电磁场与电磁波课程知识点总结和公式

合集下载

电磁场与电磁波期末复习知识点归纳

电磁场与电磁波期末复习知识点归纳

哈密顿算子:矢量微分算子( Hamilton、nabla、del )
ex
x
ey
y
ez
z
★ 标量场的梯度
gradu u u xˆ u yˆ u zˆ ( xˆ yˆ zˆ)u x y z x y z
★ 矢量场的散度计算公式:
divA= • A Ax Ay Az x y z
1
2=∞ nˆ • D1 s
nˆ E1 0 nˆ B1 0
nˆ H1 Js
2、理想介质表面上 的边界条件
1=0
2=0
nˆ • (D1 D2) 0 nˆ (E1 E2 ) 0
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
圆柱坐标和球坐标的公式了解:
Bx By Bz
圆柱坐标系中的体积微元: dV=(d)(d)(dz)= d d dz
分析的问题具有圆柱对称性时可表示为:dV=2ddz
球坐标系中的体积微元: dV=(rsind)(rd)(dr)
分析的问题具有球对称性 时可表示为:
=r2sindrdd dV=4r2dr
★ 标量场的等值面方程 u x, y, z 常数C
程的解都是唯一的。这就是边值问题的唯一性定理
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q
d
’d

电磁场与电磁波公式整理

电磁场与电磁波公式整理

电磁场与电磁波公式整理第一章A:矢量恒等式()()()A B C B C A C A B ×=×=×i i i ()()()A B C B A C C A B ××=−i i ()uv u v v u ∇=∇+∇ ()uA u A A u ∇=∇+∇i()0U ∇×∇=()0A ∇∇×=i 2()U U ∇∇=∇i2()()A A A ∇×∇×=∇∇−∇iVSAdV A dS ∇=∫∫i iVCAdS A dl ∇×=∫∫in V S AdV AdS e ∇×=×∫∫ n V S udV udS e ∇=∫∫n S C udS udl e ×∇=∫∫ 2)V S u v u dV udSnv v ∂+∇∇=∇∂∫∫i22(()VSuu v v dV uv dS n nv u ∂∂−=−∇∇∂∂∫∫ B:三种坐标系的积分元以及梯度、散度、旋度、和拉普拉斯运算⑴直角坐标系位置矢量微分元:x y z dr dx dy dz e e e =++面积元:,,x y z d dydz d dxdz d dxdy s s s === 体积元:dv dxdydz = x y z u u uu e e e x y z ∂∂∂∇=++∂∂∂ y x z A A A A x y z∇=∂∂∂++∂∂∂i x yz A x y z A A A x yz e ee∂∂∂∇×=2222222u u u u x y z ∇∂∂∂=++∂∂∂()uA u A u A ∇×=∇×+∇×()A B B A A B∇×=∇×−∇×i i i ()()()A B A B B A A B B A ∇=∇×+∇+×∇×+×∇×i i i ()()()()A B A B B A B A A B ∇××=∇−∇+∇−∇i i i i⑵圆柱坐标系位置矢量微分元:z dr d d dz e e e ρφρρφ=++面积元:,,z d d dz d d dz d d d s s s ρφρφρρρφ=== 体积元:dv d d dz ρρφ=z u u u u z e e e ρφρρφ∂∂∂∇=++∂∂∂ ()()()11A A A z A z ρρρφρρρφ∂∂∂∇=++∂∂∂i1z e e e A z A A Az ρφρρφρρφ∂∂∂∇×=∂∂∂22222211()u u u u z ρρρρρφ∂∂∂∂=++∇∂∂∂∂⑶球坐标系位置矢量微分元:sin r r r dr dr d d e e e θφθθφ=++面积元:2sin ,sin ,r d d d d r drd d rdrd r s s s θφθθφθφθ=== 体积元:2sin dv drd d r θθφ=1sin ru u u u r r r e e e θφθθφ∂∂∂∇=++∂∂∂22111()(sin )sin sin r A r r r r rA r A A φθθθθθφ∂∂∂∇=++∂∂∂i2sin 1sin sin re re r e A r ArrA r A r θφθθφθθθφ∂∂∂∇×=∂∂∂ 22222222111()(sin sin sin u u uu r r r r r r θθθθφθ∇∂∂∂∂∂=++∂∂∂∂∂ C:几个定理散度定理:v s FdV F dS ∇=∫∫i i斯托克斯定理:s c F dS F dl∇×=∫∫i i亥姆霍茨定理:()()()F r u r A r =−∇+∇×格林定理:n V S FdV F dS e ∇=∫∫i i高斯定理和环路定理:第二章表一:电荷和电流的三种密度表二:电场和磁场表四:介质中的电(磁)场感应强度:电磁感应定律S in B dS d d dt dt ϕε=−=−∫i in C in E dl ε=∫i S C S d Bd dt tE dl ∂∂=−∫∫i i 积分形式 1.如果回路静止则有:S C S Bd tE dl ∂∂=−∫∫i BE t∂∇×=−∂ 2.导体以速度v 在磁场中运动 : ()CC v B dl E dl ×=∫∫i i3.导体在时变场中运动:()CS S B d tC v B dl E dl ∂∂−×=+∫∫∫i i i表五:麦克斯韦方程组:。

