2014年常州市武进区初中数学老师解题竞赛试卷
初中数学教师解题比赛试题卷

2014 年初中数学教师解题竞赛试题卷(竞赛时间: 2014 年 4 月 25 日上午 9∶00-11 ∶00)本试卷共 4 页,共三大题 25 小题,满分 150 分,考试时间 120 分钟。
一、选择题(本大题共 10 小题,每题 4 分,满分 40 分)1、对于实数 a 、 b ,定义一种运算“ ? ”为: a ? b =a 2+ab ﹣ 2,有以下命题:①1? 3=2;②方程 x ? 1=0 的根为: x 1=﹣ 2, x 2=1;③不等式组的解集为:1 5﹣ 1< x < 4;④点( , )在函数 y =x ? (﹣ 1)的图象上.此中正确的选项是:2 2A . ①②③④B . ①③C. ①②③D . ③④2、若- 1< a < 0,则 a, a 3 , 3 a , 1 必定是:aA . 1 最小,a 3 最大. 3a 最小, a 最大C . 1 最小, a 最大D . 1 最小,3a 最大aBaa3、如左以下图,直线L 1 、 L 2 、L 3 表示三条相互交错的公路,要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地点有:A . 1个B . 2个C.3 个1D .4个2第3题图 第4题图 2正视图 侧视图4、如图,在 ⊙ O 上有定点 C 和动点 P ,位于直径 AB 的异侧, 1 过点 C 作 CP 的垂线,与 PB 的延伸线交于点 Q ,已知: ⊙ O 1半径为 5 , tan ∠ ABC = 3,则 CQ 的最大值是:第 7 题图24俯视图A . 5B .15C .25D .204335、设 x 1, x 2 是方程 x 2 3x 1 0 的两个根,则 x 1 2 3x 2A . 8B . -8C . 10D . -106、若 n 为整数,则能使n1也为整数的 n 的个数有:n 1A .1个B . 2个C . 3个D .4个7、某四棱台的三视图如下图 , 则该四棱台的体积是:A . 4B .14C .16D . 6338、以下图形中,暗影部分的面积相等的有:A . ①②③B . ②③④C . ③④⑤D . ①④⑤9、已知 sin(5)1 , 那么 cos25A .2 B .1 C .1D .2555510、已知△ ABC 的三个内角为 A 、B 、 C 且 α = A+B ,β = C+A ,γ = C+B ,则 α 、β 、 γ 中,锐角的个数最多为:A .0个B . 1个C . 2个D .3个.二、填空题(本大题共8 小题,每题 4 分,满分 32 分。
2014年数学青年教师解题比赛训练题(一)答案

2014年数学青年教师解题比赛训练题(一)参考答案第Ⅰ卷 选择题(40分)一、选择题(本大题共10个小题,每小题4分,共40分)1.B 2.C 3.B 4.D 5.D 6.C 7.A 8.B 9.B 10.C第Ⅱ卷 非选择题(110分)二、填空题(本大题共5个小题,每小题4分,共20分)11.1.1510⨯ 12.9 13.①②④⑤ 14.π4 15.))(c b a b a +++(三、解方程(本大题共3个小题,每小题8分,共24分)16.38)12(-=+x x x解:去括号,得:3822-=+x x x …………………2′ 移项,得:03822=+-+x x x ′合并同类项,得:03722=+-x x …………………4′ ∴ 012=-x 或 03=-x∴ 211=x 32=x …………………8′ 17.证明:∵ 四边形ABCD 是平行四边形∴ AD ∥BC AD=BC …………………2′∴ ∠AOF=∠OCE …………………3′∵ 点O 是AC 的中点∴ OC=OA …………………4′∴ ∆AOF ≅∆COE (ASA ) …………………6′∴ AF=CE …………………7′∴ BE=FD …………………8′说明:本题还有其它解法,若正确得分。
18023-8-31-2π++()()解:原式=2112--++ …………………4′ =2+1-1+2 …………………6′=2+2 …………………8′四、(本大题共3个小题,每小题9分,共27分)19.解:设DG=x 米,由题意EG=x 米,则FG=(x-15)米 …………………2′ 在Rt ∆DFG 中 tan6015-=︒x x …………………3′ 3153-=x x 315)13(=-x 13315-=x …………………5′ 45153+==35.49 …………………7′∴ 塔高DC=35.49+1.5=36.99≈37.0 …………………9′ 说明:本题还有其它解法,若正确得分。
历年各地初中数学青年教师解题竞赛试题及参考答案(上)

