并且c > 0,则ac > bc;如果c < 0,则ac < bc。
4. 除法公式:如果a > b,并且c > 0,则a/c > b/c;如果c < 0,则a/c < b/c。
5. 平方不等式定理:对于任意实数a,如果a > 0,则a² > 0;如果a < 0,则a² > 0。
6. 平方根不等式公式:对于任意实数a,如果a > 0,则√a > 0;如果a < 0,则√a不存在。
7. 基本不等式公式:a+b≥2√(ab)。
常用的不等式公式还有
√((a²+b²)/2)>(a+b)/2≥√ab≥2/(1/a+1/b)√ab≤(a+b)/2,a²+b²>2ab,ab≤(a+b)²/4等。
其中,a >0,b>0,当且仅当a=b时,等号成立。
此外还有绝对值不等式等,不等式具有多种类型和变种。
建议查阅数学书籍或咨询数学专业人士获取更多信息。
第1章1.2 基本不等式

第一章 不等式的基本性质和证明的基
本方法
1.2 基本不等式
栏目导航
2
学习目标:1.理解两个正数的基本不等式.2.了解三个正数和一般 形式的基本不等式.3.会用基本不等式求一些函数的最值及实际应用 题.
栏目导航
3
自主预习 探新知
栏目导航
4
教材整理 基本定理(重要不等式及基本不等式) 1.定理 1
42
栏目导航
2.下列函数中最小值为 4 的是( ) A.y=x+4x B.y=sin x+sin4 x(0<x<π) C.y=3x+4×3-x D.y=lg x+4logx10
43
栏目导航
44
[解析] A 项,当 x<0 时,y=x+4x<0,故 A 项错误;B 项,当 0
<x<π 时,sin x>0,∴y=sin x+sin4 x≥2
栏目导航
22
[自主解答] (1)依题意得 m=0 时,x=1,代入 x=3-m+k 1,得 k=2,即 x=3-m+2 1.
年成本为 8+16x=8+163-m+2 1(万元), 所以 y=(1.5-1)8+163-m+2 1-m =28-m-m1+6 1(m≥0).
栏目导航
23
(2)由(1)得 y=29-m+1+m1+6 1≤ 29-2 m+1·m1+6 1=21. 当且仅当 m+1=m1+6 1,即 m=3 时,厂家的年利润最大,为 21 万元.
栏目导航
31
(2)已知 x,y∈(0,+∞),如果和 x+y 是定值 S,那么当 x=y 时,积 xy 有最大值14S2.
以上两条可简记作:和一定,相等时,积最大;积一定,相等时, 和最小.条件满足:“一正、二定、三相等”.
几何不等式

几何不等式知识定位不等式是初中数学竞赛比较重要的一个知识点,在历年竞赛中占据非常大比例,几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式。
本文归纳总结了几何不等式的若干性质及定理,将通过例题来说明这些方法的运用。
知识梳理1、几何不等式定理:几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式。
下面先给出几个基本定理:定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明:如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知:PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A 或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}例题精讲【试题来源】【题目】在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC 【答案】如下解析【解析】证:在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.【知识点】几何不等式【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知P是△ABC内任意一点(1)求证:1/2(a+b+c)<PA+PB+PC<a+b+c(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2【答案】如下解析【解析】证明:(1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b 把这三个不等式相加,再两边除以2,便得PA+PB+PC>1/2(a+b+c)又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以1/2(a+b+c)<PA+PB+PC<a+b+c(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.