九年级数学下册第3章三视图与表面展开图3.2简单几何体的三视图2练习新版浙教版

合集下载

浙教版九年级数学下册第3章 三视图与表面展开图练习题-文档资料

浙教版九年级数学下册第3章 三视图与表面展开图练习题-文档资料

第3章三视图与表面展开图小结►类型之一中心投影与平行投影1.2019·贺州小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()图3-X-12.在同一时刻的阳光下,小华的影子比小东的影子长,那么在同一路灯下,他们的影长相比()A.小华的长B.小华的短C.小华与小东的一样长D.无法判断谁的影子长3.日晷是我国古代利用日影测定时刻的仪器,晷针在晷面上所形成的投影属于________投影.4.在一间黑屋子里,用一盏白炽灯垂直向下照射一球状物,这个球状物体在地面上的投影是________形,当把球状物向下移动时,投影的大小变化应是________.5.如图3-X-2,一块直角三角形纸板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1的长为18 cm,则A1B1的长为________ cm.3-X-2►类型之二三视图6.2019·温州某运动会颁奖台示意图如图3-X-3所示,它的主视图是()图3-X-3图3-X-47.如图3-X-5是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则该几何体的左视图是()图3-X-5图3-X-68.如图3-X-7是由一些完全相同的小正方体搭成的几何体的三视图,这个几何体的示意图是()图3-X-7图3-X-89.图3-X-9是由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是()A.5或6 B.6或7C.7或8 D.8或9图3-X-9图3-X-1010.由一些相同的小正方体搭成的几何体的左视图和俯视图如图3-X-10所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.►类型之三几何体的表面展开图11.如图3-X-11是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()图3-X-11A.美B.丽C.宜D.昌12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图3-X-12),请你根据图形判断涂成绿色一面的对面涂的颜色是()图3-X-12A.白B.红C.黄D.黑13.如图3-X-13是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()图3-X-13A.πB.2πC.4πD.5π14.有一圆柱形储油罐,其底面直径与高相等.现要在储油罐的表面均匀涂上一层油漆(不计损耗),则两个底面所需油漆量与侧面所需油漆量之比是()A.1∶1 B.2∶1C.1∶2 D.1∶415.将边长为4的正方形绕一条边所在的直线旋转一周,所得几何体的侧面积等于()A.16 B.16πC.32πD.64π图3-X-1416.如图3-X-14,用一个半径为30 cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5 cm B.10 cmC.20 cm D.5πcm17.如图3-X-15,一个直角三角形的两条直角边AC,BC的长分别为3 cm,4 cm,以斜边AB所在直线为轴旋转一周得到一个几何体,画出这个几何体的草图,并求出这个几何体的表面积.图3-X-15►类型之四数学活动18.下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线表示,在图3-X-16中标注出必要的符号和数据),并作简要说明.(1)将图①中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形的面积相等;(2)将图②中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图③中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.图3-X -16详解详析1.B 2.D3.平行 4.圆 变小 5.6 136.C 7.A 8.A 9.B10.解:(答案不唯一)如图所示.11.C12.C [解析]∵涂有绿色一面的邻面是白、黑、红、蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.13.B [解析] 观察三视图发现几何体为圆锥,其母线长为R =(3)2+12=4=2,侧面积为12lR =12×2π×2=2π,故选B. 14.C 15.C 16.B17.解:草图如图所示.过点C 作CO ⊥AB ,交AB 于点O ,则OC 为两个圆锥共同的底面半径,在Rt △ABC 中, AB =AC 2+BC 2=32+42=5(cm). 又∵12AB ·OC =12AC ·BC , ∴OC =125cm ,∴以AC 为母线的圆锥的侧面积为π×125×3=365π(cm 2),以BC 为母线的圆锥的侧面积为π×125×4=485π(cm 2), ∴这个几何体的表面积为365π+485π=845π(cm 2). 18.解:(1)将图①中四个角上的4个小正方形剪下,拼成一个正方形,作为直四棱柱的一个底面,如图①所示.(2)将图②中三个角上的3个四边形剪下,拼成一个正三角形,作为直三棱柱的一个底面,如图②所示.(3)将图③中五个角上的5个四边形剪下,拼成一个正五边形,作为直五棱柱的一个底面,如图③所示.。

九数下册第3章三视图与表面展开图3.3由三视图描述几何体作业设计(含解析浙教版)

