微积分(二)课后题答案,复旦大学出版社
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第2章

xn a xn a
由数列极限的定义得 考察数列
即
xn a
lim xn a
n
n n
xn (1) n ,知 lim xn 不存在,而 xn 1 , lim xn 1 ,
n
xn 0
由数列极限的定义可得 4. 利用夹逼定理证明:
即 xn
即 xn 0
lim xn 0
n
1
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
微积分 复旦大学出版社 曹定华主编 课后答案
微积分 复旦大学出版社 曹定华主编 课后答案
又 所以
xn 1 xn xn ( 2 xn ) ,而 xn 0 , xn 2 , xn 1 xn 0
即
xn 1 xn ,
即数列是单调递增数列。 综上所述,数列 xn 是单调递增有上界的数列,故其极限存在。 (3)由数列 xn 单调递增, yn 单调递减得 xn x1 , yn y1 。 又由 lim( xn yn ) 0 知数列 xn yn 有界,于是存在 M >0,使 xn yn M ,
即xn 1 xn
所以 xn 为单调递减有下界的数列,故 xn 有极限。 (2)因为 x1
2 2 ,不妨设 xk 2 ,则
xk 1 2 xk 22 2
故有对于任意正整数 n,有 xn 2 ,即数列 xn 有上界,
2
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
lim
2n 0 n n !
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章

3 . 2
4. 在 xOy 坐标面上求向量 a,使其垂直于向量 b=4i-3j+5k,且|a|=2|b|. 解:设向量 a ( x, y, 0) ,由 a b 得 a b 0 即 4x 3y 0 , 由 | a | 2 | b | 得 解方程组
(6,10, 2) (6, 6, 6) (16, 4, 12) (16, 0, 20)
5.已知两点 M1(0,1,2)和 M2(1,-1,0),求向量 M 1M 2 ,并求 M 1M 2 及与 M 1M 2 平 行的单位向量. 解: M 1M 2 (1 0)i (1 1) j (0 2)k i 2 j 2k (1, 2, 2)
2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证: (如上题图) ,依题意有 AM MC , DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则
即与 M 1M 2 平行的单位向量为 ,
1 3
2 2 1 2 2 , 或 , , . 3 3 3 3 3
习题 7-3
) 1. 已知 a =2, b =1, (a,b
解: (1) a a | a | 4
2
,求(1) a·a,(2) a·b,(3) (2a+3b)·(3a-b). 3 ) 2 1 cos π 1 (2) a a | a | | b | cos(a,b 3
微积分(二)课后题答案,复旦大学出版社__第六章

(x)
=
max{1,
x2}
=
⎪ ⎨
1
⎪ ⎩
x2
−2 ≤ x < −1 −1 ≤ x < 1 ,于是 1≤ x≤ 2
∫ ∫ ∫ ∫ 2 max{1, x2}dx = −2
−1 x2dx +
−2
1 1dx +
−1
2 1
x2dx
=
1 3
x3
−1 −2
+
x
1 −1
+
1 3
x3
2 1
=
20 3
∫ ∫ 6.
已知 f(x)连续,且 f(2)=3,求 lim x→2
a i)2
+1,
于是
∑ ∑ n
i=1
f (ξi )Δxi
=
n [(a + b − a i)2 +1] b − a
i=1
n
n
∑ =
(b
−
a)
n i=1
[a2
+
(b
−
a)2
i2 n2
+
2 a(b
−
a)
i n
+1]
1 n
= (b − a)[na2 + (b − a)2 ⋅ 1 ⋅ 1 n(n +1)(2n +1) + 2(b − a)a⋅ 1 ⋅ n(n + 1) + n]⋅ 1
x⎡ 2 ⎢⎣
2 t
f
(u)du
⎤ ⎥⎦
dt
(x − 2)2
.
解
∫ ∫ ∫ ∫ ∫ ∫ lim
x→2
x⎡ 2⎣
微积分课后题答案第二章习题详解

第二章习题2-11. 试利用本节定义5后面的注3证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时此时1n k N +>有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =-1n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立;3. 利用夹逼定理证明:1 lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; 2 lim n →∞2!n n =0.证:1因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 2因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. 1 x n =11n e +,n =1,2,…;2 x 1,x n +1n =1,2,…. 证:1略;2因为12x =<,不妨设2k x <,则故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,又 1n n x x +-=,而0n x >,2n x <,所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列;综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在;习题2-21※. 证明:0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .证:先证充分性:即证若0lim ()lim ()x x x x f x f x a -+→→==,则0lim ()x x f x a →=. 由0lim ()x x f x a -→=及0lim ()x x f x a +→=知: 10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,20δ∃>当020x x δ<-<时,有()f x a ε-<;取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<, 于是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0lim ()x x f x a →=.再证必要性:即若0lim ()x x f x a →=,则0lim ()lim ()x x x x f x f x a -+→→==, 由0lim ()x x f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ∀>∃>,当00x x δ<-<或00x x δ<-<时,有()f x a ε-<.所以 0lim ()lim ()x x x x f x f x a -+→→== 综上所述,0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .2. 1 利用极限的几何意义确定0lim x → x 2+a ,和0lim x -→1e x; 2 设fx = 12e ,0,,0,xx x a x ⎧⎪<⎨⎪+≥⎩,问常数a 为何值时,0lim x →fx 存在.解:1因为x 无限接近于0时,2x a +的值无限接近于a ,故2lim()x x a a →+=.当x 从小于0的方向无限接近于0时,1e x 的值无限接近于0,故10lim e 0xx -→=. 2若0lim ()x f x →存在,则00lim ()lim ()x x f x f x +-→→=, 由1知 22lim ()lim()lim()x x x f x x a x a a +--→→→=+=+=, 所以,当0a =时,0lim ()x f x →存在;3. 利用极限的几何意义说明lim x →+∞sin x 不存在.解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞不存在;习题2-31. 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定是无穷小量,也不一定是无穷大量.