1. 20XX 年秋季广州市初中数学青年教师解题比赛试题及解答2. 常州市武进区初中数学教师解题竞赛试题及参考答案3. 20XX 年广州市初中数学青年教师解题比赛试题4.20XX 年武进区初中数学教师解题竞赛试题初中数学青年教师解题竞赛试卷一、填空(本题共有10小题,每小题4分,共40分) 1.函数112-+-=x x y 中,自变量x 的取值范围是 . 2.圆锥的母线长为5cm ,高为3 cm ,在它的侧面展开图中,扇形的圆心 角是 度.3.已知3=xy ,那么yxyx y x+的值是 . 4.△ABC 中,D 、E 分别是AB 、AC 上的点,DE//BC ,BE 与CD 相交 于点O ,在这个图中,面积相等的三角形有 对.5.不等式x x 4115≥+的正整数解的共有 个. 6.函数13++=x x y 的图象在 象限.7.在△ABC 中,AB =10,AC =5,D 是BC 上的一点,且BD :DC =2:3,则AD 的取值范围是 .8.关于自变量x 的函数c bx ax y ++=2是偶函数的条件是 . 9.若关于未知数x 的方程x p x =-有两个不相等的实数根,则实数p 的取值范围是 .10.AB 、AC 为⊙O 相等的两弦,弦AD 交BC 于E ,若AC =12,AE =8, 则AD = . 二、(本题满分12分)11.如图,已知点A 和点B ,求作一个圆⊙O , 和一个三角形BCD ,使⊙O 经过点A ,且使所作的 图形是对称轴与直线AB 相交的轴对称图形.(要求 写出作法,不要求证明)三、(本题满分12分)12.梯子的最高一级宽33cm ,最低一级宽110cm ,中间还有10级,各级 的宽成等差数列,计算与最低一级最接近的一级的宽. 四、(本题满分13分)13.已知一条曲线在x 轴的上方,它上面的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,求这条曲线的方程. 五、(本通满分13分)14.池塘中竖着一块碑,在高于水面1米的地方观测,测得碑顶的仰角为︒20,测得碑顶在水中倒影的俯角为︒30(研究问题时可把碑顶及其在水中的倒影所在的直线与水平线垂直),求水面到碑顶的高度(精确到0.01米,747.270tan ≈︒). 六、(本题满分14分).15.若关于未知数x 的方程022=-+q px x (p 、q 是实数)没有实数根,..AB求证:41<+q p . 七、(本题满分14分)16.如果⊙O 外接于正方形ABCD ,P 为劣弧AD 上的一个任意点,求:PBPCPA +的值. 八、(本题满分16分)17.试写出m 的一个数值,使关于未知数x 的方程08242=+--m x x 的 两根中一个大于1,另一个小于1. 九、(本题满分16分)18.点P 在锐角△ABC 的边上运动,试确定点P 的位置,使P A +PB +PC 最小,并证明你的结论.参考答案一、1. 2≤x 且1≠x 2.288 3. 32± 4.4 5.6 .一、二、三 7. 4<AD <8 8.b =0 9. 410<≤p 10.18. 二、作法:11.1、作直线OB 与直线AB 相交于点B ;2、以O 为圆心,OA 为半径作⊙O ;3、过点O 作直线CD ⊥OB 交⊙O 于 点C 和点D ;4、分别连结CB 和DB .则⊙O 和△BCD 就是所求. 三、12.解:用{}n a 表示题中的等差数列,由已知条件有12,110,33121===n a a ().1133即110,112112d d a a +=-+=解得 7=d..A BDCO().1037033111111=+=-+=∴d a a答:与最低一级最接近的一级的宽103cm.四、13.解:设点M (x ,y )是曲线上的任一点,MB ⊥x 轴,垂足为B , 那么点M 属于集合{}2=-=MB MA M P . 由距离公式,得()2222=---y y x ,化简,得281x y =. 曲线在x 轴的上方,y >0,∴所求的曲线的方程是()0812≠=x x y 五、14.解:如图,DE 表示水面,A 表示观测点,B 为碑顶,B '在水中的倒影,由题意: ()m 13020=︒='∠︒=∠,AD AC B ,BAC︒='∠︒=∠∴60,70B B设x BE =,则.1,1+='-=x C B x BC在Rt △ABC 中,()︒-=⋅=70tan 1tan x B BC AC ○1 在Rt △A B 'C 中,()︒+='⋅'=60tan 1tan x B C B AC ○2 由○1、○2得()()︒+=︒-60tan 170tan 1x x ()︒+︒=︒-︒∴60tan 70tan 60tan 70tan x 41.4479.4015.1≈∴=x x 米答:水面到碑顶的高度4.41米.六、15. 证:由题意,令0442<-=∆q p得2p q -<B 'EA BC D41412122≤+⎪⎭⎫ ⎝⎛--=+-<+p pp q p即41<+q p七、16.