九数下册第3章三视图与表面展开图3.3由三视图描述几何体作业设计(含解析浙教版)

九数下册第3章三视图与表面展开图3.3由三视图描述几何体作业设计(含解析浙教版)九年级数学下册第3章三视图与表面展开图3.3由三视图描述几何体作业设计(含解析浙教版)下载文档九年级数学下册第3章三视图与表面展开图3.3由三视图描述几何体作业设计(含解析浙教版)3.3由三视图描述几何体一.单选题1.如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是()A. B. C. D.2.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,该图中上面左为主视图.右为左视图.下为俯视图,则一堆方便面共有()A.5桶B.6桶C.9桶D.12桶3.如图,是某几何体的三视图及相关数据,则判断正确的是()A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c24.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9B.10C.11D.125.由n个相同的小正方体堆成的几何体,其主视图.俯视图如下所示,则n的最大值是()A.16B.18C.19D.206.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A. B. C. D.7.有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A. B.C. D.8.一个立体图形的三视图如图所示,那么它是()A.圆锥B.圆柱C.三棱锥D.四棱锥9.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图与俯视图如图,根据小明画的视图,请你猜礼物是()A.钢笔B.生日蛋糕C.光盘D.一套衣服10.一个不透明立方体的6个面上分别写有数字1.2.3.4.5.6,任意两对面上所写的两个数字之和为7.将这样的几个立方体按照相接触两个面上的数字之和为8,摆放成一个几何体,这个几何体的三视图如图所示,图中所标注的是部分面上所见的数字,则★所代表的数是()A.1B.2C.3D.411.由若干个边长为1cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是()A.15cm2B.18cm2C.21cm2D.24cm 212.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120°C.135°D.150°13.如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正礼盒,所需胶带长度至少为()A.320cmB.395.24 cmC.431.77 cmD.480 cm14.一个长方体的三视图如图,则这个长方体的体积为()A.30B.15C.45D.2015.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2二.填空题16.如果一个几何体的主视图和左视图都是等腰三角形,而且俯视图是一个圆,那么这个几何体是________ .17.用大小相同的小正方体搭成的一个几何体,从正面.左面.上面看都是“田”字,则最少用________ 个小正方体.18.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x=________ ,y=________ .19.三棱柱的三视图如图,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________ cm.20.如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要________个小立方体,王亮所搭几何体的表面积为________.三.解答题21.如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出这个几何体的主视图和左视图.如图,已知EF=4 cm,FG=12cm,AD=10cm.(1)说出这个几何体的名称;(2)求这个几何体的表面积S;(3)求这个几何体的体积V.23.已知如图是三个方向看到的一个几何体的形状.(1)写出这个几何体的名称;(2)写出它的侧面展开的形状;(3)若从正面看到的高为10cm,从上面看到的三角形的三边长都为4cm,求这个几何体的侧面积.24.一个几何体及它的表面展开图如图.(几何体的上.下底面均为梯形)(1)写出这个几何体的名称;(2)计算这个几何体的侧面积和左视图的面积.25.一组合体的三视图如图,该组合体是由哪几个几何体组成,并求出该组合体的表面积(单位:cm2).参考答案1.D2.B3.D4. D5. B6. A8. A9. B10. C11. B12. B13. C14. A16.圆锥17. 618. 1或2①319. 620. 19;48三.解答题21.解:如图,22.解:(1)由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得这个几何体是长方体;(2)由图可知,长方体的长为12cm,宽为4cm,高为10cm,则这个长方体的表面积S=2(12×4+12×10+4×10)=416(cm2);(3)这个几何体的体积V=12×4×10=480(cm3).23.解:(1)正三棱柱;(2)(3)3×10×4=120cm2 .24.解:(1)观察图形可知,这个几何体是四棱柱;(2)侧面积:13×(5+12+5+6)=13×28=364;左视图的宽:(1 2﹣6)÷2=3,=4,左视图的面积:13×4=52.25.解:由图形可知,该组合体是由上面一个圆锥和下面一个圆柱组成,π×(10÷2)2+π×10×20+ ×(π×10)×=25π+200π+25 π=(225+25 π)(cm2).故该组合体的表面积是(225+25 π)cm2 .。

