T4-5-05

合集下载

中外钢型号对照表

中外钢型号对照表

XC48
S48C
XC48
50
1049 1050, 1053 1055
1049 1050, 1053 1055
1049 1050, 1053 1055
080M50
S53C
060A52, 080A52 070M55, 060A57,
55
S55C
C55(1.0535) CK55(1.1181 ), Cm55(1.1209 C60(1.0601) CK60(1.1221 ), Cm60(1.1223
10s2010721美国astm11091119aisi11091119sae11091119英国bs220m07y20y30y40mnsum3222s201072435s2010726113912121139121211391212225m36sum21sum2212131112121312131113sum22l12l1312l13sum23sum24lsum3112l14111712l141117121512l141117sum41sum42sum4311371141114411371141114411371141225m44前苏联05kn08kn810kn1015kn1520kn20253035前苏联40455055606570758085前苏联1520253035404550606570前苏联y7y8y8y9y10y11y12y13y7ay8ay8a9yay10ay11ay12ay13a法国nf12c318c332c438c442c445c416mc520mc5法国nf50cv412cd412cd418cd420cd430cd435cd442cd425cd4法国nf法国nf30cd430nc1120ncd2法国nf2142110wc201230y2135c2141100wc101162y1105v234155wc202233z200c122235z160cdv122231z100cdv5221190mv8法国nf221290mcw5338155ncdv73543z30wcv93431z38cdv53432z38cdwv5法国nf100c3100c5100c6法国nf4201z80wcv2018414271z80wkcv18?05?04?014275z80wkcv18?10?04?024175z165wkcv12?05?05?044301z85wdcv06?05?04?024361z130wdcv06?05?04?044371z85wdkcv06?05?05?04?02法国nfz12cf13z8c17z10cf17z8cd17?01z12c13z6c13z20c13z30cf13z30c13z40c14z100cd17z8cn18?12z2cn18?10z6cn18?09z10cn18?09z10cnf18?09法国nfz12cn17?07z6cnt18?11z10cnt18?11z10cnnb18?10

国内外常用材料牌号对照表

国内外常用材料牌号对照表

日本 JIS S58C SUP3 — — SUP6 SUP7 — SUP10
法国 NF XC55 — — — 55S6 61S7 — 50CV4
德国 DIN C60 — — — 55Si7 65Si7 — 50CrV4
弹簧钢
第 5 页,共 28 页
国内外常用材料牌号对照表
返回目录
国家 中国 标准号 GB
— 5152 — 3140H 3316 3325 3330 80B20 — 4340
英国 BS 708A37 — — — — — 735A30 — 527A60 — 640M40 — 653M31 — — 905M39 871M40
日本 JIS SCM3 — — — — — SUP10 — SUP9 — SNC236 — SNC631H SNC631 — SACM645 SNCM439
法国 NF — — XC10 XC10 XC12 XC18 — XC32 XC38TS XC38H1 XC45 XC48TS XC55 XC55 XC12 XC18 XC32 40M5 — XC48
德国 DIN C10 C10 — C10,CK10 C15,CK15 C22,CK22 CK25 — C35,CK35 — C45,CK45 CK53 — C60,CK60 14Mn4 — — 40Mn4 — —
20CrMn 20XГCA
30CrMnSiA 30XГCA
40CrNi
40XH
20CrNi3A 20XH3A
30CrNi3A 30XH3A


20MnMoB
合金结 构钢
38CrMoAlA
40CrNiMoA
— 38XMIOA 40XHMA
美国 ASTM 4135 — — — 6120 6140 6150