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=∙=∙∇=∙=∙∇∙∂∂-=∙∂∂-=⨯∇∙∂∂+=∙∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=∙=∙∇=∙=∙∇=∙=⨯∇=∙=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-∙=-=-⨯=-=-∙==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-∙==-⨯==-∙==-⨯(((1)基本方程0022=∙==∇-=∇=∙=∙∇=∙=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。

(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。

电磁场与电磁波公式总结

电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波是物质与能量在空间中相互作用的重要现象,而它们的本质则由一系列理论和数学公式所描述和解释。

本文将综述电磁场与电磁波的一些重要公式,总结它们的基本特征和应用。

首先,我们来介绍电磁场的公式。

电磁场是由电荷或电流产生的一种力场,它可以用麦克斯韦方程组来描述。

麦克斯韦方程组包括以下四个方程:1. 麦克斯韦第一方程:高斯定律∇·E = ρ/ε₀这个方程描述了电场强度E与电荷密度ρ之间的关系,其中ε₀是真空电介质常数。

2. 麦克斯韦第二方程:法拉第电磁感应定律∇×E = -∂B/∂t这个方程表明变化的磁场会产生电场强度的旋转,从而引发感应电流。

3. 麦克斯韦第三方程:高斯磁定律∇·B = 0这个方程说明磁场强度B是无源场,即它没有直接与任何电荷或电流相关。

4. 麦克斯韦第四方程:安培定律∇×B = μ₀J + μ₀ε₀∂E/∂t这个方程描述磁场强度B与电流密度J和电场强度E之间的关系,其中μ₀是真空磁导率。

这些方程共同描述了电场和磁场的产生、相互作用和传播的规律。

通过求解这些方程,我们可以获得电场和磁场的分布情况,从而进一步研究它们对物质和能量的影响。

接下来,我们将讨论电磁波的公式。

电磁波是由电场和磁场相互耦合并传播而成的波动现象,其具体表达式可以由麦克斯韦方程组推导出来。

麦克斯韦方程组的解是电场和磁场的波动方程,可以写成如下形式:E = E₀sin(kx - ωt)B = B₀sin(kx - ωt)其中E₀和B₀分别是电场和磁场的振幅,k是波数,ω是角频率,x是位置,t是时间。

根据这些波动方程我们可以得到电场和磁场的一些重要特征:1. 波长λ 和频率 f 的关系:λ = c/f其中c是光速,它等于电磁波的传播速度。

2. 光速与真空介电常数ε₀和真空磁导率μ₀的关系:c = 1/√(ε₀μ₀)这个公式说明光速与真空电磁特性有密切的关系。

电磁场与电磁波公式总结

电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++= 面积元:===dxdy dS dxdz dS dydzdS zyx,dxdydz d =τ(2)柱坐标系长度元:===dz dl rd dl drdl z r ??,面积元======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ,体积元:dz rdrd d ?τ=(3)球坐标系长度元:===?θθ?θd r dl rd dl dr dl r sin ,面积元:======θθ?θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系==+====z z x y yx r z z r y r x arctan,sin cos 22 (2)直角坐标系与球坐标系的关系=++=++====z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222 222?θθ?θ?θ (3)柱坐标系与球坐标系的关系=+=+====??θθ??θ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x ??+??+??=?=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r ??+??+??=?=→→→μμμμμ?1(3)球坐标系中:μθθμμμμ?θ??+??+??=?=→→→sin 11r a r a r a grad r 4.散度(1)直角坐标系中:z A y A x A A div zy X ??++??=→(2)柱坐标系中:zA A r rA r r A div zr ??++??=→1)(1 (3)球坐标系中:θθθθ?θ??++??=→A r A r A r rr A div r sin 1)(sin sin 1)(122 5、高斯散度定理:→→→→=??=?ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。

电磁场与电磁波复习资料

电磁场与电磁波复习资料

一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。

(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。

高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。

2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。

其物理意义随A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。

旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。

斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。

3.亥姆霍兹定理在有限区域 V 内的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合面S 上矢量场的分布)唯一的确定。