九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

3.1投影(2)(见B本67页)A 练就好基础基础达标1.教室内电子白板的投影是( B)A.平行投影B.中心投影C.平行投影或中心投影D.以上均不是2.如图所示,灯光与物体的影子的位置最合理的是( B)A.B.C. D.3.如图所示,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( C)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3题图4题图4.如图所示,四边形木框ABCD在灯泡发出的光照射下形成的影子是四边形A′B′C′D′.若AB∶A′B′=1∶2,则四边形ABCD的面积∶四边形A′B′C′D′的面积为( D)A. 4∶1B. 2∶1C. 1∶ 2D. 1∶45.同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长6.太阳光在地面上的投影是__平行__投影,白炽灯在地面上的投影是__中心__投影.7.如图所示,一块直角三角板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm第7题图8.如图(a)(b)分别是两棵树及其在太阳光或路灯下影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?你是用什么方法进行判断的?(2)请画出图中表示小丽影长的线段.图(a) 图(b)第8题图解:(1)图(a)是太阳光形成的,图(b)是路灯灯光形成的. 太阳光是平行光线,物高与影长成正比. (2)所画图形如图所示:第8题答图9.如图所示,小华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1 m ,继续往前走3 m 到达E 处时,测得影子EF 的长为2 m .已知小华的身高是1.5 m ,求路灯A 的高度AB.第9题图解:设AB =h(m),BC =x(m).由题意可得△GCD∽△ABD,△HEF ∽△ABF ,∴GC AB =CD BD ,HEAB =EF BF. ∵HE =GC =1.5 m ,CD =1 m .BD =(x +1)m ,BF =(x +5)m , EF =2 m.∴⎩⎪⎨⎪⎧1.5h =1x +1,1.5h =2x +5,解得⎩⎪⎨⎪⎧x =3,h =6,∴路灯A 的高度AB 为6 m. B 更上一层楼 能力提升10.在阳光的照射下,一块三角板的投影不会是( D ) A .线段B .与原三角形全等的三角形C .变形的三角形D .点第11题图11.永州中考如图所示,圆桌面(桌面中间有一个直径为0.4 m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m ,桌面离地面1 m ,若灯泡离地面3 m ,则地面圆环形阴影的面积是( D )A .0.324 π m 2B .0.288 π m 2C .1.08 π m 2D .0.72 π m 212.要在宽为28 m 的海堤公路的路边安装路灯,路灯的灯臂长为3 m ,且与灯柱成120°角(如图),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中点时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果(精确到0.01 m ,3≈1.732)?第12题图解:灯柱高为⎝⎛⎭⎪⎫28÷2-3×32×3-3×12≈18.25(m). C 开拓新思路 拓展创新13.如图所示,灯在距地面3 m 的A 处,现有一木棒长2 m ,当B 处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( A )第13题图A .先变长,后变短B .先变短,后变长C .不变D .先变长,再不变,后变短14.如图所示,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成45°,∠A =60°,CD =4 m ,BC =(46-22) m ,则电线杆AB 的长为多少米?第14题图解:延长AD交地面于E,作DF⊥BE于F.第14题答图∵∠DCF=45°.CD=4.∴CF=DF=2 2.由题意知AB⊥BC.∴∠EDF=∠A=60°.∴∠DEF=30°∴EF=2 6.∴BE=BC+CF+FE=6 6.在Rt△ABE中,∠E=30°.∴AB=BEtan 30°=66×33=62(m).答:电线杆AB的长为62米.。