【知识点】几何不等式【适用场合】当堂练习【难度系数】3【试题来源】【题目】如图,在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB +DC.若AC与BD相交于E,求证:AE>DE【答案】如下解析【解析】证:在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE【知识点】几何不等式【适用场合】当堂例题【难度系数】3【试题来源】【题目】设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:1/2(AG+AK)>AC【答案】如下解析【解析】证如图,在GK上取一点M,使GM=MK,则1/2(AG+AK)=AM在Rt △GCK 中,CM 是GK 边上的中线, 所以∠GCM=∠MGC .而∠ACG=45°,∠MGC >∠ACG , 于是∠MGC >45°,所以∠ACM=∠ACG +∠GCM >90°.【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】设h a 、h b 、h c 是ΔABC 三边上的高,求证:12<h a +h b +h ca +b +c <1【答案】如下解析【解析】 证明:在Rt ΔADC 中,∵AC >AD ,∴b >h a .同理可证:c >h b ,a >h c ,∴h a +h b +h c <a +b +c ,h a +h b +h ca +b +c <1.(1)设ΔABC 的垂心为H 点,∵HA +HF >AF ,HF +HB >FB ,HB +HD >BD , HD +HC >CD ,HC +HE >CE ,HE +HA >EA ,上述六个式子相加得,2(h a +h b +h c )>a +b +c , 则得,h a +h b +h c a +b +c >12 (2)由(1)、(2)∴12<h a +h b +h c a +b +c<1. 【知识点】几何不等式 【适用场合】当堂例题 【难度系数】4【试题来源】【题目】ΔABC 中,∠A >90°,AD ⊥BC 于D .求证:AB +AC <AD +BC【答案】如下解析【解析】 证明:(法一)在BC 上取点E ,使BE =AB ,在AC 上取点F ,使AF =AD ,连结AE 、EF 、DF .则∠BEA =∠BAE =90°-12∠B . ∠1=90°-∠BEA , ∴∠1=12∠B ,又∠A >90°, ∴∠DAC >∠B ∴∠2>∠1, ∵AD =AF ,AE =AE∴DE <EF ,且∠ADF =∠AFD , ∴∠EDF >∠EFD ,∵∠ADE =∠ADF +∠EDF =90°, ∴∠AFE =∠AFD +∠EFD <90°, ∴∠EFC >90°.∴在ΔEFC 中,EF >FC .即BC -AB >AC -AD ∴AB +AC <AD +BC(法二)以A 为顶点,AB 为一边,作∠GAB =90°.∵∠A >90°,∴AG 在∠BAC 内部,ABCD21FA B C DE∵AD ⊥BC ,AB ⊥AG ,∴BG 2=AB 2+AG 2 (1),BG ·AD =AB ·AG (2) (1)+(2)×2得BG 2+2BG ·AD =(AB +AG )2.∴(BG +AD )2>(AB +AG )2,即BG +AD >AB +AG , 在ΔAGC 中,GC >AC -AG .∴BG +AD +GC >AB +AG +AC -AG , 即AB +AC <AD +BC .【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】4【试题来源】【题目】在锐角三角形ABC 中,AH 是其最大的高,BM 是AC 边上的中线,且AH =BM ,证明:∠B ≤60°【答案】如下解析【解析】 证明:延长BM 至D ,使DM =BM ,连结AD ,则ΔADM ≌ΔCBM .∴AD =BC , ∠D =∠CBM .∵AH 是ΔABC 最大的高,又三角形的一边与这条边上的高的乘积是定值, ∴BC 是ΔABC 最小的边. ∴BC≤AB ,AD≤AB .∴∠CBM =∠D≥∠ABM ,过点M 作MN ⊥BC 于N ,则MN ∥AH . ∵AH =BM , ∴MN =12BM . ∴∠CBM =30°.∵∠B =∠ABM +∠CBM≤30°+30°=60°.即∠B≤60°(当三角形为等腰三角形时,等号成立)ABCDG【知识点】几何不等式【适用场合】当堂例题 【难度系数】4【试题来源】【题目】在ΔABC 中,∠A =90°,AD ⊥BC 于D ,ΔPQR 是它的任一内接三角形.