解:如图,BP 平分直角APC ∠,︒=∠=∠∴4521在△APB 中,由余弦定理,得:2222AB PB PA PB PA =⋅-+同理,在△BPC 中,有2222BC PC PB PC PB =⋅-+22222AC PC AP BC AB =+=+().20222=+∴=+-∴PB PCPA PC PA PB PB 当点P 与点A 或点D 重合时.2=+PBPCPA 八、17.解法1:设()()062=-+x x ,则01242=--x x ,令1282-=+-m ,得10=m ,∴当10=m 时,所给方程两根中,一个大于1,另一个小于1.解法2:设21,x x 是方程的两根,则m x ,x x x 2842121-=⋅=+,依题意,()()()()⎪⎪⎩⎪⎪⎨⎧>>⇒⎩⎨⎧<-->---=∆.25,21.011,02844212m m x x m 解得:25>m .∴当3=m 时,所给的方程的两根中,一个大于1,另一个小于1. 九、18.解:当点P 在锐角△ABC 最短边上的高的垂足的位置时,P A +PB +PC 最小.ABCDP12证明:如图,P 为△ABC 一边BC 边 上的高的垂足,而Q 为BC 边上的任一点,+++=++QB QA PC PA PC PB PA , QA PA BC QA QC <+=,QC QB QA PC PB PA ++<++∴又设AC 为△ABC 最短边,作这边上的高P B '(如图),可知AP P B >'.在P B '上截取AP P B o =',在BC 上截 取AC C B =',作AC P B o ⊥'.垂足为o P ,连 结o B B '.APC ∆Rt ≌=∴'∆AP C P B o RtP B P B o o '='. 四边形o o P P B B ''是矩形,︒='∠∴90B B B o ,在B B B o '∆中,+='+'+'>'o o BB C P B P A P BB B BAC AP +,PC PB PA C P B P A P AP AC B B PC PB PA ++<'+'+'∴++'=++.20XX 年广州市初中数学青年教师解题比赛试卷2002.04.07一、填空(本题共有10小题,每小题4分,共40分) 1.函数1142-+-=x x y 中,自变量x 的取值范围是 . 2.若一个半径为32㎝的扇形面积等于一个半径为2㎝的圆的面积,则扇形的圆心角为 . 3.分式方程11-x -()11-x x =2的解是 . 4.代数式x 2-2xy +3y 2―2x ―2y +3的值的取值范围是 .5.⊙O 1、⊙O 2的半径分别为2和3,O 1O 2=9,则平面上半径为4且与⊙O 1、⊙O 2都相切的圆有 个.6、若关于未知数x 的方程+++++=()0522=++++m x m x 的两根都是正数,则m 的取值范围ABCPoP B 'oB P 'ABCP是 .7.在Rt △ABC 中,AD 是斜边BC 上的高,如果BC =a a BC =,=βB =∠,则AD = . 8.平面内一个圆把平面分成两部分,现有5个圆,其中每两个圆都相交,每三个圆都不共点,那么这5个圆则把平面分成 部分.9.在平坦的草地上有甲、乙、丙三个小球.若已知甲球与乙球相距5米,乙球与丙球相距3米,问甲球与丙球距离的取值范围?答: .10.计算12003200220012000+⨯⨯⨯所得的结果是 .二、(本题满分12分)11.如图,已知A 是直线l 外的一点,B 是l 上的一点. 求作:(1)⊙O ,使它经过A ,B 两点,且与l 有交点C ; (2)锐角△BCD ,使它内接于⊙O .(说明:只要求作出符合条件的一个圆和一个三角形,要求写出作法,不要求证明)三、(本题满分12分)12.如图,己知正三棱锥S —ABC 的高SO =h ,斜高SM =l .求经过SO 的中点平行于底面的截面△A ´B ´C ´的面积.四、(本题满分13分)13.证明:与抛物线的轴平行的直线和抛物线只有一个交点. 五、(本题满分13分)14.甲、乙两船从河中A 地同时出发,匀速顺水下行至某一时刻,两船分别到达B 地和C 地.已知河中各处水流速度相同,且A 地到B 地的航程大于A 地到C 地的航程.两船在各自动力不变情况下,分别从B 地和C 地驶回A 地所需的时间为t 1和t 2.试比较t 1和t 2的大小关系. 六、(本题满分14分)15.如图,在锐角θ内,有五个相邻外切的不等圆,它们都与θ角的边相切, 且半径分别为r 1、r 2、r 3、r 4、r 5.若最小的半径r 1=1,最大的半径r 5=81。
2014年常州市中考数学试题含解析

【答案】证明: ∵CD∥BE,∴∠ACD=∠B
∵点C为AB中点,∴AC=CB
又∵CD=BE, ∴△ACD≌△CBE(S.A.S.).
23.(2014江苏省常州市,23,7分)已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.