解:例1:当0x →时,tan ,sin x x 都是无穷小量,但由sin cos tan xx x=当0x →时,cos 1x →不是无穷大量,也不是无穷小量;例2:当x →∞时,2x 与x 都是无穷大量,但22xx=不是无穷大量,也不是无穷小量; 例3:当0x +→时,tan x 是无穷小量,而cot x 是无穷大量,但tan cot 1x x =不是无穷大量,也不是无穷小量;2. 判断下列命题是否正确:1 无穷小量与无穷小量的商一定是无穷小量;2 有界函数与无穷小量之积为无穷小量;3 有界函数与无穷大量之积为无穷大量;4 有限个无穷小量之和为无穷小量;5 有限个无穷大量之和为无穷大量;6 y =x sin x 在-∞,+∞内无界,但lim x →∞x sin x ≠∞;7 无穷大量的倒数都是无穷小量;8 无穷小量的倒数都是无穷大量. 解:1错误,如第1题例1; 2正确,见教材§定理3;3错误,例当0x →时,cot x 为无穷大量,sin x 是有界函数,cot sin cos x x x =不是无穷大量; 4正确,见教材§定理2;5错误,例如当0x →时,1x 与1x -都是无穷大量,但它们之和11()0x x+-=不是无穷大量; 6正确,因为0M ∀>,∃正整数k ,使π2π+2k M >,从而ππππ(2π+)(2π+)sin(2π+)2π+2222f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,又0M ∀>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞≠∞;7正确,见教材§定理5;8错误,只有非零的无穷小量的倒数才是无穷大量;零是无穷小量,但其倒数无意义; 3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量. 1 fx =234x -,x →2; 2 fx =ln x ,x →0+,x →1,x →+∞; 3 fx = 1e x,x →0+,x →0-; 4 fx =2π-arctan x ,x →+∞;5 fx =1x sin x ,x →∞; 6 fx = 21xx →∞. 解:122lim(4)0x x →-=因为,即2x →时,24x -是无穷小量,所以214x -是无穷小量,因而234x -也是无穷大量;2从()ln f x x =的图像可以看出,1lim ln ,limln 0,lim ln x x x x x x +→→+∞→=-∞==+∞,所以,当0x +→时,x →+∞时,()ln f x x =是无穷大量;当1x →时,()ln f x x =是无穷小量;3从1()e x f x =的图可以看出,110lim e ,lim e 0x xx x +-→→=+∞=, 所以,当0x +→时,1()e xf x =是无穷大量; 当0x -→时,1()e xf x =是无穷小量; 4πlim (arctan )02x x →+∞-=, ∴当x →+∞时,π()arctan 2f x x =-是无穷小量;5当x →∞时,1x是无穷小量,sin x 是有界函数, ∴1sin x x是无穷小量; 6当x →∞时,21x 是无穷小量,∴是无穷小量; 习题2-41.若0lim x x →fx 存在,0lim x x →gx 不存在,问0lim x x →fx ±gx , 0lim x x →fx ·gx 是否存在,为什么解:若0lim x x →fx 存在,0lim x x →gx 不存在,则10lim x x →fx ±gx 不存在;因为若0lim x x →fx ±gx 存在,则由()()[()()]g x f x f x g x =--或()[()()]()g x f x g x f x =+-以及极限的运算法则可得0lim x x →gx ,与题设矛盾;20lim x x →fx ·gx 可能存在,也可能不存在,如:()sin f x x =,1()g x x=,则0limsin 0x x →=,01lim x x →不存在,但0lim x x →fx ·gx =01limsin 0x x x→=存在; 又如:()sin f x x =,1()cos g x x =,则π2limsin 1x x →=,π21limcos x x→不存在,而lim x x →fx ·gx π2lim tan x x →=不存在; 2. 若0lim x x →fx 和0lim x x →gx 均存在,且fx ≥gx ,证明0lim x x →fx ≥0lim x x →gx .证:设0lim x x →fx =A,0lim x x →gx =B ,则0ε∀>,分别存在10δ>,20δ>,使得当010x x δ<-<时,有()A f x ε-<,当020x x δ<-<时,有()g x B ε<+令{}12min ,δδδ=,则当00x x δ<-<时,有 从而2A B ε<+,由ε的任意性推出A B ≤即lim ()lim ()x x x x f x g x →→≤.3. 利用夹逼定理证明:若a 1,a 2,…,a m 为m 个正常数,则limn →∞nm a ++=A ,其中A =max{a 1,a2,…,a m }.n nn m a m A ≤++≤,即而lim n A A →∞=,1lim nn mA A →∞=,由夹逼定理得nm n a A ++=.4※. 利用单调有界数列必存在极限这一收敛准则证明:若x 1=,x 2x n +1=1,2,…,则limn →∞x n 存在,并求该极限.证:因为12x x ==有21x x >今设1k k xx ->,则1k k x x -=>=,由数学归纳法知,对于任意正整数n 有1n n x x +>,即数列{}n x 单调递增;又因为12x =<,今设2k x <,则12k x -=<=,由数学归纳法知,对于任意的正整数 n 有2n x <,即数列{}n x 有上界,由极限收敛准则知lim n n x →∞存在;设limn n x b →∞=,对等式1n x+两边取极限得b =,即22b b =+,解得2b =,1b =-由极限的保号性,舍去,所以lim 2n n x →∞=.5. 求下列极限:1 lim n →∞33232451n n n n n +++-+;2 lim n →∞1cos n ⎡⎤⎛-⎢⎥ ⎝⎣⎦;3 lim n →∞4 limn →∞11(2)3(2)3n nn n ++-+-+; 5 lim n →∞1112211133n n ++++++. 解:1原式=23232433lim 11155n n n nn n→∞++=+-+;2因为lim(10n →∞-=,即当n →∞时,1是无穷小量,而cos n 是有界变量,由无穷小量与有界变量的乘积是无穷小量得:lim (10n n →∞⎡⎤=⎢⎥⎣⎦;322lim(n n n →∞=而0n n→∞→∞==,2n n→∞∴==∞;41111121(1)()(2)31333lim lim2(2)33(1)()13n nn nn nn n n n++→∞→∞++-+-+==-+-+;5111111()21111114[1()]42222lim lim lim11113 11()3[1()]3333113nnnn n nn nn++→∞→∞→∞++-+++--===+++---.6. 求下列极限:13limx→239xx--; 21limx→22354xx x--+;3 limx→∞3426423xx x++;42limxπ→sin coscos2x xx-;5limh→33()x h xh+-; 63limx→;71limx→21nx x x nx+++--; 8limx→∞sinsinx xx x+-;9 limx→+∞101limx→313()11x x---;11limx→21(sin)xx.解:23333311(1)lim lim lim9(3)(3)36x x xx xx x x x→→→--===--++2211lim(54)0,lim(23)1x xx x x→→-+=-=-3344226464lim lim03232x xx x xx xx→∞→∞++==++;4π2ππsincos sin cos 22lim1cos 2cos πx x xx →--==-; 5[]223300()()()()lim limh h x h x x h x h x x x h x h h→→⎡⎤+-+++++-⎣⎦= 222lim ()()3h x h x h x x x →⎡⎤=++++=⎣⎦;633(23)92)x x x →→+-=3343x x →→===;72211(1)(1)(1)limlim 11n n x x x x x n x x x x x →→+++--+-++-=--1123(1)2n n n =++++=+; 8sin lim0x x x →∞=无穷小量1x与有界函数sin x之积为无穷小量sin 1sin lim lim 1sin sin 1xx x x x x xx x x→∞→∞++∴==--; 922limlimx x→+∞=limlim1x x ===;101lim x →313()11x x---231(1)3lim 1x x x x →++-=- 11当0x →时,2x 是无穷小量,1sinx是有界函数, ∴它们之积21sinx x 是无穷小量,即201lim sin 0x x x →⎛⎫= ⎪⎝⎭;习题2-5求下列极限其中a >0,a ≠1为常数: 1. 