说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。

磁场力:运动的电荷,即电流之间的作用力,称为磁场力。

洛伦兹力:电场力与磁场力的合力称为洛伦兹力。

5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。

磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。

6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。

位移电流:电场的变化引起电介质内部的电量变化而产生的电流。

7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。

电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。

电磁场与电磁波公式总结

电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++= 面积元:===dxdy dS dxdz dS dydzdS zyx,体积元:dxdydz d =τ(2)柱坐标系长度元:===dz dl rd dl drdl z r ??,面积元======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ,体积元:dz rdrd d ?τ=(3)球坐标系长度元:===?θθ?θd r dl rd dl drdl r sin ,面积元:======θθ?θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin2,体积元:?θθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系==+====z z x y yx r z z r y r x arctan,sin cos 22 (2)直角坐标系与球坐标系的关系=++=++====z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222 222?θθ?θ?θ (3)柱坐标系与球坐标系的关系=+=+====??θθ??θ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x ??+??+??=?=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r ??+??+??=?=→→→μμμμμ?1(3)球坐标系中:μθθμμμμ?θ??+??+??=?=→→→sin 11r a r a r a grad r4.散度(1)直角坐标系中:zA y A x A A div zy X ??+??+??=→(2)柱坐标系中:zA A r rA r r A div zr ??+??+??=→1)(1 (3)球坐标系中:θθθθ?θ+??+??=→A r A r A r rr A div r sin 1)(sin sin 1)(122 5、高斯散度定理:→→→→=??=?ττττd A div d A S d A S ,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。

高中物理电磁场和电磁波知识点总结

高中物理电磁场和电磁波知识点总结

高中物理电磁场和电磁波知识点总结高中物理电磁场和电磁波知识点总结1.麦克斯韦的电磁场理论(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场.(2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场.(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.2.电磁波(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s.下面为大家介绍的是2019年高考物理知识点总结电磁感应,希望对大家会有所帮助。

1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路.(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波课程知识点总结与主要公式
1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组
⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-
=⨯∇•∂∂+=•∂∂+
=⨯∇s
s l s l s s d B B Q s d D D s d t B l d E t B E s d t
D J l d H t D J H 0
)(
ρ
本构关系: E J H B E
D
σμε===
(2)静态场时的麦克斯韦方程组(场与时间t 无关)
⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇s
s l l s d B B Q s d D D l d E E I l d H J
H 0
00
ρ
2 边界条件
(1)一般情况的边界条件
n
n n sT t t s
n s n n s
n t
t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210
)())(0
)==-•=-=-⨯=-=-•==-⨯
((ρρ
(2)介质界面边界条件(ρs = 0 J s = 0)
n
n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210
)(0
)0
)(0
)==-•==-⨯==-•==-⨯
((
3 静电场基本知识点 (1)基本方程
00
22=•==∇-
=∇=•=•∇=•=⨯∇⎰⎰⎰A A
p
s
l l
d E Q
s d D D l d E E ϕϕϕε
ρ
ϕρ
本构关系: E D
ε=
(2)解题思路
● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电
位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——>
计算能量ωe =εE 2/2或者电容(C=Q/φ)。

(3)典型问题
● 导体球(包括实心球、空心球、多层介质)的电场、电位计
算;
● 长直导体柱的电场、电位计算;
● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。



4 恒定电场基本知识点 (1)基本方程
000
2=•==∇=•=•∇=•=⨯∇⎰⎰⎰A A p
s l l
d E s d J J l d E E ϕϕϕ
本构关系: E J σ=
(2)解题思路
● 利用静电比拟或者解电位方程(要注意边界条件的使用)。

● 假设电荷Q ——> 计算电场E ——> 将电荷换成电流(Q —>
ρ
s
球对称 轴对称 面对称
I )、电导率换成介电常数(ε—>σ)得到恒定电场的解 ——>计算电位φ和电阻R 或电导G 。

5 恒定磁场基本知识点 (1)基本方程
⎰⎰⎰•=-=∇=•=•∇=•=⨯∇s
s l s
d B J
A s d
B B I l d H J
H φμ2
本构关系: H B
μ=
(2)解题思路
● 对称问题(轴对称、面对称)使用安培定理
● 假设电流I ——> 计算磁场强度H ——> 计算磁通φ ——>
计算能量ωm =μH 2/2或者电感(L=ψ/I )。