德国表面镀层缩写

德国表面镀层缩写

H e r a u s g e b e rN o r mA u s f üh r u n g s -a r t / A b k ür z u n gS c h i c h t d i c k e i n µmM e t a l lP a s s i v i e r u n g / B e m e r k u n gV e r s i e g e l u n gD I N 50961 B e z e i c h n u n g = K o t s c h -B e z e i c h n u n gC h r o m -6- I n f o r m a t i o nN67F 821 01>5Zink transparent passiviert (Gestell)ohne Fe/Zn5/B cr(VI)-frei N67F 821 02>5Zink transparent passiviert (Trommel)ohne Fe/Zn5/B cr(VI)-frei N67F 822 01>5Zink dickschicht passiviert (Gestell)ohne Fe/Zn5/A cr(VI)-frei N67F 822 02>5Zink dickschicht passiviert (Trommel)ohne Fe/Zn5/A cr(VI)-frei N67F 822 05>8Zink dickschicht passiviert (Gestell)ohne Fe/Zn8/A cr(VI)-frei N67F 822 06>8Zink dickschicht passiviert (Trommel)ohne Fe/Zn8/A cr(VI)-frei GN V AR.01107.318-25Zink-Nickel transparent passiviert ohne Fe/ZnNi8-25/A cr(VI)-frei GN V AR.01107.328-25Zink-Nickeltransparent passiviert vorgeschriebenFe/ZnNi8-25/A/T2cr(VI)-frei A5>5Zink nicht passiviertFe/Zn5cr(VI)-frei ZNT >5Zink dickschicht passiviert Fe/Zn5/Acr(VI)-frei ZNFE SW >5Zink-Eisen schwarz passiviert vorgeschrieben Fe/ZnFe5/F/T2cr(VI)-frei ZNFE SI >5Zink-Eisen dickschicht passiviert vorgeschrieben Fe/ZnFe5/A/T2cr(VI)-frei ZNNI SI >6Zink-Nickel transparent passiviert Fe/ZnNi6/A cr(VI)-frei ZNNIV SI >6Zink-Nickeltransparent passiviertvorgeschriebenFe/ZnNi6/A/T2cr(VI)-frei SN >8Zinn - Fe/Sn8cr(VI)-frei CUG >12Kupfer -Fe/Cu12cr(VI)-frei DBL 8451.1110-12Zink gelb chromatiert vorgeschriebenFe/Zn10-12/C enthält cr(VI)DBL 8451.1210-12Zink blau passiviertFe/Zn10-12/B cr(VI)-frei DBL 8451.1510-12Zink transparent passiviert Fe/Zn10-12/A cr(VI)-frei DBL 8451.166-8Zink transparent passiviert Fe/Zn6-8/A cr(VI)-frei DBL 8451.1720-24Zink gelb chromatiert Fe/Zn20-24/C enthält cr(VI)DBL 8451.1810-12Zink gelb chromatiert vorgeschriebenFe/Zn10-12/C/T2enthält cr(VI)DBL 8451.216-8Zink gelb chromatiert Fe/Zn6-8/C enthält cr(VI)DBL 8451.226-8Zink blau passiviert Fe/Zn6-8/B cr(VI)-frei DBL 8451.28>8Zink gelb chromatiertvorgeschrieben Fe/Zn8/C/T2enthält cr(VI)DBL 8451.6210-12Zink-Nickel transparent passiviert Fe/ZnNi10-12/A cr(VI)-frei DBL 8451.6510-12Zink-Nickel transparent passiviert vorgeschrieben Fe/ZnNi10-12/A/T2cr(VI)-frei DBL 8451.6610-12Zink-Nickeltransparent passiviertvorgeschriebenFe/ZnNi10-12/A/T2cr(VI)-freiN67FDBL 8451GS 90010GN V AR.01107Daimler-BenzBEHR BMW BoschDBL 8451.726-8Zink-Nickel transparent passiviert Fe/ZnNi6-8/Acr(VI)-frei DBL 8451.766-8Zink-Nickel transparent passiviert vorgeschrieben Fe/ZnNi6-8/A/T2cr(VI)-frei DBL 8451.83>8Zink-Eisen schwarz passiviert vorgeschrieben Fe/ZnFe8/F/T2cr(VI)-frei DBL 8451.8610-12Zink-Eisen transparent passiviert vorgeschrieben Fe/ZnFe10-12/A/T2cr(VI)-frei DBL 8451.936-8Zink-Eisen schwarz passiviert erlaubt Fe/ZnFe6-8/F/T2cr(VI)-frei DBL 8451.966-8Zink-Eisen transparent passiviert Fe/ZnFe6-8/A cr(VI)-frei Fe/Zn8>8Zink nicht passiviertFe/Zn8cr(VI)-frei Fe/Zn8/A >8Zink dickschicht passiviert Fe/Zn8/Acr(VI)-frei Fe/Zn8/A/T2>8Zink dickschicht passiviert Versiegelt Fe/Zn8/A/T2cr(VI)-frei Fe/Zn8/B >8Zink Blau passiviert Fe/Zn8/Bcr(VI)-frei Fe/Zn8/B/T2>8Zink Blau passiviert Versiegelt Fe/Zn8/B/T2cr(VI)-frei Fe/Zn8/C >8Zink gelb chromatiert Fe/Zn8/Centhält cr(VI)Fe/Zn8/C/T2>8Zink gelb chromatiert Versiegelt Fe/Zn8/C/T2enthält cr(VI)Fe/Zn12>12Zink nicht passiviertFe/Zn12cr(VI)-frei Fe/Zn12/A >12Zink dickschicht passiviert Fe/Zn12/Acr(VI)-frei Fe/Zn12/A/T2>12Zink dickschicht passiviert Versiegelt Fe/Zn12/A/T2cr(VI)-frei Fe/Zn12/B >12Zink blau passiviert Fe/Zn12/Bcr(VI)-frei Fe/Zn12/B/T2>12Zink blau passiviert Versiegelt Fe/Zn12/B/T2cr(VI)-frei Fe/Zn12/C >12Zink gelb chromatiert Fe/Zn12/Centhält cr(VI)Fe/Zn12/C/T2>12Zink gelb chromatiertVersiegelt Fe/Zn12/C/T2enthält cr(VI)Fe/ZnFe8/A >8Zink-Eisen dickschicht passiviert Fe/ZnFe8/Acr(VI)-frei Fe/ZnFe8/A/T2>8Zink-Eisen dickschicht passiviert Versiegelt Fe/ZnFe8/A/T2cr(VI)-frei Fe/ZnFe8/F/T2>8Zink-Eisen schwarz passiviert Versiegelt Fe/ZnFe8/F/T2cr(VI)-frei Fe/ZnFe12/A >12Zink-Eisen dickschicht passiviert Fe/ZnFe12/Acr(VI)-frei Fe/ZnFe12/A/T2>12Zink-Eisen dickschicht passiviert Versiegelt Fe/ZnFe12/A/T2cr(VI)-frei Fe/ZnFe12/F/T2>12Zink-Eisen schwarz passiviert Versiegelt Fe/ZnFe12/F/T2cr(VI)-frei Fe/ZnNi6-25/A 6-25Zink-Nickel transparent passiviert Fe/ZnNi6-25/Acr(VI)-frei Fe/ZnNi6-25/A/T26-25Zink-Nickel transparent passiviert Versiegelt Fe/ZnNi6-25/A/T2cr(VI)-frei Fe/ZnNi8/A >8Zink-Nickel transparent passiviert Fe/ZnNi8/Acr(VI)-frei Fe/ZnNi8/A/T2>8Zink-Nickel transparent passiviert Versiegelt Fe/ZnNi8/A/T2cr(VI)-frei Fe/ZnNi8-25/A 8-25Zink-Nickel transparent passiviert Fe/ZnNi8-25/Acr(VI)-frei Fe/ZnNi8-25/A/T28-25Zink-Nickel transparent passiviert Versiegelt Fe/ZnNi8-25/A/T2cr(VI)-frei Fe/ZnNi12/A >12Zink-Nickel transparent passiviert Fe/ZnNi12/Acr(VI)-frei Fe/ZnNi12/A/T2>12Zink-Nickel transparent