【答案】解:(1)解不等式①,得:
解不等式②,得:
∴不等式组的解集为:
(2)
四.解答题:
20.(2014江苏省常州市,20,7分)为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:
(1)该校本的容量是,样本中捐款15元的学生有人;
2014年常州市中考数学试题(含解析)
(满分120分,考试时间120分钟)
一、选择题(本大题共8小题,每小题2分,满分16分,在每小题给出的四个选项中,只有一项是符合题目要求的。)
1.(2014江苏省常州市,1,2分) 的相反数是( )
A. B. C.-2 D.2
【答案】A
2.(2014江苏省常州市,2,2分)下列运算正确的是( )
【答案】(-2,0)或(4,0)
三、解答题(本大题共2小题,满分18分,解答应写出文字说明、证明过程或演算步骤)
18.(2014江苏省常州市,18,8分)计算与化简:
(1)
解:原式=2-1+2=-1
(2)
解:原式=
【答案】
19.(2014江苏省常州市,19,10分)解不等 式组和分式方程:
初中数学教师解题比赛试题及答案

青年教师基本功大赛试题一、选择题(10×2=20分,单选或多选)1.现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋()(A)人本化(B)生活化(C)科学化(D)社会化2. 导入新课应遵循()(A)导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用(B)要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念(C)导入时间应掌握得当,安排紧凑(D)要尽快呈现新的教学内容3.下列关于课堂教学的改进,理念正确的是()(A)把学生看作教育的主体,学习内容和学习方法由学生作主(B)促进学生的自主学习,激发学生的学习动机(C)教学方法的选用改为完全由教学目标来决定(D)尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律4.为了了解某地区初一年级7000名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是()(A )7000名学生是总体(B)每个学生是个体(C )500名学生是所抽取的一个样本(D)样本容量是5005. 一个几何体的三视图如图2所示,则这个几何体是()主视图左视图俯视图图2 (A)(B)(C)(D)6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B ,那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )7.有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子。
若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为( ) (A)21 (B) 31 (C) 61 (D) 918.一次数学课上,老师让大家在一张长12cm 、宽5cm 的矩形纸片内,折出一个菱形。
甲同学按照取两组对边中点的方法折出菱形EFGH (见方案一),乙同学沿矩形的对角线AC 折出∠CAE =∠DAC ,∠ACF =∠ACB 的方法得到菱形AECF (见方案二),请你通过计算,比较这两种折法中,菱形面积较大的是( )(A )甲 (B )乙 (C )甲乙相等 (D ) 无法判断9.迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。
初中数学联赛(初联)历年真题

2014年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( )A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( )A .47B .59C .916D .1225 3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE =( )A .2B C D 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12 B .25 C .23 D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x+=,则1{}{}x x +=( )A .12B .3-C .1(32- D .16.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为( )A .4-B .2C .11)2D 1二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =__ __. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值.二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠,AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.FB一.(本题满分20分)同(A )卷第一题.二.(本题满分25分)如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P . (1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?2013年全国初中数学联合竞赛试题第一试一、选择题(本题满分42分,每小题7分)1.计算=( )(A 1- (B )1 (C (D )22.满足等式()2221m m m ---=的所有实数m 的和为( )(A )3 (B )4 (C )5 (D )63.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=o,ABC ∠的平分线交圆O 于点D ,若CD =AB=( )(A )2 (B(C )(D )34.不定方程23725170x xy x y +---=的全部正整数角(x,y )的组数为( ) (A )1 (B )2 (C )3 (D )45矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在线段BC 上,且BF :FC=1:2, AF 分别与DE ,DB 交于点M ,N ,则MN=( )(A )7 (B )14 (C )28 (D )286.设n 为正整数,若不超过n 的正整数中质数的个数等于合个数,则称n 为“好数”,那么,所有“好数”之和为( ) (A )33 (B )34 (C )2013 (D )2014 二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++=2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= 3.在ABC V 中,60,75,10A C AB ∠=∠==oo,D ,E ,F 分别在AB ,BC ,CA 上,则DEF V 的周长最小值为4.如果实数,,x y z 满足()2228x y z xy yz zx ++-++=,用A 表示,,x y y z z x ---的最大值,则A 的最大值为第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d ad bc +=+=-=求()()2222ab c d ++的值。
2014八年级第一学期学科竞赛数学试卷附答案

2014八年级第一学期学科竞赛数学试卷附答案八年级第一学期学科竞赛数学试卷请同学们注意:1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟。
2、所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