求证:PQ +QR +RP >2AD .【答案】如下解析【解析】 证明:作点Q 关于AB 、AC 的对称点Q '、Q ",连PQ ',RQ ",AQ ,AQ ',AQ ".显然,PQ '=PQ ,RQ "=RQ ,AQ '=AQ =AQ ".∠Q 'AB =∠QAB ,∠Q "AC =∠QAC , 而∠BAC =∠BAQ +∠CAQ =90°, ∴∠Q 'AQ "=2∠BAC =180°.即Q '、A 、Q "三点在一条直线上.∴PQ +QR +RP =Q 'P +PR +RQ "≥Q 'Q "=2AQ . ∵AD ⊥BC , ∴AQ ≥AD .故PQ +QR +RP >2AD .BA BCDPRQ【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】2×3的矩形内放入两个与此矩形相似的互不重叠的小矩形.且每个矩形的边与大矩形的边平行,求两个矩形周长之和的最大值. 【答案】403【解析】 解:这两个小矩形可以都竖放,或都横放,或一横一竖放.(1)都竖放:宽=2×23=43,两个矩形周长=8+163=403.(图1) (2)都横放,一个在另一个上面:设一个矩形的宽为x ,另一个为2-x ,则周长=2(x +2-x )+2×32×2=10.(图2) 都横放,并排放置:周长=3×2+2×2=10,(图3) (3)一横放一竖放,左边一个宽x ,右边一个长y ,则x +y ≤3,32x ≤2,23y ≤2.周长=2(52x +53y )=2×53(x +y )+2×56x ≤12+29.(图4) 即最大值为403.【知识点】几何不等式【适用场合】当堂例题 【难度系数】5"图2图3图4图1【试题来源】【题目】试证:锐角三角形的内接三角形中,以垂足三角形的周长最小 【答案】如下解析【解析】 证明:1︒ 先在BC 上任取一点D ,固定D ,求出以D 为一个顶点⊿ABC 的内接三角形中周长最小者.作D 关于AB 、AC 的对称点D ’、D”,连D’D”交AB 、AC 于点F 、E ,连DF 、D’F ,DE 、D”E ,对于任一以DD 一个顶点的⊿ABC 的内接三角形XPQ ,连QD’、QD ,PD ”、PD , 于是可证DE +EF +FD =D’D”≤D’Q +QP +PD”=DQ +QP +PD . 即⊿DEF 为固定点D 后周长最小的内接三角形.2︒ 当点D 的BC 上运动时,对每一点D ,都作出1︒中得出的周长最小三角形,再求这些三角形的周长最小值.连AD 、AD’、AD ”,则AD =AD’=AD ”,且∠D’AB =∠DAB ,∠D”AC =∠DAC , 于是∠D’AD”=2∠A . 所以D’D”=2AD sin A .当点D 在BC 上运动时,以点D 为BC 边上高的垂足时AD 最小.3︒ 说明此时的最小三角形就是⊿ABC 的垂足三角形.由于D 为BC 边上的垂足. 对于垂足三角形DEF ,由∠DEC =∠AEF ,而∠DEC =∠CED", 故点E 在D’D”上,同理,F 在D’D”上,即⊿DEF 为所求得的周长最小三角形.【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】5习题演练ABCDD'D"E FABCDD'D"EFA BCDD'D"E F P Q【题目】如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.求证:EF≥BC.【答案】如下解析【解析】证明:过E作ED平行且等于BC,连接DF,DC(如图),∴BCDE是平行四边形,∴DC平行且等于BE,∴∴1=∴A,∴AB=AC,AE=FC,∴BE=AF=DC,∴∴AEF∴∴CFD,∴EF=DF,在∴EFD中,EF+DF>DE,∴2EF>BC,即EF>BC,当E、F为AB、AC中点时,EF=BC,∴EF≥BC.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】3【题目】如图,在∴ABC中,a、b、c分别为∴A、∴B、∴C的对边,且2b<a+c,求证:2∴B<∴A+∴C.【答案】如下解析【解析】证明:延长BA到D,使AD=BC=a,延长BC到E,使CE=AB=c,连接DE,这就把图形补成一个等腰三角形,即有BD=BE=a+c,∴∴BDE=∴BED,作DF∴AC,CF∴AD,相交于F,连接EF,则ADFC是平行四边形.∴CF=AD=BC,又∴FCE=∴CBA,∴∴FCE∴∴CBA∴EF=AC,于是DE≤DF+EF=2b<a+c=BD=BE.