0limx →sin 53x x; 2. 0lim x →tan 2sin 5xx ; 3. 0lim x →x cot x ;4. 0lim x→; 5. 0lim x →2cos5cos 2x x x -; 6. lim x →∞1xx x ⎛⎫⎪+⎝⎭; 7. 0lim x →()cot 13sin xx +; 8. 0lim x →1x a x-; 9. 0lim x →x x a a x --;10. lim x →+∞ln(1)ln x x x +-; 11. lim x →∞3222xx x -⎛⎫ ⎪-⎝⎭; 12.lim x →∞211xx ⎛⎫+ ⎪⎝⎭; 13. 0limx →arcsin x x ; 14. 0lim x →arctan xx; .解:1. 000sin 55sin 55sin 55lim lim lim 335353x x x x x x x x x →→→===;2. 000tan 2sin 221sin 25lim lim lim sin 5cos 2sin 55cos 22sin 5x x x x x x x x x x x x x→→→== 0205021sin 252lim lim lim 5cos 22sin 55x x x x x x x x →→→==; 3. 0000lim cot limcos lim limcos 1cos01sin sin x x x xx xx x x x x x →→→→=⋅==⨯=;4. 000sin2lim lim 22xx x x x x x →→→→=== 0sin22122x xx →===; 5. 2200073732sin sin sin sin cos5cos 2732222lim lim lim (2)732222x x x x x x x x x x x x x →→→⎡⎤-⎢⎥-==-⋅⋅⋅⋅⎢⎥⎢⎥⎣⎦0073sin sin 212122limlim 732222x x x x x x →→=-⋅=-; 6. 111lim lim lim 111e (1)xxx x x x x x x x x →∞→∞→∞⎛⎫ ⎪⎛⎫=== ⎪ ⎪++⎝⎭ ⎪+⎝⎭; 7. 3cos cos 1cot sin 3sin 0lim(13sin )lim(13sin )lim (13sin )xx xxx x x x x x x →→→⎡⎤+=+=+⎢⎥⎣⎦8.令1xu a =-,则log (1)a x u =+,当0x →时,0u →,1011ln log elimlog (1)a ua u a u →===+. 9. 000(1)(1)11lim lim lim x x x x x x x x x a a a a a a x x xx ---→→→⎛⎫------==+ ⎪-⎝⎭ 利用了第8题结论01limln x x a a x→-=; 10. ln(1)ln 11limlim lnx x x x xx x x→+∞→+∞+-+=⋅ 1111lim ln(1)lim lim ln(1)0x x x x x x x→+∞→+∞→+∞=+=+=; 11. 22223211lim lim 1lim 1222222x xxxxx x x x x x x --→∞→∞→∞⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1232lim e 22xx x x -→∞-⎛⎫∴= ⎪-⎝⎭; 12. 1221222111ln (1)lim ln(1)2211lim(1)lim (1)lim ee x x xxx xx x x xx x x x x →∞⎡⎤++⎢⎥⎣⎦→∞→∞→∞⎡⎤+=+==⎢⎥⎣⎦2121lim lim ln(1)0lne 0e e e 1xx x x x→∞→∞+⋅====;13.令arcsin x u =,则sin x u =,当0x →,0u →,000arcsin 1limlim 1sin sin limx u u x u u x u u→→→===;14.令arctan x u =,则tan x u =,当0x →,0u →,00000arctan 1lim lim lim cos lim limcos 1sin tan sin x u u u u x u u u u u x u uu→→→→→====. 习题2-61. 证明: 若当x →x 0时,αx →0,βx →0,且αx ≠0,则当x →x 0时,αx ~βx 的充要条件是limx x →()()()x x x αβα-=0.证:先证充分性. 若0limx x →()()()x x x αβα-=0,则0lim x x →()(1)()x x βα-=0,即0()1lim 0()x x x x βα→-=,即0()lim 1()x x x x βα→=. 也即0()lim 1()x x x x αβ→=,所以当0x x →时,()()x x αβ. 再证必要性:若当0x x →时,()()x x αβ,则0()lim 1()x x x x αβ→=, 所以0lim x x →()()()x x x αβα-=0lim x x →()(1)()x x βα-=0()1lim ()x x x x βα→-=011110()lim ()x x x x αβ→-=-=. 综上所述,当x →x 0时,αx ~βx 的充要条件是0lim x x →()()()x x x αβα-=0. 2. 若βx ≠0,0lim x x →βx =0且0lim x x →()()x x αβ存在,证明0lim x x →αx =0. 证:0000()()lim ()lim ()lim lim ()()()x x x x x x x x x x x x x x x αααββββ→→→→==0()lim 00()x x x x αβ→== 即 0lim ()0x x x α→=. 3. 证明: 若当x →0时,fx =ox a ,gx =ox b ,则fx ·gx =o a b x+,其中a ,b 都大于0,并由此判断当x →0时,tan x-sin x 是x 的几阶无穷小量.证: ∵当x →0时, fx =ox a ,gx =ox b ∴00()()lim(0),lim (0)a bx x f x g x A A B B x x →→=≠=≠ 于是: 0000()()()()()()lim lim lim lim 0a b a b a b x x x x f x g x f x g x f x g x AB x x x x x +→→→→⋅=⋅=⋅=≠ ∴当x →0时, ()()()a b f x g x O x +⋅=,∵tan sin tan (1cos )x x x x -=-而当x →0时, 2tan (),1cos ()x O x x O x =-=,由前面所证的结论知, 3tan (1cos )()x x O x -=,所以,当x →0时,tan sin x x -是x 的3阶无穷小量.4. 利用等价无穷小量求下列极限:1 0lim x →sin tan ax bx b ≠0;2 0lim x →21cos kx x-; 3 0lim x→; 4 0lim x→5 0lim x →arctan arcsin x x ;6 0lim x →sin sin e e ax bx ax bx-- a ≠b ; 7 0lim x →ln cos 2ln cos3x x ; 8 设0lim x →2()3f x x -=100,求0lim x →fx . 解 00sin (1)lim lim .tan x x axaxabx bx b →→==8由20()3lim 100x f x x →-=,及20lim 0x x →=知必有0lim[()3]0x f x →-=,即 00lim[()3]lim ()30x x f x f x →→-=-=,所以 0lim ()3x f x →=.习题2-71.研究下列函数的连续性,并画出函数的图形:1 fx = 31,01,3,12;x x x x ⎧+≤<⎨-≤≤⎩2 fx =,111,1 1.x x x x -≤<⎧⎨<-≥⎩,或解: 1300lim ()lim(1)1(0)x x f x x f ++→→=+==∴ fx 在x =0处右连续,又11lim ()lim(3)2x x f x x ++→→=-=∴ fx 在x =1处连续.