3、考试结束后,只需上交答题卷,试卷请同学们妥然保管。
一、选择题(每小题3分,共3 6分)1.在平面直角坐标系中,点P(-1,2)的位置在 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句是命题的是( ) A.作直线AB的平行线 B.在线段AB上取一点CC.同角的余角相等D.垂线段最短是吗?3.满足不等式的最小整数是( ) A.-1 B.1C.2 D.34.如图所示,在Rt△ABC中,∠A90°,BD平分∠ABC,交AC于点D,且AB4,BD5,则点D到BC的距离是 A.3 B.4 C.5 D.65.下列判断正确的是( )A 、顶角相等的两个等腰三角形全等; B、有一边及一锐角相等的两个直角三角形全等;C、腰相等的两个等腰三角形全等;D、顶角和底边分别相等的两个等腰三角形全等。
6. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为( )A. 20°B. 120°C. 20°或120°D. 36°7..根据下列条件判断,以a,b,c为边的三角形不是直角三角形的是A.a3,b4,c5B.a30, b60, c90C.a1, b, cD.a:b:c5:12:138. 已知点P1(a-1,4)和P2(2,b)关于x轴对称,则(a+b)2013 的值为( )A.72013B. -1C.1D.(-3)20139.下列判断正确的是( )A.若,则B.若,则C.若,则一定不等于D.若,且,则10..已知点E,F,A,B在直线上,正方形EFGH从如图所示的位置出发,沿直线向右匀速运动,直到EH与BC重合.运动过程中正方形EFGH与正方形ABCD重合部分的面积随时间变化的图像大致是() A B C D11.一次函数y1kx+b与y2x+a的图象如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是A.0 B.1C.2D.3如图,将一个等腰直角三角形ABC按图示方式依次翻折,若DE=,第11题则下列结论正确的有( )个。
2014年江苏省常州市中考数学试卷(含解析版)

2014年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,满分16分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2014•常州)﹣的相反数是()A.B.﹣C.﹣2 D.22.(2分)(2014•常州)下列运算正确的是()A.a•a3=a3 B.(ab)3=a3b C.(a3)2=a6 D.a8÷a4=a23.(2分)(2014•常州)下列立体图形中,侧面展开图是扇形的是()A. B. C. D.4.(2分)(2014•常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.(2分)(2014•常州)已知两圆半径分别为3cm,5cm,圆心距为7cm,则这两圆的位置关系为()A.相交 B.外切 C.内切 D.外离6.(2分)(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限 B.第一,三象限 C.第三,四象限 D.第二,四象限7.(2分)(2014•常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个 B.3个 C.2个 D.1个8.(2分)(2014•常州)在平面直角坐标系xOy中,直线l经过点A(﹣3,0),点B(0,),点P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x 轴向左平移,平移后得到⊙P′(点P的对应点为点P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共9小题,每小题4分,满分20分.)9.(4分)(2014•常州)计算:|﹣1|= ,2﹣2= ,(﹣3)2= ,= .10.(2分)(2014•常州)已知P(1,﹣2),则点P关于x轴的对称点的坐标是.11.(2分)(2014•常州)若∠α=30°,则∠α的余角等于度,sinα的值为.12.(2分)(2014•常州)已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于度,扇形的面积是.(结果保留π)13.(2分)(2014•常州)已知反比例函数y=,则自变量x的取值范围是;若式子的值为0,则x= .14.(2分)(2014•常州)已知关于x的方程x2﹣3x+m=0的一个根是1,则m= ,另一个根为.15.(2分)(2014•常州)因式分解:x3﹣9xy2= .16.(2分)(2014•常州)在平面直角坐标系xOy中,一次函数y=10﹣x的图象与函数y=(x>0)的图象相交于点A,B.设点A的坐标为(x1,y1),那么长为x 1,宽为y1的矩形的面积为,周长为.17.(2分)(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b (k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是.三、计算题(本大题共2小题,满分18分,解答应写出文字说明、证明过程或演算步骤)18.(8分)(2014•常州)计算与化简:(1)﹣(﹣)0+2tan45°;(2)x(x﹣1)+(1﹣x)(1+x).19.(10分)(2014•常州)解不等式组和分式方程:(1);(2).四、解答题(本大题共2小题,满分15分,解答应写出文字说明、证明过程或演算步骤)20.(7分)(2014•常州)为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:(1)该样本的容量是,样本中捐款15元的学生有人;(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.21.(8分)(2014•常州)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.五、证明题(本大题共2小题,共12分,请在答题卡指定区域内作答,解答应写出证明过程)22.(5分)(2014•常州)已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.23.(7分)(2014•常州)已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.六、画图与应用(本大题共5小题,请在答题卡指定区域内作答,共39分)24.(7分)(2014•常州)在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x 轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.(7分)(2014•常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/38 36 34 32 30 28 26件)t(件) 4 8 12 16 20 24 28假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)26.(8分)(2014•常州)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]= ,<3.5>= .(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.27.(7分)(2014•常州)在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m 的值;若不存在,请说明理由.28.