2019九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

2019九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

3.1投影(2)(见B本67页)A 练就好基础基础达标1.教室内电子白板的投影是( B)A.平行投影B.中心投影C.平行投影或中心投影D.以上均不是2.如图所示,灯光与物体的影子的位置最合理的是( B)A.B.C. D.3.如图所示,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( C)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3题图4题图4.如图所示,四边形木框ABCD在灯泡发出的光照射下形成的影子是四边形A′B′C′D′.若AB∶A′B′=1∶2,则四边形ABCD的面积∶四边形A′B′C′D′的面积为( D)A. 4∶1B. 2∶1C. 1∶ 2D. 1∶45.同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长6.太阳光在地面上的投影是__平行__投影,白炽灯在地面上的投影是__中心__投影.7.如图所示,一块直角三角板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm第7题图8.如图(a)(b)分别是两棵树及其在太阳光或路灯下影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?你是用什么方法进行判断的?(2)请画出图中表示小丽影长的线段.图(a) 图(b)第8题图解:(1)图(a)是太阳光形成的,图(b)是路灯灯光形成的. 太阳光是平行光线,物高与影长成正比. (2)所画图形如图所示:第8题答图9.如图所示,小华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1 m ,继续往前走3 m 到达E 处时,测得影子EF 的长为2 m .已知小华的身高是1.5 m ,求路灯A 的高度AB.第9题图解:设AB =h(m),BC =x(m).由题意可得△GCD∽△ABD,△HEF ∽△ABF ,∴GC AB =CD BD ,HEAB =EF BF. ∵HE =GC =1.5 m ,CD =1 m .BD =(x +1)m ,BF =(x +5)m , EF =2 m.∴⎩⎪⎨⎪⎧1.5h =1x +1,1.5h =2x +5,解得⎩⎪⎨⎪⎧x =3,h =6,∴路灯A 的高度AB 为6 m. B 更上一层楼 能力提升10.在阳光的照射下,一块三角板的投影不会是( D ) A .线段B .与原三角形全等的三角形C .变形的三角形D .点11.永州中考如图所示,圆桌面(桌面中间有一个直径为0.4 m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m ,桌面离地面1 m ,若灯泡离地面3 m ,则地面圆环形阴影的面积是( D )A .0.324 π m 2B .0.288 π m 2C .1.08 π m 2D .0.72 π m 212.要在宽为28 m 的海堤公路的路边安装路灯,路灯的灯臂长为3 m ,且与灯柱成120°角(如图),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中点时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果(精确到0.01 m ,3≈1.732)?第12题图解:灯柱高为⎝ ⎛⎭⎪⎫28÷2-3×32×3-3×12≈18.25(m). C 开拓新思路 拓展创新13.如图所示,灯在距地面3 m 的A 处,现有一木棒长2 m ,当B 处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( A )第13题图A .先变长,后变短B .先变短,后变长C .不变D .先变长,再不变,后变短14.如图所示,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成45°,∠A =60°,CD =4 m ,BC =(46-22) m ,则电线杆AB 的长为多少米?第14题图解:延长AD交地面于E,作DF⊥BE于F.第14题答图∵∠DCF=45°.CD=4.∴CF=DF=2 2.由题意知AB⊥BC.∴∠EDF=∠A=60°.∴∠DEF=30°∴EF=2 6.∴BE=BC+CF+FE=6 6.在Rt△ABE中,∠E=30°.∴AB=BEtan 30°=66×33=62(m).答:电线杆AB的长为62米.。