又22lim ()lim(3)1(2)x x f x x f --→→=-==∴ fx 在x =2处连续.又fx 在0,1,1,2显然连续,综上所述, fx 在0,2上连续.图形如下:图2-12 11lim ()lim 1x x f x x --→→==∴ fx 在x =1处连续.又11lim ()lim 11x x f x -+→-→-==故11lim ()lim ()x x f x f x -+→-→-≠∴ fx 在x =-1处间断, x =-1是跳跃间断点.又fx 在(,1),(1,1),(1,)-∞--+∞显然连续.综上所述函数fx 在x =-1处间断,在(,1),(1,)-∞--+∞上连续.图形如下:图2-22. 说明函数fx 在点x 0处有定义、有极限、连续这三个概念有什么不同又有什么联系 略.3.函数在其第二类间断点处的左、右极限是否一定均不存在试举例说明.解:函数在其第二类间断点处的左、右极限不一定均不存在. 例如0(),010x x f x x x x ≤⎧⎪==⎨>⎪⎩是其的一个第二类间断点,但00lim()lim 0x x f x x --→→==即在0x =处左极限存在,而001lim ()lim x x f x x ++→→==+∞,即在0x =处右极限不存在.4.求下列函数的间断点,并说明间断点的类型:1 fx = 22132x x x -++;2 fx =sin sin x xx +;3 fx = ()11x x +; 4 fx = 224x x +-;5 fx = 1sin x x .解: 1由2320x x ++=得x =-1, x =-2∴ x =-1是可去间断点,x =-2是无穷间断点.2由sin x =0得πx k =,k 为整数.∴ x =0是跳跃间断点.4由x 2-4=0得x =2,x =-2.∴ x =2是无穷间断点,x =-2是可去间断点. 5 001lim ()lim sin 0,()x x f x x f x x →→==在x =0无定义故x =0是fx 的可去间断点.5.适当选择a 值,使函数fx = ,0,,0x e x a x x ⎧<⎨+≥⎩在点x =0处连续.解: ∵f 0=a ,要fx 在x =0处连续,必须00lim ()lim ()(0)x x f x f x f +-→→==.即a =1.6※.设fx = lim x →+∞x xx x a a a a ---+,讨论fx 的连续性.解: 22101()lim lim sgn()10100x x xx x x a a x a aa f x x x a a a x --→+∞→+∞-<⎧--⎪====>⎨++⎪=⎩ 所以, fx 在(,0)(0,)-∞+∞上连续,x =0为跳跃间断点. 7. 求下列极限:1 2lim x →222x x x +-; 2 0lim x→; 3 2lim x →ln x -1; 4 12lim x →5 lim x e→ln x x . 解: 222222(1)lim 1;2222x x x x →⨯==+-+- 习题2-81. 证明方程x 5-x 4-x 2-3x =1至少有一个介于1和2之间的根.证: 令542()31f x x x x x =----,则()f x 在1,2上连续,且 (1)50f =-<, (2)50f =>由零点存在定理知至少存在一点0(1,2),x ∈使得0()0f x =.即 542000031x x x x ---=, 即方程54231x x x x ---=至少有一个介于1和2之间的根.2. 证明方程ln 1+e x -2x =0至少有一个小于1的正根.证: 令()ln(1)2e x f x x =+-,则()f x 在(,)-∞+∞上连续,因而在0,1上连续,且 0(0)ln(1)20ln 20e f =+-⨯=>由零点存在定理知至少存在一点0(0,1)x ∈使得0()0f x =.即方程ln(1)20e xx +-=至少有一个小于1的正根.3※. 设fx ∈C -∞,+∞,且lim x →-∞fx =A , lim x →+∞fx =B , A ·B <0,试由极限及零点存在定理的几何意义说明至少存在一点x 0∈-∞,+∞,使得fx 0=0.证: 由A ·B <0知A 与B 异号,不防设A >0,B <0由lim ()0,lim ()0x x f x A f x B →-∞→+∞=>=<,及函数极限的保号性知,10X ∃>,使当1x X <-,有()0,f x >20X ∃<,使当2x X >时,有()0f x <.现取1x a X =<-,则()0f a >,2x b X =>,则()0f b <,且a b <,由题设知()f x 在[,]a b 上连续,由零点存在定理,至少存在一点0(,)x a b ∈使0()0f x =, 即至少存在一点0(,)x ∈-∞+∞使0()0f x =.4.设多项式P n x =x n +a 11n x-+…+a n .,利用第3题证明: 当n 为奇数时,方程P n x =0至少有一实根. 证: 122()1n n n n a a a P x x x x x ⎛⎫=++++ ⎪⎝⎭()lim 10n nx P x x →∞∴=>,由极限的保号性知. 0X ∃>,使当X x >时有()0nn P x x>,此时()n P x 与n x 同号,因为n 为奇数,所以2X n 与-2X n 异号,于是(2)n P X -与(2)n P X 异号,以()n P x 在[2,2]X X -上连续,由零点存在定理,至少存在一点0(2,2)X X X ∈-,使0()0n P x =,即()0n P x =至少有一实根.。
微积分(二)课后题答案,复旦大学出版社_第五章

于是
∫ f (x)dx = ∫ (− cos x + C )dx = − sin x +C1x +C2 .
其中 C1,C2 为任意常数,取 C1 = C2 = 0 ,得 f (x) 的一个原函数为 − sin x .
注意 此题答案不唯一.如若取 C1 = 1,C2 = 0 得 f (x) 的一个原函数为 −sin x − x .
=
1 22
∫
1 d( 2x −1
2x
−
1)
−
2
1 2
∫
1 d( 2x +1) 2x +1
1 = ln
22
1
2x +1 − 2
ln 2
2x
+1
+
C
=
1 22
ln
2x −1 +C 2x +1
(18)∫
(x
+
dx 1)(x
(4)由 Q′(P) = −1000(1)P ln 3 得 3
∫ ∫ Q(P) =
[−1000(1)P ln 3]dx = −1000 ⋅ ln 3
(
1 )
P dx
=
1000
⋅
(
1)P
+
C.
3
3
3
将 P=0 时,Q=1000 代入上式得 C=0
所以需求量与价格的函数关系是 Q(P) = 1000(1)P . 3
2 1− x2
1− x2
1− x2
(11)∵
d
(arctan
3
x)
=
1
3 +9
x
2
dx
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章

t t 1 t 1 1 1 yt (1)i 2t i 1 2t 1 ( )i 2t 2 3 i 0 i 0
由 (11 2 4) 式,得所给方程的通解
1 yt A(1)t 2t 3
(A 为任意常数)
*
(4)对应齐次差分方程为 yt 1 yt 0 ,其通解为 yt A , 设原方程特解为
yt 2t ( B1 cos πt B2 sin πt ) 代入原方程得:
2t 1[ B1 cos π(t 1) B2 sin π(t 1)] 2t ( B1 cos πt B2 sin πt ) 2t cos πt
yt 1
1 4 yt ,其中 3 3
1 4 a , b ,由通解公式 (11 2 7) 得原方程的通解为: 3 3
1 yt y A (t ) yt A( )t 1 (A 为任意常数) 3 1 3 t 1 3 1 (2)方程可化为 yt 1 yt ,其中 a , b0 , b1 ,故由通解公式 2 2 2 2 2 2 (11 2 9) 得方程的通解为: 3 1 1 1 t 1 7 t yt A( ) 2 2 2 t 即 yt A( )t . 1 1 1 2 9 3 2 1 (1 ) 2 1 2 2 2
t
(4) a 4 , π , b1 0 , b2 3 , D (4 cos π) sin π=9 0 ,且
2 2
由公式 (11 2 14) 得 = [0 (4 cos π) 3 sin π]=0 , = [3(4 cos π) 0 sin π]=1 , 方程通解为 yt A(4) sin πt ,以 t 0 时 y0 1 代入上式,得 A 1 ,故原方程特解为:
微积分2参考答案