这样,在∴BDE中,便有∴B<∴BDE=∴BED∴∴2B<∴BDE+∴BED=180°一∴B=∴A+∴C,即2∴B<∴A+∴C.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】4【题目】过三角形的重心任作一直线,把这个三角形分成两部分,求证:这两部分面积之差不大于整个三角形面积的.【答案】如下解析【解析】证明:设△ABC重心为G,过点G分别作各边的平行线与各边交点依次为A1、B1、B2、C1、C2、A2连接A1A2;B1B2、C1C2,∴三角形重心到一个顶点的距离等于它到对边中点距离的二倍,∴A1A=A1B l=B1B,BB2=B2C l=C1C,CC2=C2A2=A2A,∴A1A2∴BC,B1B2∴AC,C1C2∴AB,∴图中的9个三角形全等.即∴AA1A2∴∴A1B1G∴∴B2GB1∴∴C2C l C、所以上述9个小三角形的面积均等于∴ABC面积的.若过点C作的直线恰好与直线A1C1、B1C2、B2A2重合,则∴ABC被分成的两部分的面积之差等于一个小三角形的面积,即等于∴ABC面积的.若过点C作的直线不与直线A1C1、B1C2、B2A2重合,不失一般性,设此直线交AC于F,交AB于E,交C1C2于D,∴GB l=GC2,∴EB1G=∴DC2C,∴B1GE=∴C2GD,∴∴B1GE∴∴C2GD、∴EF分∴ABC成两部分的面积之差等于,而这个差的绝对值不会超过S∴C1C2C的面积.从而EF分∴ABC成两部分的面积之差不大于∴ABC面积的.综上所述:过三角形重心的任一直线分三角形成两部分的面积之差不大于整个三角形面积的.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】4【题目】如图,在△ABC中,P、Q、R将其周长三等分,且P、Q在AB上,求证:.【答案】如下解析【解析】证明:作CL⊥AB于L,RH⊥PQ于H,∴RH∴CL,∴,则==,不妨设∴ABC的周长为1,则PQ=,AB<,∴.∴AP≤AP+BQ=AB﹣PQ<,∴AR=﹣AP>﹣,又AC<,从而,∴,∴>.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】4。
绝对值不等式

绝对值不等式1、平均值不等式定理1:如果a,b∈R,那么a²+b²≥= 当且仅当当时,等号成立定理2:(基本不等式)如果a,b>0,那么2ba+≥,当且仅当当时,等号成立,即两个正数的算术平方根不小于(即大于或等于)它们的几何平均数。
定理3:如果a,b,c大于0,那么3cba++≥,当且仅当当时,等号成立,2、绝对值三角不等式:定理1:如果a,b是实数,则|a+b|≤ ,当且仅当当时,等号成立定理2:如果a,b,c是实数,那么 ,当且仅当当时,等号成立3.绝对值不等式的解法(2)|ax+b|≤c、|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔②|ax+b|≥c⇔(3)|x-a|+|x-b|≥c、|x-a|+|x-b|≤c(c>0)型不等式的解法:三种解法:思考感悟:1.|a-b|与|a|-|b|及|a|+|b|分别具有什么关系?【提示】||a|-|b||≤|a-b|≤|a|+|b|.2.|x-a|±|x-b|表示的几何意义是什么?【提示】|x-a|±|x-b|表示数轴上的点x到点a、b的距离之和(差).学情自测:1.(教材改编题)设ab>0,下面四个不等式中,正确的是()C①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.A.①和②B.①和③C.①和④D.②和④∵ab>0,即a,b同号,则|a+b|=|a|+|b|,∴①④正确,②③错误.2.(2012·韶关质检)不等式|x-2|>x-2的解集是()AA.(-∞,2) B.(-∞,+∞) C.(2,+∞) D.(-∞,2)∪(2,+∞)【解析】|x-2|>x-2同解于x-2<0,∴x<2.3.(2011·陕西高考)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.【解析】因为|x+1|+|x-2|≥|x+1-x+2|=3,∴|x+1|+|x-2|的最小值为3,因此要使原不等式存在实数解,只需|a|≥3,∴a≥3或a≤-3.【答案】(-∞,-3]∪[3,+∞)4、(2012广州调研)不等式:|2||1|++x x ≥1的实数解为 |2||1|++x x ≥1⇔|x+1|≥|x+2|且x+2≠0,∴x ≤-23且x ≠-2 绝对值不等式性质的应用 :例题1:(2011·江西高考)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为.