2018年秋九年级数学下册 第3章 三视图与表面展开图 3.4 简单几何体的表面展开图(2)练习 (新版)浙教版

2018年秋九年级数学下册 第3章 三视图与表面展开图 3.4 简单几何体的表面展开图(2)练习 (新版)浙教版

3.4简单几何体的表面展开图(2)(见B本73页)A 练就好基础基础达标1.如图所示是某几何体的三视图,其侧面积为__6π__.2.用一个边长为4 cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为__1__ cm.第1题图第4题图3.用一个宽4 cm、长7cm的矩形卷成一个圆柱,则此圆柱的侧面积为__28_cm2__.4.如图所示是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度的取值范围为__12≤a≤13__.(罐壁的厚度和小圆孔的大小忽略不计)5.如图所示的展开图不可能拼成的立方体是( B)第5题图A.B.C. D.6.如图所示,从棱长为10的立方体的一顶点处挖去一个棱长为1的小立方体,则剩下图形的表面积为( A)第6题图A.600 B.599 C.598 D.5977.一个物体的三视图如图所示,则根据图中标注的尺寸,此物体的全面积为( B)第7题图A .(123+12) cm 2B .(123+72) cm 2C .(63+12) cm 2D .(63+72) cm 28.如图所示是一个正六棱柱的主视图和左视图,则正六棱柱的侧面积为( C )第8题图A .24 B. 3 C .36 D .19.如图所示是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为__24_π__.第9题图第10题图10.如图所示,有一个圆柱,底面圆的直径AB =16π cm ,高BC =12 cm ,P 为BC 的中点,求蚂蚁从A 点爬到P 点的最短距离.第10题答图解:圆柱的侧面展开图如图,∵圆柱底面直径AB =16π cm ,高BC =12 cm ,P 为BC 的中点,∴圆柱底面圆的半径是8π cm ,BP =6 cm ,∴AB =π×8π=8 (cm),在Rt △ABP 中,AP =AB 2+BP 2=10 (cm). 即蚂蚁从A 点爬到P 点的最短距离为10 cm. B 更上一层楼 能力提升 11.如图所示,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( A )A .13 cmB .261 cm C.61 cmD .234 cm第11题图第12题图12.如图所示,在一个棱长为10 cm 的立方体中挖去一个底面半径为3 cm 的圆柱形小孔,这个物体的表面积约为__732__cm 2.(保留整数)13.如图所示,已知矩形ABCD ,AB =2 cm ,AD =6 cm ,求分别以AB ,AD 所在的直线为轴旋转后所得圆柱的侧面积.第13题图解:依题意可知,分两种情况:(1)以AB 所在的直线为轴旋转后所得圆柱的底面半径为BC ,圆柱的底面周长为6×2π=12π(cm),侧面积为 12π×2=24π(cm 2).(2)以AD 所在的直线为轴旋转后所得圆柱的底面半径为AB ,圆柱的底面周长为2×2π=4π(cm),侧面积为 4π×6=24π(cm 2).所以以AB ,AD 所在直线为轴旋转后所得圆柱的侧面积都是24π cm 2.第14题图14.如图所示是一个立方体的展开图,标注了字母A的面是立方体的正面,如果立方体的左面与右面所标注代数式的值相等,且标注的数字相同的不超过2个,求A的取值范围.解:由题意,得x2=4x-4,即x2-4x+4=0,(x-2)2=0,∴x=2,那么x2=4,4x-4=4;则4有两个了,∵标注的数字相同的不超过2个,∴A≠4.C 开拓新思路拓展创新15.如图所示,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P 有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:__②__(填序号).第15题图16.如图所示,图(a)是过圆柱体木块底面的一条弦AD,沿母线AB剖开后得到的柱体,剖面是矩形ABCD,O为原圆柱体木块底面的圆心.图(b)是该柱体的主视图和俯视图.请你根据图中标注的数据解决以下问题.(1)求弦AD的长度;(2)求这个柱体的侧面积.(结果可保留π和根号)第16题图第16题答图解:(1)过点O作OM⊥AD于点M,连结OD,则△OMD是直角三角形,易得OD=36÷2=18(cm),OM =27-18=9(cm),∴MD =9 3 cm ,∴AD =2MD =18 3(cm). (2)由(1)易得∠MOD=60°, 那么∠AOD=120°,侧面积之和为18 3×40+240π×18180×40=720 3+960π(cm 2),∴这个柱体的侧面积为(720 3+960π)cm 2.。