参考答案及提示第一章 函数习题一1、(1)-1、2、-3. (2)-4、23、.86443222-+--x x x x 、(3)有界. 2、略.3、解:∵362)(2-+=x x f x∴3623)(6)(2)(22--=--+-=-x x x x x f ∴64)]()([21)(2-=-+=x x f x f x ϕxx f x f x 12)]()([21)(=--=φ又∵)(646)(4)(22x x x x ϕϕ=-=--=-,即)(z ϕ是偶函数;)(6)(6)(x x x x ψψ-=-=-=-,即)(x ψ是奇函数.4、(1)解:由题知,设c bx ax x R ++=2)(且满足方程组:⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧++=++==0421*******0c b a cb ac b a c∴.4212x Rx +-=(2)解:由题列方程组:⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧⋅+=⋅+=⋅+=2510905030432c b a c b a c b a c b a即2510p Q ⋅+=.(3) 解:由题意有:⎩⎨⎧≤<⨯⨯-+⨯≤≤=10007009.0130)700(1307007000130x x x x R5、(1)解:∵Z k k x ∈≠+,+21ππ∴⎭⎬⎫⎩⎨⎧±±=-+≠ ,2,1,0,12|k k x x ππ.(2)∵131≤-≤-x ,∴]4,2[∈x .(3)∵⎩⎨⎧≠≥-03x x ,∴]3,0()0,(⋃-∞.(4)∵,0ln ≥x ∴1≥x ,∴),1(+∞∈x .*6、解:由题有x e x f x -==1))(()(2ϕϕ,∴).1,(,)1ln()(-∞∈-=x x x ϕ7、(1)uy =u = 3x-1. (2)2u y = u = lgv v = arccosw 2x w =(3)y=au 3v u = v=1+x. * (4)ua y =u=sinv wv =12+=x w8、(1)47-=x y . (2)1)1(2-+=x x y . (3)2arcsin31x y =. (4)21-=-e x y*9、略.第一章 单元测验题1、(1),8)2(,6)1(,4)0(πππ===g g g .2)2(,125)3(ππ=-=-g g2、解:由题知)3,2(]2,7[04913032⋃-∈⇒⎪⎩⎪⎨⎧≥-≠->-x x x x ,且342lg 1))7((+=-f f .3、解:令t x =ln ,即te x =,则ttee tf )1ln()(+=,∴ee xx x f )1ln()(+=.4、解:11)()(9333+=+=x x x f , 12)1()]([36232++=+=x x x x f .5、证明:∵)(loglogloglog)()1()1(1)1()1)(1()1)((222222x f x f x x ax x ax x x x x x ax x a-=-====-++++++++-++-+-∴)(x f 为奇函数.6、解:由题知:⎪⎩⎪⎨⎧>-=<=⎪⎪⎩⎪⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=0100011110111)(11)(01)(1)]([x x x ee e x g x g x g x gf xx x , ⎪⎩⎪⎨⎧>=<=⎪⎩⎪⎨⎧>=<==--1||1||11||1||1||1||)]([1101)(x e x x e x e x e x e ex f g x f .第二章 极限与连续习题二1、(1)3231,1615,87,43,21 (2)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛564534235432,,,,2(3)5sin 51,82,63,21,0π(4),!3)2)(1(,!2)1(,---m m m m m m !4)3)(2)(1(---m m m m ,!5)4)(3)(2)(1(----m m m m m2、(1)收敛 (2)收敛 (3)发散 (4)收敛3、(1)证明:对0>∀ε,]1[ε=∃N ,当Nn >时,ε<+=-+1111n n n ,则11lim =+∞→n n n ;(2)证明:对0>∀ε,]11[2+=∃εN ,当N n >时,ε<=-nn111,则01l i m=∞→nn .4、(1)2 (2)∞+ (3)∞- (4)∞ (5)∞+ (6)0 (7)∞ (8)0(9)不存在 (10)∞- (11)不存在 (12)不存在 (13)0 (14)∞ 5、提示:用左右极限来证. 证明:∵1lim lim==++→→x x x xx x ,1lim lim 0-=-=--→→xx x x x x∴xx xxx x -+→→≠0lim lim,即xx x 0lim →不存在.6、解: 1lim )(lim ,3)2(lim )(lim 1111-===-=++---→-→-→-→x x f x x f x x x x ,,3)(lim ,1)(lim 11==+-→→x f x f x x∵)(lim )(lim 11x f x f x x +-→→≠,∴)(lim 1x f x →不存在.7、(1)证明:对0>∀ε,01>=∃εM ,当M x >时,ε<=-xx101,则01lim=∞→xx ;(2)证明:对0>∀ε,0>=∃εδ,当δ<--)2(x 时,ε<+=--+-2)4(242x x x 成立则424lim22-=+--→x x x .8、(1)(2)(4)是无穷小. 9、(1)xsinx 是无穷小,x25是无穷大 (2)10,52x x-是无穷小,xex ),2lg(+是无穷大.10、当∞→→x x 或0时,f(x)是无穷大量,当21→x 时,f(x)是无穷小量.11、(1)∵1sin ≤n 为有界变量,且011lim =+∞→n n ,∴01sin lim=+∞→n n n .(2)∵2arctan π≤x 为有界变量,且01lim2=∞→xx ,∴0arctan lim2=∞→xx x .(3)∵当0→x 时,11cos ≤x为有界变量,且0lim 0=→x x ,∴01coslim 0=→x x x .(4)∵011lim1=+-→x x x ,∴∞=-+→11lim1x x x .12、(1)原式75342452=+⨯-⨯=; (2)原式213)1(4)1(212=--⨯+---=;(3)∵0123lim23=+-+-→x x x x ,∴原式∞=; (4)原式1lim 1)1(lim1221==--=→→t t t t t t ;(5)原式42221lim)22(lim)22()22)(22(lim-=+--=+--=+-+---=→→→t t t t t t t t t t t ;(6)原式=0; (7)原式=21;(8)原式=)23)(4(23lim)23)(4()23)(23(lim22222-+-+-=-+--+--→→x x x x x x x x x x x x x x161)23)(2()1(lim)23)(2)(2()1)(2(lim22=-++-=-++---=→→x x x x x x x x x x x x ;(9)原式323)131(lim)131)(131()131(lim=++=++-+++=→→x x x x x x x x x ;*(10)原式21)11(11lim)11(1)11)(11(lim-=+++-=++++++-=→→t t t t t t t t t .13、解:∵+∞==--→→21lim)(lim xx f x x ,0)2(lim )(lim 20=-=++→→x x x f x x∴0→x 时,f(x)极限不存在.又∵0)2(lim )(lim 222=-=--→→x x x f x x ,0)63(lim )(lim 22=-=++→→x x f x x∴2→x 时极限存在. 由题知,01lim)(lim 2==-∞→-∞→xx f x x ,)(lim x f x +∞→不存在.14、解:由题知,当3→x 时,→+-k x x 22k= -3.*15、解:∵左边011)()1(lim11lim222=+-++--=+----+=∞→∞→x bx b a x a x bax bx axx x x ,∴⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a . 16、(1)原式2211211lim=--=∞→nn ;(2)原式21)221(lim =-+=∞→n n n .*17、证明:(1)∵1)22(lim 21=++-→x x x ,11lim 1=-→x ,∴由夹逼定理有1)(lim 1=-→x f x .