【思路点拨】思路一: 将|x -2y +1|变形,设法用x -1与y -2表示,利用绝对值不等式的性质求最值; 思路二: 由|x -1|≤1,|y -2|≤1分别求x 、y 的范围,然后运用不等式的性质和绝对值的意义求解.【尝试解答】法一 |x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值5.法二 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3,从而-6≤-2y ≤-2. 由同向不等式的可加性可得-6≤x -2y ≤0,∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.规律与方法:1.(1)法一的关键是把|x -2y +1|变形为|(x -1)-2(y -2)-2|,进而利用绝对值不等式性质;(2)法二把求|x -2y +1|的最大值问题,转化为求x -2y +1的取值范围问题.2.(1)利用绝对值不等式性质定理求最值时,要指明取到等号的条件.(2)注意绝对值不等式性质在不等式证明中的放缩应用.变式训练:若f (x )=x 2-x +c (c 为常数),|x -a |<1,求证:|f (x )-f (a )|<2(1+|a |).【证明】 |f (x )-f (a )|=|(x 2-x +c )-(a 2-a +c )|=|x 2-x -a 2+a |=|(x -a )(x +a -1)|=|x -a ||x +a -1|=|x -a ||(x -a )+(2a -1)|,∵|x -a |<1.∴|x -a ||(x -a )+(2a -1)|<|(x -a )+(2a -1)|≤|x -a |+|2a -1|<1+|2a |+1=2(1+|a |). ∴不等式|f (x )-f (a )|<2(1+|a |)成立含绝对值不等式的解法 :例题2:(1)(2011·江苏高考)解不等式:x +|2x -1|<3.(2)不等式|x +3|-|x -2|≥3的解集为________.【思路点拨】 (1)将不等式x +|2x -1|<3化成|2x -1|<3-x 的形式,然后用公式求解.(2)去|x +3|与|x -2|的绝对值,按零点分区间讨论.【尝试解答】1) 由x+|2x-1|<3,得|2x-1|<3-x,∴原不等式化为:⎩⎨⎧-<-≥-x x x 312012或⎩⎨⎧-<-<-x x x 321012, 解得:21≤x<34或-2<x<21,∴原不等式的解集是:{x|-2<x<34} 2) ①当x ≥2时,原不等式化为:x+3-(x-2)≥3,此时恒成立,∴x ≥2,②当x ≤-3时,原不等式化为-x-3-(2-x)≥3,无解,③当-3<x<2时,原不等式化为x+3-(2-x)≥3,解得:x ≥1,因此1≤x<2综合①②③可知,原不等式的解集为:{x|x ≥1}1.第(1)问利用绝对值定义,将其转化为与之等价的不等式组是求解的关键;也可利用|f (x )|<g (x )⇔-g (x )<f (x )<g (x )进行转化;第(2)问易错点:(1)分区间去绝对值时忽视零点的值;(2)误求不等式的解集为交集.2.含有两个或两个以上绝对值号的不等式,常用零点分段法脱去绝对值号,将其转化为与之等价的不含绝对值符号的不等式(组).但一定注意,最终的不等式的解集是各类情形的并集.其操作程序是:找零点、分区间、分段讨论.变式训练:(2011·山东高考)求不等式|x -5|+|x +3|≥10的解集.【解】法一:当x ≥5时,原不等式为x -5+x +3≥10,∴x ≥6.不等式的解集为{x |x ≥6}. 当-3<x <5时,原不等式化为-x +5+x +3≥10,8≥10,此时原不等式无解;当x ≤-3时,原不等式化为-x +5-x -3≥10,x ≤-4.∴原不等式的解集为{x |x ≤-4}. 综上所述,原不等式的解集为(-∞,-4]∪[6,+∞).法二 由绝对值的几何意义,|x -5|+|x +3|≥10表示数轴上的点到两点-3,5的距离之和大于等于10的所有的点集.易知点-4和6到两点-3,5的距离之和都等于10,结合数轴知原不等式的解集为{x |x ≥6或x ≤-4}.