(10分)(2014•常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.2014年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,满分16分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2014•常州)﹣的相反数是()A.B.﹣C.﹣2D.2【解答】解:﹣的相反数是,故选:A.2.(2分)(2014•常州)下列运算正确的是()A.a•a3=a3B.(ab)3=a3bC.(a3)2=a6D.a8÷a4=a2【解答】解:A、a•a3=a4,故A选项错误;B、(ab)3=a3b3,故B选项错误;C、(a3)2=a6,故C选项正确;D、a8÷a4=a4,故D选项错误.故选:C.3.(2分)(2014•常州)下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.(2分)(2014•常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.5.(2分)(2014•常州)已知两圆半径分别为3cm,5cm,圆心距为7cm,则这两圆的位置关系为()A.相交B.外切C.内切D.外离【解答】解:∵两圆的半径分别是3cm和5cm,圆心距为7cm,5﹣3=2,3+5=8,∴2<7<8,∴两圆相交.故选:A.6.(2分)(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限【解答】解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.7.(2分)(2014•常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,故选:B.8.(2分)(2014•常州)在平面直角坐标系xOy中,直线l经过点A(﹣3,0),点B(0,),点P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x 轴向左平移,平移后得到⊙P′(点P的对应点为点P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个【解答】解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(﹣3,0),点B(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(﹣1,0),即对应的P′点的坐标为(﹣1,0),同理可得圆与直线第二次相切时圆心N的坐标为(﹣5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是﹣2,﹣3,﹣4共三个.故选:C.二、填空题(本大题共9小题,每小题4分,满分20分.)9.(4分)(2014•常州)计算:|﹣1|= 1 ,2﹣2= ,(﹣3)2= 9 ,=﹣2 .【解答】解::|﹣1|=1,2﹣2=,(﹣3)2=9,=﹣2.故答案为:1,,9,﹣2.10.(2分)(2014•常州)已知P(1,﹣2),则点P关于x轴的对称点的坐标是(1,2).【解答】解:∵P(1,﹣2),∴点P关于x轴的对称点的坐标是:(1,2).故答案为:(1,2).11.(2分)(2014•常州)若∠α=30°,则∠α的余角等于60 度,sinα的值为.【解答】6解:∵∠A=30°,∴∠A的余角是:90°﹣30°=60°;sinα=sin30°=,故答案为:60,.12.(2分)(2014•常州)已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于120 度,扇形的面积是3πcm2.(结果保留π)【解答】解:设扇形的圆心角的度数是n°,则=2π,解得:n=120,扇形的面积是:=3π(cm2).故答案是:120,3πcm2.13.(2分)(2014•常州)已知反比例函数y=,则自变量x的取值范围是x≠0;若式子的值为0,则x= ﹣3 .【解答】解:反比例函数y=的自变量x的取值范围是x≠0,解得x=﹣3.故答案为:x≠0,﹣3.14.(2分)(2014•常州)已知关于x的方程x2﹣3x+m=0的一个根是1,则m= 2 ,另一个根为 2 .【解答】解:将x=1代入方程得:1﹣3+m=0,解得:m=2,方程为x2﹣3x+2=0,即(x﹣1)(x﹣2)=0,解得:x=1或x=2,则另一根为2.故答案为:2,2.15.(2分)(2014•常州)因式分解:x3﹣9xy2= x(x+3y)(x﹣3y).【解答】解:x3﹣9xy2,=x(x2﹣9y2),=x(x+3y)(x﹣3y).16.(2分)(2014•常州)在平面直角坐标系xOy中,一次函数y=10﹣x的图象与函数y=(x>0)的图象相交于点A,B.设点A的坐标为(x1,y1),那么长为x 1,宽为y1的矩形的面积为 6 ,周长为20 .【解答】解:∵点A在函数y=(x>0)上,∴x1y1=6,又∵点A在函数y=10﹣x上,∴x1+y1=10,∴矩形的周长为2(x1+y1)=20,故答案为:6,20.17.(2分)(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b (k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是(﹣2,0)或(4,0).【解答】解:在Rt△AOB中,由tan∠ABO=3,可得OA=3OB,则一次函数y=kx+b中k=±.∵一次函数y=kx+b(k≠0)的图象过点P(1,1),∴当k=时,求可得b=;k=﹣时,求可得b=.即一次函数的解析式为y=x+或y=﹣x+.令y=0,则x=﹣2或4,∴点A的坐标是(﹣2,0)或(4,0).故答案为:(﹣2,0)或(4,0).三、计算题(本大题共2小题,满分18分,解答应写出文字说明、证明过程或演算步骤)18.(8分)(2014•常州)计算与化简:(1)﹣(﹣)0+2tan45°;(2)x(x﹣1)+(1﹣x)(1+x).【解答】解:(1)原式=2﹣1+2×1=2﹣1+2=3;(2)原式=x2﹣x+1﹣x2=1﹣x.19.(10分)(2014•常州)解不等式组和分式方程:(1);(2).【解答】解:(1),由①得:x>﹣1,由②得:x>﹣2,则不等式组的解集为:x>﹣1;(2)去分母得:3x+2=x﹣1,移项得:3x﹣x=﹣1﹣2,即2x=﹣3,解得:x=﹣,经检验x=﹣是分式方程的解.四、解答题(本大题共2小题,满分15分,解答应写出文字说明、证明过程或演算步骤)20.(7分)(2014•常州)为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:(1)该样本的容量是50 ,样本中捐款15元的学生有10 人;(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.【解答】解:(1)15÷30%=50(人),50﹣15﹣25=10(人),故答案为:50,10;(2)平均每人的捐款数为:×(5×15+10×25+15×10)=9.5(元),9.5×500=4750(元),答:该校学生的捐款总数为4750元.21.(8分)(2014•常州)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.【解答】解:(1)从箱子中随机摸出一个球,摸出的球是编号为1的球的概率为:;(2)画树状图如下:共有9种等可能的结果,两次摸出的球都是编号为3的球的概率为.五、证明题(本大题共2小题,共12分,请在答题卡指定区域内作答,解答应写出证明过程)22.(5分)(2014•常州)已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【解答】证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).23.(7分)(2014•常州)已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.