(2)∵2222212111nn nnn n nnn<++⋅⋅⋅++++<+且1lim2=+∞→nn nn ,1lim2=∞→nn n ,∴由夹逼定理有,原式=1,得证.18、(1)原式1cos lim sin limcos sin lim===→→→x xx x xx x x x ;(2)原式2sin lim2sin sin 2lim2===→→xx xx xx x ;(3)原式xx xx n nn =⋅=∞→22sinlim; (4)原式353551sin513131sinlim=⋅⋅=∞→x x x x xxx .19、(1)原式222101)21(lim )21(lim ex x xx xx =+=+=⋅→→++; (2)原式22)11(lim e xx x =+=⋅∞→;(3)原式e x x x =++=-+∞→21212)1221(lim .20、(1)原式31111arccoslim arccoslim 2π=++=++=+∞→+∞→x xx x x x x ;(2)原式3ln 3113lnlim 313lnlim 2222=++=++=∞→∞→xxx x x x .21、(1)∵1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x ,∴1)(lim 1=→x f x .且==1)1(f )(lim 1x f x →,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数,即)(x f 在 ]1,0[和]2,1(上连续,及)(x f 在]2,0[上连续.(2)∵1lim )(lim 1)(lim 111-==≠=++--→-→-→x x f x f x x x ,∴-1为)(x f 的其间断点.又∵)(lim 1lim )(lim 111x f x x f x x x +--→→→===,且1)1(=f ,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数∴)(x f 在)1,(--∞与),1(+∞-内连续.22、解:∵22lim )(lim 11==--→→x x f x x ,d c d cx x f x x +=+=++→→)(lim )(lim 211且d c f +=)1(;dc d cxx f x x +=+=--→→4)(lim )(lim 222,84lim )(lim 22==++→→x x f x x 且d c f +=4)2(,又∵)(x f 在),(+∞-∞上连续,则⎩⎨⎧==⇒⎩⎨⎧=+=+02842d c d c d c .23、(1)∵)(x f 在1-=x 处无定义,∴1-=x 为)(x f 的间断点.(2)∵2)1(lim 11lim)(lim 1211-=-=+-=-→-→-→x x x x f x x x ,且)(lim 6)1(1x f f x -→≠=∴1-=x 是)(x f 的间断点. (3)∵-∞=--=→→))1(1lim()(lim 211x x f x x ,即极限不存在,∴1=x 为)(x f 的间断点.(4)∵1)1(lim )(lim 22-=-=--→→x x f x x ,0)2(lim )(lim 222=-=++→→x x x f x x ,∴)(lim 2x f x →不存在,即2=x 为)(x f 的间断点.24、(1)证明:令32)(45---=x x x x f . ∵075)3(,05)2(>=<-=f f ,∴由介值定理的推论,)(x f 在)3,2(中至少存在一个根. (2)证明:令1)(2+-=x x x f . ∵034)2(,021)1(>-=<-=f f∴. 由介值定理的推论,)(x f 在)2,1(中至少存在一个根.第二章 单元测验题1、(1)原式0cos 1sinlim lim sin lim 21cos sin 21sinlim0000=⋅⋅=⋅⋅=→→→→x xx x x x x x x x x x x x ;(2)原式211lim 2=++=+∞→xx x x ;(3)原式2121lim 1134322321lim=+=+⋅-⋅⋅⋅⋅⋅=∞→∞→n n n n n n n n . 2、解:∵55lim )(lim ,0lim )(lim 01a x a x f e x f x x x x x =+===++--→→→→∴由题知,要使)(x f 在整个数轴上连续,必须满足005=⇒=a a .3、解:∵01sin lim )(lim ,1ln )1ln(lim )(lim 01)1(1=-=-==-=++--→→--⋅-→→x x x f ex x f x x xx x∴)(lim 0x f x →不存在,0=x 是)(x f 的间断点.又∵∞=-=→→1sin lim)(lim 11x x x f x x ,即极限不存在,∴1=x 是)(x f 间断点.因此,)(x f 的连续区间为),1()1,0()0,(+∞⋃⋃-∞.4、解:∵111sinlim22=-+→axxx , ∴左边=aaxxx aaxaxx x x x 2)11(lim )sin (lim 1)11(sin lim220222=++⋅=++→→→,∴2=a .。
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第四章

f (0) 0 ,依题意知 f ( x0 ) 0 .即有 f (0) f ( x0 ) .由罗尓定理,至少存在一点 (0, x0 ) ,使
得 f ( ) 0 成立,即
a0 n n 1 a1 (n 1) n 2 … an 1 0
成立,这就说明 是方程 a0 nx n 1 a1 (n 1) x n 2 an 1 0 的一个小于 x0 的正根. 7. 设 f(a) = f(c) = f(b),且 a<c<b, f ″(x)在 [a,b] 上存在, 证明在(a,b)内至少存在一点ξ, 使 f ″(ξ) = 0. 证: 显 然 f ( x ) 分 别 在 a , c 和 c, b 上 满 足 罗 尓 定 理 的 条 件 , 从 而 至 少 存 在
x x x
由 e 在 , 上连续,可导, f ( x) 在 a, b 上连续,在 a, b 内可导,知 F ( x) 在 a, b 上连
x
续,在 a, b 内可导,而且 F ( a ) e f ( a ) 0, F (b) e f (b) 0, 即F ( a ) F (b) ,
(4) lim
(a x) x a x ,(a>0); x 0 x2
(6) lim sin x ln x ;
x 0
1 ln(1 ) x ; (7) lim x arc cot x
(9) lim(1 sin x) x ;
x 0
1
(8) lim(
x 0
ex 1 ); x ex 1
x 0
f ( x) 在 0,π 上不连续,
显 然 f ( x) 在
0, π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章习题8-1 1.求下列函数的定义域,并画出其示意图:(1)z=(2)1ln()zx y=-;(3)z=arcsin yx;(4)zarccos(x2+y2).解:(1)要使函数有意义,必须222210x ya b--≥即22221x ya b+≤,则函数的定义域为2222(,)|1x yx ya b⎧⎫+≤⎨⎬⎩⎭,如图8-1阴影所示.图8-1 图8-1(2)要使函数有意义,必须ln()0x yx y-≠⎧⎨->⎩即1x yx y-≠⎧⎨>⎩,则函数的定义域为{(,)|x y x y>且1}x y-≠,如图8-2所示为直线y x=的下方且除去1y x=-的点的阴影部分(不包含直线y x=上的点).(3)要使函数有意义,必须1yxx⎧≤⎪⎨⎪≠⎩,即11yxx⎧-≤≤⎪⎨⎪≠⎩,即x y xx-≤≤⎧⎨>⎩或x y xx≤≤-⎧⎨<⎩,所以函数的定义域为{(,)|0x y x>且}{(,)|0,}x y x x y x x y x-≤≤<≤≤-,如图8-3阴影所示.图8-3 图8-4(4)要使函数有意义,必须220||1x y x y ⎧-≥⎪≥⎨⎪+≤⎩ 即 22201x y x y x y ≥⎧⎪≥⎪⎨≥⎪⎪+≤⎩,所以函数的定义域为222{(,)|0,0,,1}x y x y xy x y≥≥≥+≤,如图8-4阴影所示.2.设函数f (x ,y )=x 3-2xy +3y 2,求 (1) f (-2,3); (2) f 12,xy ⎛⎫⎪⎝⎭; (3)f (x +y ,x -y ). 解:(1)32(2,3)(2)2(2)33331f -=--⨯-⨯+⨯=;(2)23321211221412,23f x y x x y y x x y y ⎛⎫⎛⎫⎛⎫=-⋅⋅+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)32(,)()2()()3()f x y x y x y x y x y x y +-=+-+-+- 3222()2()3()x y x y x y =+--+-. 3.设F (x ,y )+f,若当y =1时,F (x ,1)=x ,求f (x )及F (x ,y )的表达式.