利用平均值不等式求最值 :1)若x>0,求函数f(x)=x+24x的最小值; 2)已知x>0,y>0,且x+y=1,求x 4+y 9的最小值 【思路点拨】:1)将f(x)变形为2x +2x +24x,然后用定理3求解 2)注意x+y=1的应用,运用a+b ≥2ab 求最小值【尝试解答】1)∵x>0,∴f(x)= x+24x =2x +2x +24x ≥332422x x x ∙∙=3,当且仅当2x =24x ,即x=2时取等号,∴x=2时,f(x)min =32)∵x>0,y>0,x+y=1,∴x 4+y 9= (x+y)( x 4+y 9)=13+x y 4+y x 9≥13+2yx x y 94∙=25 当且仅当x y 4=yx 9时等号成立 由⎪⎩⎪⎨⎧==+y x x y y x 941且x>0,y>0,得⎪⎩⎪⎨⎧==5352y x ∴当x=52,y=53时取等号,所以x 4+y 9的最小值为25.1.利用平均值不等式求最值,应明确基本不等式成立的条件,“一正、二定、三相等”缺一不可.2.利用不等式求最值时,常利用添项、拆项、配系数,并注意“1”的代换,创造使用均值不等式的条件.变式训练:若0<x <1,则函数f (x )=x 2(1-x )的最大值是________.【解】∵0<x<1,∴0<1-x<1,f(x)=x ²(1-x)=4•2x •2x •(1-x)≤4•[3)1(22x x x -++]³=274 当且仅当2x =1-x,即x=32时,等号成立,因此f(x)的最大值f(x)max = 274绝对值不等式的综合问题 :例题4:(2012·佛山质检)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】 (1)由|x -a |≤3求不等式的解集,与已知比较,求参数a 的值;(2)利用绝对值不等式的性质或函数的单调性,求y =f (x )+f (x +5)的最小值,得参数不等式求解.1)由f(x)≤3,得|x-a|≤3,解得a-3≤x ≤a+3,又已知不等式f(x)≤3的解集为{x|-1≤x ≤5} 所以5313=+-=-⎩⎨⎧a a 解得a=2.2)法一:由1)知a=2,此时f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,于是g(x)=⎪⎩⎪⎨⎧>+≤≤--<-2,1223,53,12-x x x x x 利用g (x )的单调性,易知g (x )的最小值为5.因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5].法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5. 因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 应有实数m 的取值范围是(-∞,5]., 规律方法4:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法1是运用分类讨论思想,利用函数的单调性;法2是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向,解题时强化函数、数形结合与转化化归思想方法的灵活应用.变式训练:已知函数f (x )=|x -3|-2,g (x )=-|x +1|+4.(1)若函数f (x )的值不大于1,求x 的取值范围;(2)若不等式f (x )-g (x )≥m +1的解集为R ,求m 的取值范围.【解】 (1)依题意,f (x )≤1,即|x -3|≤3.∴-3≤x -3≤3,∴0≤x ≤6,因此实数x 的取值范围是[0,6].(2)f (x )-g (x )=|x -3|+|x +1|-6≥|(x -3)-(x +1)|-6=-2,∴f (x )-g (x )的最小值为-2, 要使f (x )-g (x )≥m +1的解集为R. 应有m +1≤-2,∴m ≤-3,故实数m 的取值范围是(-∞,-3].命题透视:从近两年新课标命题看,含绝对值不等式的解法是选考内容4-5考查的热点,难度为中等,2011年高考命题的突出特点是以函数为载体考查绝对值不等式的解法与证明,预计2013年高考将延续这一命题方向.规范解答之二十二 绝对值不等式中逆向问题的正向求解策略例题:(10分)(2011·新课标卷)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集.(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.规范解答:1) 当a=1时,f(x)≥3x+2,可化为|x-1|≥2,由此可得x ≥3或x ≤-1,故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}因为a>0,所以不等式组的解集为{x|x ≤-2a },由题设可得-2a =-1,故a=2 【解题程序】 第一步:代入a ,求绝对值不等式|x -1|≥2的解集;第二步:化|x -a |+3x ≤0为不含绝对值的不等式组,并求解集;第三步:与题设比较,得含a 的方程,求出a 值;第四步:检验,查易错点,规范结论.