浙教版数学九年级下册第3章三视图与表面展开检测题参考答案(1).docx

浙教版数学九年级下册第3章三视图与表面展开检测题参考答案(1).docx

第3章 三视图与表面展开图检测题参考答案1.A 解析:平行光线所形成的投影称为平行投影.2.B3.A 解析:注意太阳光线的投影是平行投影.4.D 解析:跟物体的摆放位置有关.5.C 解析:由于正方体的主视图是个正方形,而竖着的圆柱体的主视图是个长方形,因此只有C 的图形符合这个条件.故选C .6. B 解析:几何体①的主视图是矩形,几何体②的主视图是三角形,几何体③的主视图是矩形,几何体④的主视图是圆,所以几何体①与几何体③的主视图相同.7.B 解析:图形的形状首先应与主视图一致,然后再根据各个位置的立方体的个数进行判断.8.B 解析:根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北-北-东北-东,由分析可得先后顺序为④①③②.故选B .9. D 解析:依据俯视图和左视图,可知这个正棱柱为正五棱柱,再借助俯视图,可知它的主视图应为选项D.10. B 解析:结合三视图,这个几何体中,底层有3+1=4(个)小正方体,第二层有1个小正方体,因此小正方体的个数为4+1=5.11. 中间的某处上方 12.1564m 解析:由题意可知, m ,人的身高 m ,则,得.又,则 ,解得AC =38.故.13. 4 解析:观察三视图容易得出左前方有2个小立方块,左后方有1个小立方块,右前方有1个小立方块,所以共有4个小立方块.14. π 解析:通过观察三视图可知此几何体是圆锥,它的底面直径是2,高是3,所以这个几何体的体积是π×12×3=π.15.28 解析:由几何体可知其主视图有4个正方形,左视图有5个正方形,俯视图有5个正方形,故需要涂色的面积为4×2+5×2+5×2=28(平方米).16.3 解析:由主视图和左视图可以画出俯视图如图所示,可知正六边形的边长为2,故3.17.18 解析:当取最大时,俯视图中各个位置小正方体的个数如图所示,可知共有18个.18.③19.解:如图所示.20. 解:(1)符合这个零件的几何体是直三棱柱.(2)如图,△是正三角形,⊥,23,∴,)(cm2).21.解:由主视图可以看出,左列立方体最多为2个,右列立方体最多为3个,故x和2的最大值为2,1和y的最大值为3,从而x=1或x=2,y=3 .22. 解:最大值为12个,最小值为7个,俯视图分别如图所示.23. 解:该几何体的三种视图如图所示.2222=++=S a a a a2(334)20,或表222=⨯-⨯=S a a a562520.表24. 解:示意图如图所示.其中米,米,由,得米.所以(米).又,即,所以(米).25. 解:(1)如图所示,连接A与建筑物的顶点B、C,发现在一条直线上,即视线被BM挡住了,所以在A点不能看到后面那座高大的建筑物.(2)已知203m, m,m,当恰好被挡住时,三点在一条直线上,此时由,得,解得3.所以当点与点的距离大于103m时,才能看到后面的楼.26.分析:在探究题中,由直三棱柱的三视图得到CQ=5 dm,又AB=BC=4 dm,根据勾股定理求出BQ==3(dm).根据直棱柱的体积公式:直棱柱体积V液=底面积S△BCQ×高AB,求出液体的体积.在Rt△BCQ中,根据锐角三角函数可求出∠BCQ的度数.由CQ∥BE得到α=∠BCQ,从而求出α的度数.在拓展题中,无论怎样旋转,液体的体积是不变的,由此可以确定y与x的函数关系式.在延伸题中,结合α=60°通过计算得出容器内的液体分为两部分.在每部分中分别计算求出容器内液体的体积,再求出溢出容器的液体的体积后,最后判定结论是否正确.解:探究(1)CQ∥BE;3.(2)V液=×3×4×4=24(dm3).(3)在Rt△BCQ中,tan∠BCQ=.∵CQ∥BE,∴α=∠BCQ=37°.拓展当容器向左旋转时,如图①,0°≤α≤37°.∵液体体积不变,∴(x+y)×4×4=24,∴y=-x+3.当容器向右旋转时,如图②,同理得y=.当液面恰好到达容器口沿,即点Q与点B′重合时,如图③,由BB′=4 dm,且×PB×BB′×4=24,得PB=3 dm,由tan∠PB′B=,得∠PB′B=37°,∴α=∠B′PB=53°.此时37°≤α≤53°.延伸当α=60°时,如图④所示,FN∥EB,GB′∥EB.过点G作GH⊥BB′于点H.在Rt△B′GH中,GH=MB=2 dm,∠GB′B=30°,∴HB′= dm.∴MG=BH=(4-)dm<MN.此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱.∵S△NFM+S梯形MBB′G=××1+×(4-+4)×2=(dm2).∴V溢出=24-4×=(dm3)>4 dm3.∴溢出容器的液体可以达到4 dm3.点拨:(1)根据立体图形的三视图解计算题时,要注意根据三视图中的数据,找出立体图形中的相应数据.(2)常应用解直角三角形的知识求线段的长度和角的度数.初中数学试卷。