passiviertVersiegelt Fe/ZnNi12/A/T2cr(VI)-frei CuZn/Cu2-5/Sn3-5je 3-5Kupfer + Zinn Nach Trinkwasserverordnung CuZn/Cu2-5/Sn3-5cr(VI)-frei CuZn/Cu2-5/Sn3-6je 3-6Kupfer + Zinn Nach Trinkwasserverordnung CuZn/Cu2-5/Sn3-6cr(VI)-freiDIN 50961DIN DIN DIN DIN 50965DIN 50962CuZn/Cu2-6/Sn3-72-6 / 3-7Kupfer + Zinn Nach Trinkwasserverordnung CuZn/Cu2-6/Sn3-7cr(VI)-freiCuZn/Cu2-6/Sn5-92-6 / 5-9Kupfer + Zinn Nach Trinkwasserverordnung CuZn/Cu2-6/Sn5-9cr(VI)-freiCuZn/Cu5-10/Sn5-15-10/5-10Kupfer + Zinn Nach Trinkwasserverordnung CuZn/Cu5-10/Sn5-10cr(VI)-frei Cu/Sn6>6Zinn Cu/Sn6cr(VI)-freiCu/Sn12>12Zinn Cu/Sn12cr(VI)-freiCuZn/Cu6>6Kupfer CuZn/Cu6enthält cr(VI)CuZn/Sn12>12Zinn CuZn/Sn12cr(VI)-freiFe/Cu5/Sn5je >5Kupfer + Zinn Nach Trinkwasserverordnung Fe/Cu5/Sn5cr(VI)-freiFe/Cu5/Sn5/T4je >5Kupfer + Zinn geölt Fe/Cu5/Sn5/T4cr(VI)-freiFe/Cu6-9/T46-9Kupfer passiviert / geölt Fe/Cu6-9/T4enthält cr(VI) Fe/Cu8>8Kupfer passiviert Fe/Cu8enthält cr(VI)Fe/Cu12>12Kupfer passiviert Fe/Cu12enthält cr(VI)Fe/Sn6>6Zinn Fe/Sn6cr(VI)-freiFe/Sn8>8Zinn Fe/Sn8cr(VI)-freiFe/Sn12>12Zinn Fe/Sn12cr(VI)-frei Fe/Zn5/An/T0>5Zink blau passiviert ohne Fe/Zn5/An/T0cr(VI)-frei DIN DIN 50979Fe/Zn8/An/T0>8Zink blau passiviert ohne Fe/Zn8/An/T0cr(VI)-freiFe/Zn12/An/T0>12Zink blau passiviert ohne Fe/Zn12/An/T0cr(VI)-freiFe/Zn5/An/T2>5Zink blau passiviert vorgeschrieben Fe/Zn5/An/T2cr(VI)-freiFe/Zn8/An/T2>8Zink blau passiviert vorgeschrieben Fe/Zn8/An/T2cr(VI)-freiFe/Zn12/An/T2>12Zink blau passiviert vorgeschrieben Fe/Zn12/An/T2cr(VI)-freiFe/Zn5/Cn/T0>5Zink dickschicht passiviert ohne Fe/Zn5/Cn/T0cr(VI)-freiFe/Zn8/Cn/T0>8Zink dickschicht passiviert ohne Fe/Zn8/Cn/T0cr(VI)-freiFe/Zn12/Cn/T0>12Zink dickschicht passiviert ohne Fe/Zn12/Cn/T0cr(VI)-freiFe/Zn5/Cn/T2>5Zink dickschicht passiviert vorgeschrieben Fe/Zn5/Cn/T2cr(VI)-freiFe/Zn8/Cn/T2>8Zink dickschicht passiviert vorgeschrieben Fe/Zn8/Cn/T2cr(VI)-freiFe/Zn12/Cn/T2>12Zink dickschicht passiviert vorgeschrieben Fe/Zn12/Cn/T2cr(VI)-freiFe/ZnFe5/Cn/T0>5Zink-Eisen dickschicht passiviert ohne Fe/ZnFe5/Cn/T0cr(VI)-freiFe/ZnFe8/Cn/T0>8Zink-Eisen dickschicht passiviert ohne Fe/ZnFe8/Cn/T0cr(VI)-freiFe/ZnFe12/Cn/T0>12Zink-Eisen dickschicht passiviert ohne Fe/ZnFe12/Cn/T0cr(VI)-freiFe/ZnFe5/Cn/T2>5Zink-Eisen dickschicht passiviert vorgeschrieben Fe/ZnFe5/Cn/T2cr(VI)-freiFe/ZnFe8/Cn/T2>8Zink-Eisen dickschicht passiviert vorgeschrieben Fe/ZnFe8/Cn/T2cr(VI)-freiFe/ZnFe12/Cn/T2>12Zink-Eisen dickschicht passiviert vorgeschrieben Fe/ZnFe12/Cn/T2cr(VI)-freiFe/ZnFe5/Fn/T2>5Zink-Eisen schwarz passiviert vorgeschrieben Fe/ZnFe5/Fn/T2cr(VI)-freiFe/ZnFe8/Fn/T2>8Zink-Eisen schwarz passiviert vorgeschrieben Fe/ZnFe8/Fn/T2cr(VI)-freiFe/ZnFe12/Fn/T2>12Zink-Eisen schwarz passiviert vorgeschrieben Fe/ZnFe12/Fn/T2cr(VI)-freiFe/ZnNi5/Cn/T0>5Zink-Nickel transparent passiviert ohne Fe/ZnNi5/Cn/T0cr(VI)-frei Fe/ZnNi8/Cn/T0>8Zink-Nickel transparent passiviert ohne Fe/ZnNi8/Cn/T0cr(VI)-frei Fe/ZnNi12/Cn/T0>12Zink-Nickel transparent passiviert ohne Fe/ZnNi12/Cn/T0cr(VI)-frei Fe/ZnNi5/Cn/T2>5Zink-Nickel transparent passiviert vorgeschrieben Fe/ZnNi5/Cn/T2cr(VI)-frei Fe/ZnNi8/Cn/T2>8Zink-Nickel transparent passiviert vorgeschrieben Fe/ZnNi8/Cn/T2cr(VI)-frei Fe/ZnNi12/Cn/T2>12Zink-Nickel transparent passiviert vorgeschriebenFe/ZnNi12/Cn/T2cr(VI)-frei Fe/ZnNi5/Fn/T0>5Zink-Nickel schwarz passiviert ohne Fe/ZnNi5/Fn/T0cr(VI)-frei Fe/ZnNi8/Fn/T0>8Zink-Nickel schwarz passiviert ohne Fe/ZnNi8/Fn/T0cr(VI)-frei Fe/ZnNi12/Fn/T0>12Zink-Nickel schwarz passiviert ohne Fe/ZnNi12/Fn/T0cr(VI)-frei Fe/ZnNi5/Fn/T2>5Zink-Nickel schwarz passiviert vorgeschrieben Fe/ZnNi5/Fn/T2cr(VI)-frei Fe/ZnNi8/Fn/T2>8Zink-Nickel schwarz passiviert vorgeschrieben Fe/ZnNi8/Fn/T2cr(VI)-frei Fe/ZnNi12/Fn/T2>12Zink-Nickelschwarz passiviert vorgeschriebenFe/ZnNi12/Fn/T2cr(VI)-frei A3L >8Zink gelb chromatiert ohne Fe/Zn8/C enthält cr(VI)A4L >12Zink gelb chromatiert ohne Fe/Zn12/C enthält cr(VI)A6L >20Zink gelb chromatiert ohne Fe/Zn20/C enthält cr(VI)A3K >8Zink blau passiviertohne Fe/Zn8/Bcr(VI)-frei A3S >8Zink schwarz chromatiert erlaubt Fe/ZnFe8/F/T2enthält cr(VI)R3R >8Zink-Eisen schwarz passiviert vorgeschriebenFe/ZnFe8/F/T2cr(VI)-frei J3E>8Zinn ohneFe/Sn8cr(VI)-frei WSS-M21 P44-A1WSS-M21 P44-A16-12Zink-Nickel transparent passiviert Fe/ZnNi6-12/Acr(VI)-frei WSS-M21 P44-A2WSS-M21 P44-A26-12Zink-Nickel transparent passiviert vorgeschrieben Fe/ZnNi6-12/A/T2cr(VI)-frei WSF-M1P89-A1M1P89-A1>5Zink-Eisen gelb chromatiert erlaubtFe/ZnFe5/Centhält cr(VI)WSF-M1P89-A1M1P89-A1>5Zink-Eisen schwarz passiviert erlaubt Fe/ZnFe8/F/T2cr(VI)-frei WSF-M1P89-A2M1P89-A2>8Zink-Eisen gelb chromatiert erlaubt Fe/ZnFe8/C enthält cr(VI)WSF-M1P89-A2M1P89-A2>8Zink-Eisen schwarz passiviert erlaubt Fe/ZnFe8/F/T2cr(VI)-frei A115-25Zink transparent passiviert erlaubt Fe/Zn15-25/A cr(VI)-frei A215-25Zink blau passiviert erlaubt