阅卷心悟:易错提示:(1)不知逆向问题求解方法是思维受阻的主要原因.(2)未注意条件a >0,造成两解.防范措施:(1)逆向问题可正向求解,以本题为例,求出不等式的解集后.与已知不等式的解集作比较,便可建立关于a 的方程;(2)本题不等式f (x )≤0解集的端点-1是方程f (x )=0的解,利用这一点可得一种巧妙解法. 自主体验:1.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是________.【解析】 由|x +1|-|x -3|≥0,得|x +1|≥|x -3|,平方得(x +1)2≥(x -3)2,解之得x ≥1, ∴不等式的解集为{x |x ≥1}.2.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.1)证明:f(x)=|x-2|-|x-5|=⎪⎩⎪⎨⎧≥<<-≤5352722,3-x x x x ,当2<x<5时,-3<2x-7<3,所以-3≤f(x)≤3 2)由1)可知:当x ≤2时,f(x)≥x ²-8x+15的解集为空集;当2<x<5时,f(x)≥x ²-8x+15的解集为{x|5-3≤x<5}当X ≥5时,f(x)≥x ²-8x+15的解集为{x|5≤x ≤6}综上所述:不等式f(x)≥x ²-8x+15的解集为{x|5-3≤x ≤6}。
不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。
不等式的基本定理

一、不等式的基本定理1) a>b ⇒b<a(对称性)2) a>b,b>c ⇒a>c(传递性)3) a>b ⇔a+c>b+c(加减单调性)3.1) a>b ⇒ c-2a<c-2b4) a>b c>0时,⇔ac>bcc<0时 ⇔ac<bc(乘法单调性)运算性质1)a>b,c>d ⇒a+c>b+d ,(同向不等式相加方向不变同向不等式不能两边相减)。
1.1) a>b,c<d ⇒a-c>b-d2) a>b>0,c>d>0 ⇒ac>bd 2.1)a>b ,ab>0⇒a b 11> 2.2) a>b>0,0<c<d ⇒d b c a > 2.3)a>b>0,c<0 ⇒bc a c > 2.4) a>b>⇒b c a c <2.5) a<b<0,c>0 ⇒b c a c >3) a>b>0⇒n n b a > n ∈J 且n>13.1) a>b ⇒ 22b a > 4)a>b>0⇒n n b a > n ∈J 且n>1二、算术平均数与几何平均数重要不等式a 2+b 2≥2ab 及其定理a+b ≥2aba 3+b 3+c 3≥3abc 及其定理a+b+c ≥abc 3这个定理又可叙述为两个(或三个)正数的算术平均数不小于它们的几何平均数,灵活运用重要不等式和均值不等式,其变形公式ab b a ≥+2 ab ≤2)2(b a +2b a +≤222b a + 应用定理求最值必须考虑前提条件:“一正、二定、三相等”证明以下不等式㈠ 已知a+b=1 求 ①a 2+b 2≥21(a,b ∈R +) ②81122≥+ba ③9)11)(11(≥++b a ④1≤+b a , ⑤225)1()1(22≥+++b b a a㈡ 已知a+b=3 求b a 22+的最小值。
不等式知识点总结

不等式知识点
7.绝对值的定义
8.绝对值的性质
a,(a 0)
a
0, (a
0)
a, (a 0)
a 0
a
b
a
b
a
b
a b
a
n
an
a b ab a b
a1
a2
an
ห้องสมุดไป่ตู้
a1
a2
an
不等式知识点
9.绝对值的解法
x a,(a 0) a x a
x
a, (a
a
b
a
0
a 0
a 1 2 a
a 1 2 a
不等式知识点
4.公式
a2b 2 2
ab 2
ab a 1 2b 1
5.重要结论
a 3 b 3 c 3 3 a( b a ,b ,c c , 0 )
a b c3 3ab (a ,b c ,c ,0 )
不等式知识点
6.证明不等式的主要方法 •(1)比较法:
lo gaf (x)
logag(x)
fg((fxx())x) 00
g(x) (0
a
1)
f(x) g(x)
不等式知识点
11.不等式的分类(按所连接的解析式类型分类)
一次不等式
整式不等
式
二次
不等
式
不 等 式
代数不等式
有理不等式 无理不等式
分式不等
式
高次不等式
0)
x
a, 或x
a
公式法
f(x) g(x) f(x) g(x)
a b ab
f(x) g(x),或f(x) g(x) f(x) g(x)