九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

3.1投影(2)(见B本67页)A 练就好基础基础达标1.教室内电子白板的投影是( B)A.平行投影B.中心投影C.平行投影或中心投影D.以上均不是2.如图所示,灯光与物体的影子的位置最合理的是( B)A.B.C. D.3.如图所示,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( C)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3题图4题图4.如图所示,四边形木框ABCD在灯泡发出的光照射下形成的影子是四边形A′B′C′D′.若AB∶A′B′=1∶2,则四边形ABCD的面积∶四边形A′B′C′D′的面积为( D)A. 4∶1B. 2∶1C. 1∶ 2D. 1∶45.同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长6.太阳光在地面上的投影是__平行__投影,白炽灯在地面上的投影是__中心__投影.7.如图所示,一块直角三角板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为第7题图8.如图(a)(b)分别是两棵树及其在太阳光或路灯下影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?你是用什么方法进行判断的?(2)请画出图中表示小丽影长的线段.图(a) 图(b)第8题图解:(1)图(a)是太阳光形成的,图(b)是路灯灯光形成的.太阳光是平行光线,物高与影长成正比.(2)所画图形如图所示:第8题答图9.如图所示,小华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1 m ,继续往前走3 m 到达E 处时,测得影子EF 的长为2 m .已知小华的身高是1.5 m ,求路灯A 的高度AB.第9题图解:设AB =h(m),BC =x(m).由题意可得△GCD∽△ABD,△HEF ∽△ABF ,∴GC AB =CD BD ,HE AB=EF BF. ∵HE =GC =1.5 m ,CD =1 m .BD =(x +1)m ,BF =(x +5)m ,EF =2 m.∴⎩⎪⎨⎪⎧1.5h =1x +1,1.5h =2x +5,解得⎩⎪⎨⎪⎧x =3,h =6, ∴路灯A 的高度AB 为6 m.B 更上一层楼 能力提升10.在阳光的照射下,一块三角板的投影不会是( D )A .线段B .与原三角形全等的三角形C .变形的三角形D .点11.永州中考如图所示,圆桌面(桌面中间有一个直径为0.4 m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m ,桌面离地面1 m ,若灯泡离地面3 m ,则地面圆环形阴影的面积是( D )A .0.324 π m 2B .0.288 π m 2C .1.08 π m 2D .0.72 π m 212.要在宽为28 m 的海堤公路的路边安装路灯,路灯的灯臂长为3 m ,且与灯柱成120°角(如图),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中点时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果(精确到0.01 m ,3≈1.732)?第12题图解:灯柱高为⎝ ⎛⎭⎪⎫28÷2-3×32×3-3×12≈18.25(m). C 开拓新思路 拓展创新13.如图所示,灯在距地面3 m 的A 处,现有一木棒长2 m ,当B 处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( A )第13题图A .先变长,后变短B .先变短,后变长C .不变D .先变长,再不变,后变短14.如图所示,电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC 上,若CD与地面成45°,∠A=60°,CD=4 m,BC=(46-22) m,则电线杆AB的长为多少米?第14题图解:延长AD交地面于E,作DF⊥BE于F.第14题答图∵∠DCF=45°.CD=4.∴CF=DF=2 2.由题意知AB⊥BC.∴∠EDF=∠A=60°.∴∠DEF=30°∴EF=2 6.∴BE=BC+CF+FE=6 6.在Rt△ABE中,∠E=30°.∴AB=BEtan 30°=66×33=62(m).答:电线杆AB的长为62米.。