(3)典型问题
● 载流直导线的磁场计算; ● 电流环的磁场计算; ● 磁通的计算; ● 能量与电感的计算。

6 静态场的解基本知识点 (1)直角坐标下的分离变量法
● 二维问题通解形式的选择(根据零电位边界条件); ● 特解的确定(根据非零电位边界条件)。

(2)镜像法
● 无限大导体平面和点电荷情况; ● 介质边界和点电荷情况。

7 正弦平面波基本知识点 (1)基本方程与关系
电场强度瞬时值形式 y my x mx a kz t E a kz t E t z y x E
)cos()cos(),,,(-+-=ωω 电场强度复振幅形式 y jkz my x jkz mx a e E a e E z y x E
--+=),,(
瞬时值与复振幅的关系:
])Re[(]),,(Re[),,,(t j y jkz my x jkz mx tz j e a e E a e E e z y x E t z y x E ωω
--+==
坡印廷矢量(能流密度) ),,,(),,,(),,,(t z y x H t z y x E t z y x S
⨯= 平














)],,(),,(Re[2
1
),,(*z y x H z y x E z y x S av ⨯=
磁场强度与电场强度的关系:
大小关系
η==x
y y x H E H E 方向关系 E S H S
H E H
E S a a a a a a a a a
⨯=⨯=⨯=
(2)波的极化条件与判断方法
电磁波电场强度矢量的大小和方向随时间变化的方式,
定义:极化是指在空间固定点处电磁波电场强度矢量的方向随时间变化的方式。

通常,按照电磁波电场强度矢量的端点随时间在空间描绘的轨迹进行分类。

设电场强度为:y y my x x mx a kz t E a kz t E E
)cos()cos(ϕωϕω+-++-=
● 极化条件:
A 、 直线极化:πϕϕ±=-or x y 0
B 、 圆极化:my mx x y E E nd =±
=-a 2
π
ϕϕ
C 、 椭圆极化:上述两种条件之外。

● 圆极化和椭圆极化的旋向
当0>-x y ϕϕ时为左旋,当0<-x y ϕϕ时为右旋。

E x
y
α 0
E
直线极化波方向示意图
x
E y E x
0 -α
E
x
E y
y
(a )E y 与E x 同相 (b )E y 与E x 反相
圆极化波旋向示意图
ϕ∆=π/2-
ϕ∆)
圆极化和椭圆极化的旋向判断作图法
1、将参考分量定在相应轴的正方向上;
2、计算另一分量与参考分量的相位差,相位差大于0时,另一
分量画在相应的正轴方向,反之,画于负轴方向;
3、拇指指向波的传播方向,其余四指从另一分量转向参考分量,
哪只手满足条件即为哪种旋向。

(3)波的反射与折射
1、导体表面的垂直入射波特性
● 导体外空间内为驻波分布,有波节点和波腹点; ● 没有能量传播,只有电能和磁能间的相互转换。

(b ) +y 方向传播
0ϕ∆<(右旋)
z
y
E z
E x
右手
x
(c ) -x 方向传播
圆极化波旋向判断作图法举例
0ϕ∆<(左旋)
y
x
E y
E z
左手
z
传播方向
(a ) +z 方向传播
x
z
E x
E y
左手

∆>(左旋)
y
2、介质表面的垂直入射波特性
● 入射波空间内为行驻波分布,透射波空间为行波分布; ● 有能量传播; ● 反射系数和透射系数
1
22
1
2122ηηηηηηη+=
+-=
ΓT
3、导体表面的斜入射波特性
● 分垂直极化和平行极化两种情况(均以电场强度方向与入
射面的相互关系区分),沿导体表面方向传输的是非均匀平面波;沿垂直导体表面方向为驻波分布;
● 对垂直极化方式,沿导体表面方向传输的是TE 波;对平行
极化方式,沿导体表面方向传输的是TM 波;
● 沿导体表面方向有能量传输,而沿垂直于导体表面方向无
能量传输;
● 沿导体表面方向的相速大于无限大空间中对应平面波的相
速,但是能量传播速度小于平面波速度。

4、介质表面的斜入射波特性
● 也分垂直极化和平行极化两种情况,沿导体表面方向和垂
直导体表面方向传输的均是非均匀平面波;
● 对垂直极化方式,沿导体表面方向传输的是TE 波;对平行
极化方式,沿导体表面方向传输的是TM 波;
● 沿导体表面方向有能量传输,而沿垂直于导体表面方向有
z
0 x
η1
η2
行驻波特性;
● 反射系数和透射系数
t i i
t i t i T θηθηθηθηθηθηθηcos cos cos 2cos cos cos cos 1221212+=
+-=
Γ⊥⊥
i
t i
i
t i t T θηθηθηθηθηθηθηcos cos cos 2cos cos cos cos 1221212//+=
+-=Γ⊥
5、全反射与全折射
● 全反射——只有波从光密媒质传向光疏媒质时才可能发
生,条件为:
1
2
1
sin εεθ-=c ——临界角 ● 全折射——只有平行极化才可能发生,条件为:
2121sin εεεθ+=-b ——布儒斯特角 2
111
sin εεεθ+=-t ——全折射时的折射角。

相关文档
最新文档