【解答】证明:如图,连结BD交AC于点O.∵四边形DEBF为平行四边形,∴OD=OB,OE=OF,∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,∴AE+OE=CF+OF,即OA=OC∴四边形ABCD是平行四边形.六、画图与应用(本大题共5小题,请在答题卡指定区域内作答,共39分)24.(7分)(2014•常州)在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x 轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,所以,B′F=B′O=OE=x,F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.25.(7分)(2014•常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/38 36 34 32 30 28 26 件)t(件) 4 8 12 16 20 24 28假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)【解答】解:(1)设t与x之间的函数关系式为:t=kx+b,因为函数的图象经过(38,4)和(36,8)两点,∴,解得:.故t=﹣2x+80.(2)设每天的毛利润为W元,每件服装销售的毛利润为(x﹣20)元,每天售出(80﹣2x)件,则W=(x﹣20)(80﹣2x)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,当x=30时,获得的毛利润最大,最大毛利润为200元.26.(8分)(2014•常州)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]= ﹣5 ,<3.5>= 4 .(2)若[x]=2,则x的取值范围是2≤x<3 ;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1 .(3)已知x,y满足方程组,求x,y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.27.(7分)(2014•常州)在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m 的值;若不存在,请说明理由.【解答】解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴CG=AO=4,∵CO=2,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得yC ﹣yF′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得yA ﹣yF′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD,∴4=2+2•CD,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3.28.(10分)(2014•常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.【解答】解:(1)过点M作MH⊥OD于点H,∵点M(,),∴OH=MH=,∴∠MOD=45°,∵∠AOD=90°,∴∠AOM=45°,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵OH=MH=,MH⊥OD,∴OM==2,OD=2OH=2,∴OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴OE=5,∴E点坐标为(5,0)②∵OD=2,Q的纵坐标为t,∴S=.如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,此时S=;如图3,当动点P与A点重合时,Q点在y轴上,∴OP=2,∵OP•OQ=20,∴t=OQ=5,此时S=;∴S的取值范围为5≤S≤10.参与本试卷答题和审题的老师有:sd2011;wkd;HJJ;lantin;sjzx;星期八;郝老师;MMCH;qingli;gbl210;wdzyzlhx;zhjh;HLing;wdxwwzy;zjx111;自由人;sks;nhx600;wd1899;caicl;SPIDER;zcx(排名不分先后)菁优网2016年7月19日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年武进区初中数学教师解题竞赛试卷
一、选择题(8×4′=32′)
1.如下图,点O (0,0),A (2,2),若存在格点P ,使△APO 为等腰直角三角形,
则点P 的个数为 ------------------------------------------------------------------------------------------------ 【 】
A .4
B .5
C .6
D .8 2
.设1a =,则代数式32312612a a a +--的值为 ---------------------------------------------- 【 】
A .24
B .25
C
.10
D
.12
(第1题图) (第3题图)
3.△ABC 中,BM 和CN 是外角平分线,点M ,N 分别在直线AC 和直线AB 上.
若∠ABC =12°,∠ACB =132°,则 ------------------------------------------------------------------------- 【 】 A .BM >CN B .BM =CN
C .BM <CN
D .BM 和CN 的大小关系不确定
4.若n 为整数,则能使1
1
-+n n 也为整数的n 的个数有 -------------------------------------------------- 【 】
A .1个
B .2个
C .3个
D .4个
5.四边形ABCD 中,∠A =∠C =90°,∠ABC =60°,AD =4,CD =10,则BD 的
长为 ---------------------------------------------------------------------------------------------------------------- 【 】
A .134
B .38
C .12
D .3
l
(第5题图) (第6题图)
6.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成50°的角,在直线l 上取一点P ,
使得∠APB =30°,则满足条件的点P 的个数是 ------------------------------------------------------- 【 】
A .1个
B .2个
C .3个
D .无数个
7.若函数y =|)196100|196100(2
12
2+-++-x x x x ,则当自变量x 取1,2,3,…,
100这100个自然数时,函数值的和是 ----------------------------------------------------------------- 【 】
A .540
B .390
C .194
D .97
8. 如左图,直线y =
4
3
x +3交x 轴于A 点,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M 、N 恰落在直线y =4
3
x +3上.若N 点在第二
象限内,则tan ∠AON 的值为 ---------------------------------------------------- 【 】
A .71
B .