Fe/Zn15-25/B cr(VI)-frei A315-25Zink gelb chromatiert erlaubt Fe/Zn15-25/C enthält cr(VI)A615-25Zink blau passiviert erlaubt Fe/Zn15-25/B cr(VI)-freiA6 - X 15-25Zink blau passiviertvorgeschrieben Fe/Zn15-25/B/T2cr(VI)-freiA715-25Zink dickschicht passiviert erlaubt Fe/Zn15-25/A cr(VI)-frei A7 - X 15-25Zink dickschicht passiviert erlaubt Fe/Zn15-25/A/T2cr(VI)-frei A815-25Zink dickschicht passiviert erlaubt Fe/Zn15-25/A cr(VI)-frei B18-13Zink transparent passiviert erlaubt Fe/Zn8-13/A cr(VI)-frei B28-13Zink blau passiviert erlaubt Fe/Zn8-13/B cr(VI)-frei B38-13Zinkgelb chromatierterlaubt Fe/Zn8-13/Aenthält cr(VI)DIN FordGME General Motors / OpelGME 00252 Zink ISO 4042B68-13Zink blau passivierterlaubt Fe/Zn8-13/Bcr(VI)-frei B 6 - X 8-13Zink blau passiviert vorgeschriebenFe/Zn8-13/B/T2cr(VI)-frei B78-13Zink dickschicht passiviert erlaubt Fe/Zn8-13/A cr(VI)-frei B 7 - X 8-13Zink dickschicht passiviert vorgeschriebenFe/Zn8-13/A/T2cr(VI)-frei A 78-18Zink-Nickel transparent passiviert erlaubt Fe/ZnNi8-18/A cr(VI)-frei B 76-11Zink-Nickel transparent passiviert erlaubt Fe/ZnNi6-11/A cr(VI)-frei B 58-13Zink-Eisen schwarz passiviert erlaubt Fe/ZnFe8-13/F cr(VI)-frei B 78-13Zink-Eisen dickschicht passiviert ohne Fe/ZnFe8-13/A cr(VI)-frei B 7 - X 8-13Zink-Eisen dickschicht passiviert vorgeschriebenFe/ZnFe8-13/A/T2cr(VI)-frei B 98-13Zink-Eisen schwarz passiviert erlaubt Fe/ZnFe8-13/F cr(VI)-frei B 9 - X - V8-13Zink-Eisen schwarz passiviert vorgeschriebenFe/ZnFe8-13/F/T2cr(VI)-frei A 15-25Zinn Fe/Sn15-25cr(VI)-frei B 8-11Zinn Zinn, evtl unterkupfert Fe/Sn8-11cr(VI)-frei Kupfer C5-8Kupfer Fe/Cu5-8cr(VI)-frei Hitachi GD 211632GD 2116328-13Zink dickschicht passiviertFe/Zn8-13/A cr(VI)-frei Hydac Hydac012005506-12Zinn Fe/Sn6-12cr(VI)-frei HI 85HI 858-12Zink dickschicht passiviert Fe/Zn8-12/A cr(VI)-frei HI 81HI 818-12Zink-Nickel transparent passiviert vorgeschrieben Fe/ZnNi8-12/A cr(VI)-frei TLV 12250 C TLV 12250 C >12Zink gelb chromatiert vorgeschrieben Fe/Zn12/C/T2enthält cr(VI)TLV 12250TLV 12250>12Zink-Eisen dickschichtpassiviert vorgeschriebenFe/ZnFe12/A/T2cr(VI)-frei Uponor WN07-02a-0104CuZn/Cu2-6/Sn3-7Kupfer 2-6 µm / Zinn 3-7CuZn/Cu2-6/Sn3-7cr(VI)-frei c3108-25Zink nicht passiviert ohne Fe/Zn8-25cr(VI)-frei c3408-25Zink blau passiviert ohne Fe/Zn8-25/B cr(VI)-frei c3418-25Zink blau passiviert vorgeschriebenFe/Zn8-25/B/T2cr(VI)-frei c3428-25Zink dickschicht passiviert ohne Fe/Zn8-25/A cr(VI)-frei c3438-25Zink dickschicht passiviert vorgeschriebenFe/Zn8-25/A/T2cr(VI)-frei c3508-25Zink gelb chromatiert ohne Fe/Zn8-25/C enthält cr(VI)c3518-25Zink gelb chromatiert vorgeschriebenFe/Zn8-25/C/T2enthält cr(VI)c61015-23Zink nicht passiviert ohne Fe/Zn15-23cr(VI)-frei c64015-23Zink blau passiviert ohne Fe/Zn15-23/B cr(VI)-frei c64115-23Zink blau passiviert vorgeschriebenFe/Zn15-23/B/T2cr(VI)-frei c64215-23Zink dickschicht passiviert ohne Fe/Zn15-23/A cr(VI)-frei c64315-23Zink dickschicht passiviert vorgeschriebenFe/Zn15-23/A/T2cr(VI)-frei r3018-25Zink-Eisen dickschicht passiviert erlaubt Fe/ZnFe8-25/A/T2cr(VI)-frei r3028-25Zink-Eisen schwarz passiviert vorgeschriebenFe/ZnFe8-25/F/T2cr(VI)-frei r6428-25Zink-Nickel transparent passiviertohneFe/ZnNi8-25/Acr(VI)-freiGME 00252 Zink-Nickel VW LiebherrMahle VW 13750 TLVW 13750 TL153VW 13750 TL217GME 00252Zinn GME 00252 Zink-Eisenr6438-25Zink-Nickeltransparent passiviertvorgeschriebenFe/ZnNi8-25/A/T2cr(VI)-freig100>5Zinn Fe/Sn5g300>12Zinn Fe/Sn12g600>20Zinn Fe/Sn20ZnNi-p >8Zink-Nickel transparent passiviert ohne Fe/ZnNi8-25/A cr(VI)-frei ZnNi-p-v >8Zink-Nickel transparent passiviert vorgeschrieben Fe/ZnNi8-25/A/T2cr(VI)-frei ZnFe-p-v >8Zink-Eisen transparent passiviert vorgeschriebenFe/ZnFe8-25/A/T2cr(VI)-frei VDA 235-104.20>8Zink transparent passiviert ohne Fe/ZnNi8/A cr(VI)-frei VDA 235-104.25>8Zink-Nickel transparent passiviert ohne Fe/ZnNi8/A cr(VI)-frei VDA 235-104.30>8Zink-Eisen schwarz passiviert vorgeschrieben Fe/ZnFe8/F/T2cr(VI)-frei Fe/Zn-Fe 12 C4>12Zink-Eisen schwarz passiviert vorgeschrieben Fe/ZnFe12/F/T2cr(VI)-frei Fe/Zn-Fe 8 C4>8Zink-Eisen schwarz passiviert vorgeschriebenFe/ZnFe12/F/T2cr(VI)-frei Fe/Zn 8 C3>8Zink dickschicht passiviert ohne Fe/Zn8/A cr(VI)-frei Fe/Zn 8 C4>8Zink schwarz passiviert vorgeschrieben Fe/Zn8/F/T2cr(VI)-frei ZFB 842ZFB 842>8Zink-Eisen schwarz passiviert vorgeschriebenFe/ZnFe8/F/T2cr(VI)-frei ZFB 726ZFB 726>8Zink dickschichtpassiviert ohne Fe/Zn8/Cn cr(VI)-frei c3108-25Zink nicht passiviert ohne Fe/Zn8-25cr(VI)-frei c3408-25Zink blau passiviertohne Fe/Zn8-25/B cr(VI)-frei c3438-25Zink dickschicht passiviert vorgeschrieben Fe/Zn8-25/A/T2cr(VI)-frei 36d08-25Zink-Eisen schwarz passiviert vorgeschriebenFe/ZnFe8-25/A/T2cr(VI)-frei r6428-25Zink-Nickeltransparent passiviertohneFe/ZnNi8-25/Acr(VI)-freiVolvo VDA ZF Porsche VDA 233-101VDA 235-104STD 5732,104STD 5732,105PN 11011244。