解:由(,1)F x x =得1)x f =-即1)1f x =-1t -=则2(1)x t =+代入上式有2()(1)1(2)f t t t t =+-=+所以 ()(2)f x x x =+于是(,)1)1)1F x y f x =+==-4.指出下列集合A 的内点、边界点和聚点:(1){(,)01,0}A x y x y x =≤≤≤≤;(2){(,)31}A x y x y =+=; (3)A ={(x ,y )|x 2+y 2>0}; (4)(0,2]A =. 解:(1)内点{(,)|01,0}x y x y x <<<<边界点{(,)|01,0}{(,)|01,1}x y x y x y y x ≤≤=≤≤= {(,)|,01}x y y x x =≤≤ 聚点A (2)内点∅ 边界点A 聚点A (3)内点A边界点(0,0) 聚点A(4)内点∅ 边界点[0,2] 聚点[0,2]习题8-21.讨论下列函数在点(0,0)处的极限是否存在:(1) z =224x yx y+; (2) z =x y x y+-.解:(1)当(,)P x y 沿曲线2x k y =趋于(0,0)时,有24244200lim (,)lim1y y y k xk yk f x y k y yk→→===++这个值随k 的不同而不同,所以函数224Z =x yx y+在(0,0)处的极限不存在.(2)当(,)P x y 沿直线(1)y kx k =≠趋于(0,0)时,有001lim (,)lim(1)1y x y k xx k x k f x y k x k xk→→=++==≠--,这个极限值随k 的不同而不同,所以函数Z =x y x y+-在(0,0)处的极限不存在.2.求下列极限:(1) 00s in limx y x y x →→; (2)22011limx y x y x y→→-+;(3)00limx y →→ (4)22s in limx y x y x y→∞→∞+.解:(1)000sin sin ()limlim 0x x y y x y x y y x x y→→→→=⋅=(2)2222011101lim101x y x y x y→→--⨯==++(3)0000limlimlim 1)2x x x y y y →→→→→→==+=(4)当,x y →∞→∞时,221x y+是无穷小量,而s in x y 是有界函数,所以它们的积为无穷小量,即22sin lim0x y x y x y→∞→∞=+.3.求函数z =2222y x yx+-的间断点.解:由于220y x -=时函数无定义,故在抛物线22y x =处函数间断,函数的间断点是2{(,)|2,R }x y yx x =∈.习题8-31.求下列各函数的偏导数:(1) z =(1+x )y ; (2) z =lntany x;(3) z =arctany x; (4) u =zx y .解:(1)1(1)y z y x x-∂=+∂(1)ln (1)yz x x y∂=++∂;(2)22221s e cc o ts e c;ta nz y y y y y y x x x xxxx ∂-=⋅⋅=-∂22111s e cc o ts e c;ta nz y y y y yxxxxxx∂=⋅⋅=∂(3)22221;1z y y xxx yy x ∂--=⋅=∂+⎛⎫+ ⎪⎝⎭22211;1z x yxx yy x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭(4)22ln ln ;zzxx u z z y yy y xxx∂-=⋅⋅=-⋅∂1;1ln ln .zxz zxx uz yy xu y y y y zxx-∂=∂∂=⋅⋅=⋅∂2.已知f (x ,y )=e -sin x (x +2y ),求x f '(0,1),y f '(0,1).解:s in s in s in (,)e(c o s )(2)e e [c o s (2)1]x x xx f x y x x y x x y ---'=⋅-++=-⋅++ s i ns i n(,)e 22e x x y f x y --'=⋅=所以s in 0(0,1)e(c o s 0(021)1)1x f -'=-⋅+⨯+=- s i n 0(0,1)2e 2y f -'==3.设z =x +y +(y -,求112811,x x y y z z xy====∂∂∂∂.解:1122112d (,1)d (1)1d d x x y x z f x x xxx====∂==+=∂又23211a rc s in(1)3z x x y yy y-⎛⎫∂-=++-⋅⎪∂⎝⎭所以1811π1a rc s in1a rc s in126x y z y==∂=+=+=+∂.4.验证z =11+ex y ⎛⎫- ⎪⎝⎭满足222z z xyz x y∂∂+=∂∂.解:1111()()2211e exyxyz xxx-+-+∂-=⋅-=∂1111()()2211e exyx yz yyy -+-+∂-=⋅-=∂所以1111()()22222211e exyxyz z xyx y xyxy-+-+∂∂+=⋅+⋅∂∂11()2e2xyz --+==5.设函数z =2222422,00,0x y x y x y x y ⎧+≠⎪+⎨⎪+=⎩,试判断它在点(0,0)处的偏导数是否存在?解:0(0,0)(0,0)00(0,0)lim lim0y y y f y f z yy∆→∆→+∆--'===∆∆(0,0)(0,0)00(0,0)limlim0x x x f x f z xx∆→∆→+∆--'===∆∆所以函数在(0,0)处的偏导数存在且(0,0)(0,0)0x y z z ''==.6.求曲线22(),4z x y y ⎧=+⎪⎨⎪=⎩14在点(2,4,5)处的切线与x 轴正向所成的倾角. 解:因为 242z x xx ∂==∂,故曲线221()44z x y y ⎧=+⎪⎨⎪=⎩在点(2,4,5)的切线斜率是(2,4,5)1z x ∂=∂,所以切线与x 轴正向所成的倾角πa rc ta n 14α==.7.求函数z =xy 在(2,3)处,当Δx =0.1与Δy =-0.2时的全增量Δz 与全微分d z . 解:,z z y x xy∂∂==∂∂∴d d d z z z x y xy∂∂=+∂∂而()()z x x y y xy x y y x x y ∆=+∆+∆-=∆+∆+∆∆ 当0.1,0.2,2,3x y x y ∆=∆=-==时,d 30.12(0.2)0.1z =⨯+⨯-=-2(0.2)30.10.1(0.2)0.12z ∆=⨯-+⨯+⨯-=-. 8.求下列函数的全微分:(1) 设u =()zxy ,求d u |(1,1,1).(2) 设z,求d z .解:(1)1121(),()z z u x u x x z z xyyyyy--∂∂-=⋅⋅=⋅⋅∂∂;()ln,zu x x zyy∂=∂(1,1,1)(1,1,1)1,1,u u xy∂∂∴==-∂∂ (1,1,1)0u z∂=∂,于是(1,1,1)(1,1,1)(1,1,1)(1,1,1)d d d d d d z z z ux y z x y xyz∂∂∂=++=-∂∂∂(2)22z xx y∂==-∂+2z yx y∂==∂+∴22d d d d d z z x yxz x y xyxy∂∂=+=-+∂∂习题8-41.求下列各函数的全导数:(1) z =e 2x +3y , x =cos t , y =t 2; (2) z =tan(3t +2x 2+y 3), x =1t ,y.解:(1)d d d d d d z z x z y tx tyt∂∂=+⋅∂∂22323232c o s 3e 2(s in )e 32=2e (3s in )2e(3s in )x yx yx y t tt tt t t t ++++=⋅⋅-+⋅⋅-=-(2)d d d d d d z f f x f y ttxtyt∂∂∂=+⋅+⋅∂∂∂223223222321s e c (32)3s e c (32)4 s e c (32)3t x y t x y xtt x y y -=++⋅+++⋅+++⋅⋅3223242(3s e c (3)t t tt=-+++.2.求下列各函数的偏导数:(1) z =x 2y -xy 2, x =u cos v , y =u sin v ;(2) z =e uv , u =v =arctany x.