61
C .5
1
D .8
1
二、填空题(6×4′=24′)
9.若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图3中的∠A +∠
B +∠
C +∠
D +∠
E +∠
F +∠
G +∠
H +∠M +∠N =____________度.
(第9题图)
10.半径为10的⊙O 内有一点P ,OP =8,过点P 所有的弦中长是整数的弦有 条. 11.如图,点A ,B 为直线y =x 上的两点,过A ,B 两点分别作y 轴的平行线,交双曲线1
y x
=(x >0)
于C ,D 两点. 若BD =2AC ,则224OC OD -的值为 .
N
A
(第11题图) (第12题图) (第14题图) 12.如上图,正方形ABCD 中,AB =4,N 是DC 的中点,M 是AD 上异于D 的点,
且∠NMB =∠MBC ,则AM 的长为___________.
13.一个平行四边形可以被分成92个边长为1的正三角形,它的周长可能是 .
14.如上图,线段AB =10,P 到AB 的距离为3.当P A ·PB 取最小值时,P A +PB 的值为_______.
A
B
C
D
E
A
B
C
D
E
F
A B
C
D
E
F
G
H
M N
图1
图2
图3
2014.9.16
密 封 线 内 不 要 答 题
学 校 姓名 抽签号 我
三、解答题(共64′)
15.(8′)叙述并证明勾股定理.
要求:⑴写出“已知”与“求证”,画出示意图;
⑵证明方法,除相似外,其他证法(包括面积法)都可以.16.(10′)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与
乙级干果后同时
..开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干
果在销售过程中每天都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总.
销售量
...y1(千克)与x的关系为y1=-x2+40x;乙级干果从开始销售至销售的第t天的总销售
...量.y2(千克)与t的关系为y2=a t2+b t,且乙级干果的前三天的销售量的情况见下表:
⑴求a、b的值;
⑵若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的
毛利润为多少元?
⑶问从第几天起乙级干果每天的销售量比甲级干果每天的销售量至少多6千克?
(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)
密
封
线
内
不
要
答
题
17.(10′)如图,图形①满足AD =AB ,MD =MB ,∠A =72°,∠M =144°.图形②与图形①恰好拼
成一个菱形.记AB 的长度为a ,BM 的长度为b .
图形①
图形②
A
⑴ 图形①中∠B = °,图形②中∠E = °; ⑵ 为便于叙述,将图形①称为“风筝形”,图形②称为“飞镖形”.
① 若用若干张“风筝形”纸片拼成一个边长为b 的正十边形,则需要这种纸片 张;
② 若用若干张“风筝形”纸片和“飞镖形”纸片拼成一个“大风筝”(如下图),其中∠P =72°,
∠Q =144°,且PI =PJ =a +b ,IQ =JQ .请你在图中画出拼接线,并作简要说理..与解释.
注:本题中的拼接既无重叠,也无缝隙.拼接线用实线表示,不是拼接线而用来说理..
解释的线用虚线表示.
I
18.(12′)如图,四边形ABCD 中,AD ∥BC ,DC ⊥BC ,AB =5,BC =6,cos B =
5
3
.点O 为BC 边上的动点,连接OD ,以O 为圆心,OB 为半径的⊙O 分别交射线BA 于点P ,交射线OD 于点M ,
交射线BC 于N ,连接OP . ⑴ 求CD 的长;
⑵ 当BO =AD 时,求BP 的长; ⑶ 在点O 的运动过程中,
① 当∠MON =2
1
∠POB 时,求⊙O 的半径;
② 当∠MON =∠POB 时,求⊙O 的半径.
D
密 封 线 内 不 要 答 题
学 校 姓名 抽签号 我
19.(12′)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过
A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.
⑴求抛物线的解析式;
⑵在第三象限内,F为抛物线上一点,△AEF的面积为3,求点F的坐标;
⑶点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,
当t为何值时,△PBC是直角三角形?直接写出所有符合条件的t值.
备用图20.(12′)如图,P A=PB且P A⊥PB,QA=QC且QA⊥QC.
⑴若点M是BC
的中点,求证:MP=MQ且MP⊥MQ.
⑵若PQ=10,请判断凹五边形BP AQC的面积是否为定值,并说明理由.
密
封
线
内
不
要
答
题。