T4T5T8灯管的区别

T4T5T8灯管的区别

T4灯管的直径就是(4/8)×25.4=12.7 mm (注:统一宽度21mm、高度32mm)
常用的日光灯长度与功率:(8w 长341mm; 12w 长443mm; 16w 长487mm; 20w 长534mm;
22w 长734mm; 24w 长874mm; 26w 长1025mm; 28w 长1172mm)
在日常使用中,由于T5灯管光效高,且T5单管电子镇流器功耗仅为4 W左右,T8、T12单管电感镇流器的功耗为10W左右,再加上T5新型灯具因体积小,可在同等成本下选用精良材、精细加工,提高灯具效率,故照明场所在满足相同照度的前提下,T5灯具的安装数量可分别比T8、T12灯具的数量减少30%和45%。
16 48.7
20 53.4
22 73.5
24 87.4
26 103
28 118
说说灯管型号中的“T”后面数字代表意义
大家经常使用荧光灯管吧?现在常用的是T8、T5、T4灯管,前两年常用的有T10、T12。那么,这个“T”到底是啥意思呢?T5和T4有啥区别呢?我来说说,大家感兴趣的可以拍砖。
2、亮度不同,理论上应该是T4效率高,但由于镇流器问题很难做精,现在很多T4都不如T5来得亮。
3、寿命和稳定性不同,T4不如T5成熟,所以目前T4灯管支架比T5要稍微逊色一点 。
T4灯管长度比较
w cm
8 34.8
12 44.3
T8 直径 25.4 mm
T5 直径 16 mm
T4 直径 12.7 mm
T3.5 直径 11.1 mm
2、亮度不同,理论上应该是T4效率高,但由于镇流器的品质问题,现在很多T4都不如T5来得亮。
3、寿命和稳定性不同,T4不如T5成熟,所以目前寿命比T5要稍微短一些 。

我国和外国钢号对照表

我国和外国钢号对照表
项目
中国
GB,YB
日本
JIS
德国
DIN(W-Nr.)
美国
英国
BS
法国
NF
前苏联
ГОСТ
国际
ISO
ASTM
AISI
SAE
T7
SK7,SK6
W1-7
1204Y275,
1304Y375
Y7
T8
SK6,SK5
W1-71/2
Y8
T8Mn
SK5
Y8Г
T9
SK4,SK5
W2-81/2,
W1-81/2
WB1A
Y9
T10
CT2KP-3
CT2PC-3
CT2CP-3
Gr.C
Gr.58
Gr.C
SS 330
(SS34)
SPHC
SPHD
040A12
Q235 A
Fe 360 A
CT3KP-2
CT3PC-2
CT3CP-2
Gr.D
SS 400
(SS41)
SM 400A
(SM41A)
Fe 360 B
Fe 360 C
080A15
Fe 360 B
1Cr18Si2
X10CrSi18(1.4741)
442
1Cr13SiAl
X10CrAl13(1.4724)
10X13Cю(1X12Cю)
1Cr13
SUS410,
SUS403
X10Cr13(1.4006) (DIN)
X15Cr13(1.4024) (DIN)
410,
403
410S21,
403S17
Z12C13
标准名称:

最全面铝合金牌号对照表

最全面铝合金牌号对照表

类别中国美国英国日本法国德国前苏联GB ASTM BS JIS NF DIN ГОСТ工业纯铝1A99 1199 A199.99R A99 1A97 A199.98R A97 1A95 A95 1A80 1080(1A) 1080 1080A A199.90 A8 1A50 1050 1050(1B) 1050 1050A A199.50 A5 防锈铝5A02 5052 NS4 5052 5052 A1Mg2.5 Amg 5A03 NS5 AMg3 5A05 5056 NB6 5056 A1Mg5 AMg5V 5A30 5456 NG61 5556 5957 硬铝2A01 2036 2117 2117 AlCu2.5Mg0.5 D18 2A11 HF15 2017 2017S AlCuMg1 D1 2A12 2124 2024 2024 AlCuMg2 D16AVTV 2B16 2319 锻铝2A80 2N01 AK4 2A90 2218 2018 AK2 2A14 2014 2014 2014 AlCuSiMn AK8 超硬铝7A09 7175 7075 7075 AlZnMgCu1.5 V95P 铸造铝合金ZAlSi7Mn 356.2 LM25 AC4C G-AlSi7Mg ZAlSi12 413.2 LM6 AC3A A-S12-Y4 G-Al12 AL2 ZAlSi5Cu1Mg 355.2 AL5 ZAlSi2Cu2Mg1 413.0 AC8A G-Al12(Cu) ZAlCu5Mn AL19 ZAlCu5MnCdVA 201.0 ZAlMg10 520.2 LM10 AG11 G-AlMg10 AL8 ZAlMg5Si G-AlMg5Si AL13 中、美常用铝合金牌号对照表中国CHINA美国THE UNITED STATESL1-L6 、L5-11070 、1060 、1050 、1030 、1100 LY11 、LY12 、LY12017 、2024 、2117 LD10 、LD52014 、2214LD72618LD9 、LD82018 、2218LY16 、LY172219 、2021LF213003LF2 、LF3 、LF45052 、5154 、5083 LF5 、LF11 、LF6 、LF5-15456 、5056LD2 、LD2-1 、LD2-2 、LD30 、LD316165 、6061 、6055 、6063 LC6 、LC4 、LC97001 、7178 、7075 LC5 、LC107076 、7175 、7079LD114032中国新旧合金牌号对照表(GB/T 3190-1996)新牌号旧牌号新牌号旧牌号新牌号旧牌号1A99 原LG52B12原LY93003-1A97 原LG42A13原LY133103-1A95 -2A14原LD103004-1A93 原LG32A16原LY163005-1A90 原LG22B16曾用Ly16-13105-1A85 原LG12A17原LY17 4A01原LT1 1080 -2A20 曾用LY20 4A11 原LD11 1080A -2A21 曾用214 4A13 原LT13 1070 -2A25 曾用225 4A17 原LT17 1070A 代L1 2A49 曾用149 4004 -1370 -2A50 原LD5 4032 -1060 代L2 2B50 原LD6 4043 -1050 -2A70 原LD7 4043A -1050A 代L3 2B70 曾用LD7-1 4047 -1A50 原LB2 2A80 原LD8 4047A -1350 -2A90 原LD9 5A01 曾用2101、LF15 1145 -2004 -5A02 原LF2 1035 代L4 2011 -5A03 原LF3 1A30 原L4-1 2014 -5A05 原LF5 1100 代LF5-1 2014A -5B05 原LF10 1200 代L5 2214 -5A06 原LF6 1235 -2017 -5B06 原LF14 2A01 原LY1 2017A -5A12 原LF12 2A02 原LY2 2117 -5A13 原LF13 2A04 原LY4 2218 -5A30 曾用2103、LF16 2A06 原LY6 2618 -5A33 原LF33 2A10 原LY10 2219 曾用LY19、147 5A41 原LT41 2A11 原LY11 2024 -5A43 原LF43 2B11 原LY8 2124 -5A66 原LT66 2A12 原LY12 3A21 原LF21 5005 -5019 -6B02 原LD2-1 7A09 原LC9 5050 -6A51 曾用651 7A10 原LC10 5251 -6101 -7A15 曾用LC15、157 5052 -6101A -7A19 曾用919、LC19 5154 -6005 -7A31 曾用183-1 5154A -6005A -7A33 曾用LB733 5454 -6351 -7A52 曾用LC52、5210 5554 -6060 -7003 原LC12 5754 -6061 原LD30 7005 -5056 原LF5-1 6063 原LD31 7020 -5356 -6063A -7022 -5456 -6070 原LD2-2 7050 -5082 -6181 -7075 -5182 -6082 -7475 -5083 原LF4 7A01 原LB1 8A06 原L6 5183 -7A03 原LC3 8011 曾用LT98 5086 -7A04 原LC4 8090 -6A02 原LD2 7A05 曾用705 --注意:(1)“原”是指化学成分与新牌号等同,且都符合GB3190-82规定的旧牌号。

车型校对

车型校对
圣达菲 胜达KMHSH81D17U 佳乐KNAFG521,排量2.0L 索兰托KNAKU811 享御KPIS0A1K 爱腾KPTC0B1KX6P (A200XDi)
梅赛德斯-奔驰WDDDJ56X3
发现4
SALAN24486A370686 SALAN2F40AA527827 SALAN2F4XCA604755 SALFA24A88H099243 SALFA2BBXAH191018 SALSN25458A168894 SALSN25479A205574 SALSN2E43BA295067 SALSN2F40BA291752 SCBBF53WX9C062122 SCBBF53WX9C062122 SCBLE47K78CX19563 SCBLE47K78CX19563 TRUAF28J091004574 TRUAF28JX91029904 TRUAFB8J0A1017622 TRUBFB8J5A1001405 VF30U5FV1BS105227 VF34B5FI5AS027085 VF34H5FT3AS019551 VF34U5FT8AS017757 VF7UARFJ19J086868 VFILMREB76R554817 WAU8FD8T6AA067525 WAUAFB8T0AA068286 WAUAGD4LXBD030062 WAUAV54L48D065066 WAUAY94L27D105547 WAUAYD4L3AD028813 WAURGB4H0BN015924 WAUSHB4E6AN001500 WAUZZZ4E36N009310 WBA2V4108BLL55785 WBADT61080C137572 WBADV3102BE594502 WBAFA11016LT66422 WBAFB310X0LP13987 WBAFE41009L247075 WBAFE81088L091650 WBAFG2107BL503006 WBAFG4105AL374645 WBAFR7103BC947653 WBAGL61070DM53917 WBAGN61090DP94665 WBAKB2107AC410496 WBAKB41029CY48222 WBALM3106AE449539 WBALM5102AE387052 WBAPC7109AWK28409 WBAPF7105BF101469 WBAPH110XAA639345 WBAPH110XAA639345 WBAUD31058PT31968 WBAUD3105AP501154