【浙教版】九年级数学下册第3章3.2简单几何体的三视图第2课时简单旋转体的三视图同步练习含答案

【浙教版】九年级数学下册第3章3.2简单几何体的三视图第2课时简单旋转体的三视图同步练习含答案

第3章三视图与表面展开图3.2 简单几何体的三视图第2课时简单旋转体的三视图知识点1 简单旋转体的三视图图3-2-121.2016·杭州下列选项中,如图3-2-12所示的圆柱的三视图画法正确的是( )图3-2-132.下列四个几何体中,左视图为圆的是( )图3-2-143.2017·自贡下列几何体中,主视图是矩形的是( )图3-2-154.2017·金华模拟如图3-2-16所示物体的主视图是( )图3-2-16图3-2-17图3-2-185.2017·白银某种零件模型可以看成如图3-2-18所示的几何体(空心圆柱),该几何体的俯视图是( )图3-2-196.下列四个几何体:图3-2-20其中,俯视图是四边形的几何体的个数是( )A.1 B.2 C.3 D.4知识点2 简单旋转体的三视图画法7.根据下列主视图和俯视图,连出对应的物体.图3-2-218.画出图3-2-22中几何体的三视图.图3-2-229.下列几何体中,主视图和左视图都为矩形的是( )图3-2-2310.如图3-2-24是一个空心圆柱体,它的左视图是( )图3-2-24图3-2-2511.2017·益阳如图3-2-26,空心卷筒纸的高度为12 cm,外径(直径)为10 cm,内径为4 cm,在比例尺为1∶4的三视图中,其主视图的面积是( )A.21π4cm2 B.21π16cm2C.30 cm2 D.7.5 cm23-2-26图3-2-2712.如图3-2-27,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )图3-2-2813.在一个长方体内部挖去一个圆柱(如图3-2-29所示),它的主视图是( )图3-2-29图3-2-3014.如图3-2-31,正方形ABCD的边长为1,以直线AB为轴将正方形旋转一周,所得圆柱的主视图的周长是________.3-2-3115.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:(1)当桌子上放有x个碟子时,请写出此时碟子的高度(用含x的式子表示);(2)现有几摞碟子,分别从三个方向上看,其三视图如图3-2-32所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度.图3-2-32详解详析1.A 2.D3.A [解析] 选项A中圆柱的主视图是矩形;选项B中球的主视图是圆;选项C中圆锥的主视图是等腰三角形;选项D中圆台的主视图是等腰梯形.4.C5.D [解析] 该几何体的俯视图是指从上面看所得到的图形. 此题由上向下看,看到的是一个圆环,中间的圆要画成实线.故选D.6.B [解析] 根据几何体的形状以及摆放的方式可知,A中正方体的俯视图为正方形,B中圆柱体的俯视图为圆,C中三棱柱的俯视图为矩形,D中球体的俯视图为圆,所以俯视图是四边形的几何体的个数是2.7.a-D,b-A,c-B,d-C8.解:作图如下:9.B [解析] A项,主视图和左视图都是圆;C项,主视图和左视图都是等腰三角形;D项,主视图是矩形,左视图是圆.10.B [解析] 从左边看得到的图形是三个矩形,中间矩形的左右两边是虚线,故选B.11.D [解析] 圆柱的主视图是矩形,它的一边长是10 cm,另一边长是12 cm.在比例尺为1∶4的主视图中,它的对应边长分别为2.5 cm,3 cm,因而主视图的面积为7.5 cm2.故选D.12.B13.A14.615.解:(1)此时碟子的高度为2+1.5(x-1)=(1.5x+0.5)cm.(2)由三视图可知共有12个碟子,∴叠成一摞后的高度为1.5×12+0.5=18.5(cm).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2简单几何体的三视图(2)
(见B本69页)
A 练就好基础基础达标)
1.如图所示,物体的主视图是( D)
第1题图
A.B.C. D.
2.如图所示的几何体的主视图是( D)
第2题图
A.B.C. D.
3.如图所示,1,2,3,4,T是五个完全相同的立方体,将两部分构成一个新的几何体得到其主视图,则应将几何体T放在( D)
第3题图A.立方体1的上方
B.立方体2的左方
C.立方体3的上方
D.立方体4的上方
第4题图
4.如图所示,由四个相同的小立方体搭建了一个积木,它的三视图如图所示,则这个积木可能是( A )
A B C D
5.如图所示是由五个相同的立方体堆成的几何体,则它的俯视图是__①____.(填序号)
第5题图
6.指出下列立体图形的对应的俯视图,在图下面的括号里填上对应的字母.
A B C D
第6题图
7.如图所示,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是__①③__.(把所有符合条件的几何体的序号都写上)
第7题图
8.如图所示,正方形ABCD 的边长为3 cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的周长是__18__cm.
第8题图
9.画出图所示中几何体的三视图.(比例为1∶1)
第9题图
解:主视图、左视图、俯视图依次为:
第9题答图
B 更上一层楼能力提升
10.如图所示是由一些大小相同的小立方体组成的几何体的主视图和俯视图,则组成这个几何体的小立方体最多块数是( C)
第10题图
A.8 B.10 C.12 D.14
11.如图所示是一个长方体的三视图(单位:cm),根据图中数据,这个长方体的体积是__24__cm3.
第11题图
12.若立方体的棱长为1 m,在地面上摆成如图所示的几何体.
(1)写出它的俯视图的名称;
(2)求第四层时几何图形的表面积.
第12题图
解:(1)它的俯视图是边长为4 m的正方形.
(2)S=(1+2+3+4)×12×4+4×4=40+16=56(m2).
13.如图所示的几何体为圆台,按比例1∶1作出该几何体的三视图.
第13题图
解:主视图、左视图、俯视图依次为:
第13题答图
C 开拓新思路拓展创新
14.房地产开发商在宣传介绍它的房屋室内结构时,会发给客户有关的宣传单.下面的房间结构图是我们所说的( C)
第14题图
A.主视图B.左视图
C.俯视图D.以上三种都不是
15.如图1是一块带有圆形空洞和正方形空洞的小木板,从图2的四个物体中选出既可以堵住圆形空洞,又可以堵住正方形空洞的物体,并计算其体积(结果保留π)( B)
第15题图
A.①1000πB.②2000π
C.③3000πD.④4000π
【解析】圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的主视图以及左视图都为一个矩形,可以堵住方形的空洞,故选圆柱,π×102×20=2000π.故选B.。

相关文档
最新文档