腾讯公司职业发展体系

腾讯公司职业发展体系
1、技术族职业发展通道\阶梯\标准………………………………………………………12
(1)通道……………………………………………………………………………………12
(2)阶梯……………………………………………………………………………………13
(3)标准……………………………………………………………………………………14
行政类—AD
01-行政
02—秘书*
03—翻译
04—建筑工程师*
采购类—PU
01—采购计划
02—采购
03—供应商管理
04—物流仓储
软件研发类-RD
01-后台开发
02-前台开发
03-软件架构
04-研发顾问
05-终端开发
06-IT应用开发
07-系统分析
设计类-DS
01-网页美术设计
02-游戏美术设计
03-UI美术设计
2、职位规划及通道划分…………………………………………………………………… 5
3、职业发展通道等级划分………………………………………………………………… 9
二、员工职业发展篇………………………………………………………………………… 10
(一)概述…………………………………………………………………………………… 11
3、专业族职业发展通道\阶梯\标准………………………………………………………36
(1)通道……………………………………………………………………………………36
(2)阶梯……………………………………………………………………………………36
(3)标准……………………………………………………………………………………38
(二)职业发展通道\阶梯\标准
1、技术族职业发展通道\阶梯\标准
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANALYSIS OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR SYSTEMCheng Xuetao, Xu Xianghua, Liang XingangHeat Transfer and Energy Conversion-The Key Laboratory of Beijing MunicipalitySchool of Aerospace, Tsinghua UniversityBeijing 100084, Chinaxtcheng2001@ABSTRACTUses of solar energy both on heat energy and electricity at the same time by concentrating sunlight and tracking the maximum output power of solar cells is an efficient way, which will increase the utility of solar energy and reduce the cost. A reflective concentrator is adopted in the system to increase solar intensity on solar cells while they are cooled underneath by water. In such a way, much less solar cell area is needed to produce the same amount of electricity and hence the cell cost is greatly reduced. And hot water could be supplied at the same time. A mathematical model for a photovoltaic/thermal solar system is set up. The performance of the system is simulated. Some influences are discussed, such as the concentration ratio, flow rate of the cooling water, thermal conductivity, thickness of solar cells, tracking of maximum output power of solar cells, etc. on the thermal efficiency, electrical efficiency and temperature of solar cells. A working cycle is designed and simulated.1. INTRODUCTIONSolar energy is green and reproducible. The situation of the world energy source makes the exploitation and use of solar energy more and more important now. There are three technical ways to use solar energy. It could be turned into heat, electricity, and chemical energy. Because of the high production cost of solar cells at present, using solar energy both on heat energy and electricity at the same time is a good choice for us to get more energy from solar cells and decrease the cost [1].There are also three technical ways to collect more energy from solar cells. First, radiant intensity of solar cells couldbe increased by concentrating sunlight with lens or reflector. Lens has got less attention because it may cause a high temperature partially. Reflector has attracted comprehensive research and application since Rabl invented compound parabolic concentrator (CPC) in 1976 [2]. Second, cooling solar cells to decrease its temperature and improve its electrical efficiency [3, 4]. Compared with air, cooling by water is better because air is limited by its thermal character [5]. The third way is tracking the maximum output power of solar cells to get maximal electrical energy. Many methods such as constant voltage tracking (CVT) were studied [6].A photovoltaic/thermal solar system using all technical ways above was discussed in this paper.2. MATHMATICAL AND PHYSICAL MODELFig. 1 is a sketch map of the system where sunlight is concentrated by a CPC and then irradiates solar cells and cooling water runs beneath the cells. The principle of generating electricity by solar cells is photovoltaic effect. The equivalent electrical circuit of Si solar cell is shown in Fig. 2. The relationship between electrical current I and4 PV TECHNOLOGI ES, SYSTEMS AND APPLI CATI ONS1387output voltage U for the circuit is [7, 8]00()exp 1s sL D sh q U IR U IR I I I n kT R ⎡⎤++=−−−⎢⎥⎣⎦(1)where n 0 is a factor of diode, usually between 1 and 5; k isthe Boltzmann constant; T is the temperature of p-n junction; q is the elementary charge; I L is the photogenerated current which may increase a little when T goes up; I D is the saturation current of diode which may exponentially increase when T is getting higher; R s is the resistance in series which mainly comes from the cell material itself and contact resistance between metal and semiconductor; R sh is the parallel resistance which results from the electricity leakage of p-n junction.Fig. 1: A sketch map of the system.Fig. 2: The equal electric circuit of the solar cell. [7] Equation (1) could be rewritten as:20()exp10s sL D sh q U PR U U PR UI UI P n kT R ⎡⎤++−−−−=⎢⎥⎣⎦(2) Find dP dUand make 0dP dU= from equation (2)0200()exp 1()(1)2exp 0s L D s s D sh q U PR U I I n kT q U PR U q PR U U UI n kT n kT R ⎡⎤+−−⎢⎥⎣⎦⎡⎤+−−×−=⎢⎥⎣⎦(3)where P is the power from cells. The maximum outputpower could be tracked numerically based upon the above equations (2) and (3).The solar cells are composed of a protective glass layer, p-n junction and a substrate. When concentrated sunlight irradiates the protective glass, part of solar energy is reflected (called part 1), part is absorbed (part 2), the rest (part 3) could reaches the p-n junction. At present, the transmission rate is up to 95 percent or larger, so part 2 could be ignored. Some of part 3 turns into electricity as shown in Fig. 2. Some of electricity is output, the rest turns into thermal energy in p-n junction. This thermal energy could be treated as surface heat source because p-n junction is very thin. The rest of part 3 is absorbed by the substrate. For convenience, it could be treated as a uniform heat flux on the top surface of the substrate.As shown in Fig. 1, the section of the p-n junction and below could be treated as a two-dimensional steady heat conduction problem. For convenience, it could be called section 2; the protective glass layer is named section 1. The energy equation of section 1 could be simplified into a one-dimensional heat conduction problem without heat source because its temperature is supposed to change only in X direction there. The thickness of section 1 is d 1, while that of section 2 is d 2. Upper boundary of section 1 is a natural convective and radiant boundary.12441()()a a d a d y d d Th T T T T y λεσ=+∂=−+−∂ (4)where h a is convective heat-transfer coefficient, ε1 is thesurface emissivity, T a is the environment temperature, T d is the temperature of the upper surface of the glass. Lower boundary temperature of section 1 is the upper boundary temperature of section 2.Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement1388The equation of section 2 is expressed like this:22220T Tx y ∂∂+=∂∂ (5) Its left and right boundaries are adiabatic. Considering the energy conducted by glass, the energy equation of its upper boundary should be expressed as below:20(1)q y d T E G UI S E yλρ=∂==−−−∂ (6)where ρ is the surface reflectivity of the glass; S is the area of the cells; E 0 is the heat flux density conducted by the glass; E q is the heat flux density of upper boundary.The temperature of the cooling water and that of lower boundary of section 2 are nearly the same, so radiative heat-exchange could be ignored. Only convection is considered.Assuming that the lower wall of water channel is adiabatic and ignoring heat conduction and thermal radiation of the channel, the equation and boundary condition of the cooling water could be expressed as:000()wxw x wx wxwx x dT c m h a T T dx T T •=⎧=−⎪⎨⎪=⎩ (7) where c is specific heat of water, m •is the mass flow; a is the length of the cells in Z direction; T 0x is the inlet temperature of water; T wx is the local temperature of the water.3. RESULTS AND ANALYSESAssuming that length and width of cells are both 1 m, total thickness is 3 mm (thickness of protective glass is 2 mm). Transmissivity and reflectivity of the glass are 0.9, 0.1, respectively. Its emissivity is 0.94. Thermal conductivity of cells could be treated as constant. Because the material of cells are glass, Si, and some adhesive materials, the conductivity of the glass is given to be 1.4 Wm -1K -1, that of the substrate is between 1 and 2 Wm -1K -1. Solar radiation Gis 1000 Wm -2. Environment temperature T a is 298 K. Inlet temperature of water is 298 K. The width of the cooling water channel is 5 mm.The convective heat-transfer coefficient of the upper boundary of section 1 could be got from the correlation of natural convection with the hot surface upwards. The convective coefficient of water is obtained from the experimental correlation for the forced convection inside a channel.The concentration ratio (CR ) is an important parameter which greatly influences the electrical efficiency and other results. This is shown in Fig. 3 and Fig. 4. When CR goes up, temperature of cells goes up too. A superficial conclusion may conclude that the electrical efficiency should decrease monotonously but the simulated result shows that it increases at first and then decrease. The growth of CR increases the radiation intensity, which is positive for electrical efficiency for small CR and negative for large CR. Further more, the growth of CR increases the temperature of cells, which results in the reduction of cell efficiency. These two adverse effects lead to a maximum electrical efficiency in Fig. 3 and minimum thermal efficiency in Fig. 5.Fig. 3: Relationship between electrical efficiency and CR . A farther explanation could be found by considering Fig. 2. I f radiation intensity becomes N times larger, the photogenerated current roughly increases N times for small4 PV TECHNOLOGI ES, SYSTEMS AND APPLI CATI ONS1389Fig. 4: Relationship between temperature of cells and CR.Fig. 5: Relationship between thermal efficiency and CR. CR. Under the condition that the maximum electrical poweroutput is kept, it is found that the current through diode increase slowly so that the output current increases more than N times. Hence the electrical efficiency increases. When CR is large enough, the increase of temperature of the cells makes the current through diode go up exponentially, which in turn results in a significant loss of electrical power and reduces the electrical efficiency.Thickness of cells is also an important parameter. ts influence is shown in Fig. 6. It is shown that the influence of thickness is getting stronger when CR goes up.The influence of water speed and thermal conductivity of cells is also studied. The variations are similar to those in Fig. 6. When CR is large, there are strong influences from water speed and thermal conductivity of the cells.Fig. 6: Affection to electrical efficiency from thickness ofcells.Fig. 7: Comparison of electrical efficiency between different models.I n the above model, the infrared emission is treated as surface heat source on the top of section 2. Actually, it is not quite reasonable because infrared light may be absorbed by the substrate under Bouguer’s law. To take such case into account another model in which infrared light is absorbed evenly in the substrate is studied to compare with the model above to find out the degree of uncertainty. The comparison of two models is shown in Fig. 7 where Model 1 stands for the first one used in this paper, Model 2 stands for the second. Relative error between them is less than four percent. The uncertainty of the model is acceptable.Total solar energy utility of this system is about 85% and thermal use is dominant. Let us consider an example of thisProceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement 1390system. Suppose the CR is 6, cell thickness is 3 mm, cooling water speed is 1 m/s and area of solar cells is 1 m2. The simulation shows that this system may give us 8.25 kilowatt-hour electric energy per day (assuming 9 hours a day under sunlight; solar radiation is 1000 Wm-2 ); it also can give us 1012 kilo water whose temperature could be turned from 298 K to 323 K. Considering that the water speed is high, this may increase some cost. We could enhance the heat transfer and design a lower water speed to decrease pressure drop.4. CONCLUSIONSMathematical model is set up for the concentrating photovoltaic/thermal solar system in this paper. Based on the model, the character of this system is analyzed.(1) Total solar energy utility of this system is about 85% and thermal use is dominant.(2) Electrical efficiency of solar cells increases at first and then decreases with the growth of concentration ratio, while thermal efficiency is in an opposite manner. At the same time, temperature of the solar cells goes up linearly. (3) When the water speed goes up, electrical efficiency would increase. When CR gets bigger, this influence turns stronger. The influence which comes from thickness, thermal conductivity acts alike.5. REFERENCES(1) A. Royne, C. J. Dey, D. R. Mill, Cooling ofphotovoltaic cells under concentrated illumination: a critical review,Solar Energy Materals & Solar Cells 86(2005)451-483.(2) L. W. Florschuetz, C. R. Truman, D. E. Metzger,Streamwise flow and heat transfer distributions for jet array impingement with crossflow, J. Heat Transfer 103 (1981) 377-342.(3) A. D. Kraus, A. Bar-Cohen, Design and Analysis ofHeat Sinks, first ed, Wiley, New York,1995.(4) J. B. Lasich, Cooling circuit for receiver of solarradiation, Patent WO02080286, 2002, Australia.(5) Z. M. Zhao, J. Z. Liu, X. Y. Sun, Solar Energy PVGeneration and application, Beijing: Science Press (2005) 109-131(in Chinese).(6) M. Green, Solar cells, Beijing: Publishing House ofElectronics Industry (1987) 60-97 (in Chinese).(7) S. S. Li, Physics of Solar Energy, Beijing: CapitalNormal University Press (1996) 221-290 (in Chinese).。

相关文档
最新文档