解:(1)z z x z y uxuyu∂∂∂∂∂=⋅+⋅∂∂∂∂∂22222222222(2)c o s (2)s in 2s in c o s s in c o s s in c o s 2s in c o s 3s in c o s (c o s s in )x y y v x x y vu v v u v v u v v u v v u v v v v =-+-=-+-=-z z x z y vxvyv∂∂∂∂∂=⋅+⋅∂∂∂∂∂22323333323333(2)s in (2)c o s 2s in c o s s in c o s 2s in c o s 2s in c o s (s in c o s )(s in c o s )x y y u v x x y u vu v v u v u v u v v u v v v v u v v =--+-=-++-=-+++(2)22121ee1()u vu vz z u z v x y v u y xuxvxxx ∂∂∂∂∂-=⋅+⋅=⋅+⋅⋅∂∂∂∂∂+rc ta n2222ee()(a rc ta nlny u vxy x v y u x y x yx yx=-=-++211ee1()u vu vz z u z v v u y yuyvyxx ∂∂∂∂∂=⋅+⋅=+⋅⋅∂∂∂∂∂+rc ta n2222ee()(a rc ta nlny u vxy y v x u x x x yx yx=+=+++3.求下列函数的一阶偏导数,其中f 可微: (1) u =f (,x y y z); (2) z =f (x 2+y 2); (3) u =f (x , xy , xyz ).解:(1)121110u f f f x yy∂'''=⋅+⋅=∂12212211u x x f f f f yyzzy∂-''''=⋅+⋅=-∂122220u y y f f f zzz∂-'''=⋅+⋅=∂(2)令22,u x y =+则()z f u =22d ()22()d z f u f u x x f x y x u x ∂∂''=⋅=⋅=+∂∂22d ()22()d z f u f u y y f x y yuy∂∂''=⋅=⋅=+∂∂(3)令,,t x v xy w xyz ===,则(,,)u f t v w =.123123d 1d u f t f v f w f f y f y z f y f y zf x t x v x w x ∂∂∂∂∂∂''''''=⋅+⋅+⋅=⋅+⋅+⋅=++∂∂∂∂∂∂12323d 0d u f t f v f w f f x f x z x f x z f ytyvywy∂∂∂∂∂∂'''''=⋅+⋅+⋅=⋅+⋅+⋅=+∂∂∂∂∂∂1233d 00d u f t f v f w f f f x y x y f ztzvzwz∂∂∂∂∂∂''''=⋅+⋅+⋅=⋅+⋅+⋅=∂∂∂∂∂∂4.设z =xy +x 2F(u ),u =y x,F(u )可导.证明:2z z x yz xy∂∂+=∂∂.证:222()()2()()z y y x F u x F u y x F u y F u xx∂-''=++⋅=+-∂21()()zx x F u x x F u yx∂''=+⋅=+∂22()()()z z xyx y x F u x y F u x y x y F u xy∂∂''∴==+-++∂∂22[()]x y x F u z =+=∂ 5.利用全微分形式不变性求全微分:(1) z =(x 2+y 2)sin(2x +y ); (2) u =222()yf x y z --,f 可微.解:(1)令22,s in (2)u x y v x y =+=+,则vz u =122d d d d ()ln d sin (2)v vz z z u v v ux y u u x y uv-∂∂=+=++⋅+∂∂122s in (2)2222(2d 2d )ln c o s (2)d (2)[2(d d )ln c o s (2)(2d d )]2s in (2)()(d d )c o s (2)ln ()(2d d )v vv x y v ux x y y u u x y x y v u x x y y u x y x y ux y x y x x y y x y x y x y x y -+=++⋅++=⋅++⋅++⎡⎤+=++++++⎢⎥+⎣⎦(2)22222222111d d d d ()d ()y u y y f y f x y z x y z ffff-'=+⋅=-----222222222222221()d (2d 2d 2d )12()d (d d d )()()y f x y z y x x y y z z ffy f x y z y x x y y z z f x y z f x y z '--=---'--=-------6.求下列隐函数的导数:(1) 设e x +y +xyz =e x ,求x z ',y z '; (2)设x z=lnz y,求,zzx y∂∂∂∂.解:(1)设(,,)e e0x yxF x y z x y z +=+-=,则e e ,e,x yxx yx y z F y z F x z F x y ++'''=+-=+=故e ee,x x yx yy x y zF F x y zx zz z F zx y F x y++'--+''=-==-=-(2)设(,,)ln0x z F x y z z y=-=,则2221111,,x y z y z x y x F F F zzyyzzyzz--'''==-⋅==-⋅=--故211x z F z z z x xF x zzz'∂=-=-='∂+--2211()y z F z zy x yF y x z zz'∂=-=-='∂+--7.设x +z =yf (x 2-z 2),其中f 可微,证明:z z zyx xy∂∂+=∂∂.证:设22(,,)()F x y z x z y f x z =+--则2212()x F x y f x z ''=--2222()12()y z F f x z F y z f x z '=--''=+-故22222()112()x z F z x y f x z x F y z f x z ''∂--=-=''∂+-2222()12()y z F z f x y yy z f x z F '∂-=-='∂+-'从而22222222()()12()12()z z x y z f x z z y f x y zyxyy z f x z y z f x z '∂∂∂---+=+''∂∂+-+-222222222222222()()12()2()12()[2()1]12()x y z f x z z y f x y y z f x z x y z f x z z x zy z f x z x y z f x z xy z f x z '--+-='+-'--++='+-'-+=='+-8.设x =e u cos v , y =e u sin v , z =uv ,求z x∂∂及z y∂∂.解法一:由e c o s ,e s in u ux v y v ==得221ln (),a rc ta n ,2y u x y v z u v x=+==故22(c o s s in )euz z u z v x v y u v v u v xu xv xx y-∂∂∂∂∂-=+==-∂∂∂∂∂+22(s in c o s )euz z u z v y v x u v v u v yu yv yx y-∂∂∂∂∂+=+==-∂∂∂∂∂+解法二:设方程组e c o s e s in uux vy v⎧=⎪⎨=⎪⎩确定了函数(,),(,)u u x y v v x y ==,对方程组的两个方程关于x 求偏导得1e c o s e s in 0e s in e c o s u uu u u v v v x xu v v v x x ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解方程组得e c o s e s in uu u v xv v x --∂⎧=⎪⎪∂⎨∂⎪=-⎪∂⎩又方程组的两个方程关于y 求偏导得0e c o s e s in 1e s in e c o s u uu u u v v v y y u v v vy y ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解方程组得:e s in e c o s uu u v yv v y--∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩ 从而e (c o s sin )uz z u z v v v u v xu x v x -∂∂∂∂∂=⋅+=-∂∂∂∂∂e (s i n c o s )uz z u z v v v uv yuyvy-∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂9.设u =f (x ,y ,z )有连续偏导数,y =y (x )和z =z (x )分别由方程0x ye y -=和e z-xz =0确定,求d d u x.解:方程e0x yy -=两边对x 求导得d d e()0d d x yy y y xxx+-=,解得2d ed 1e1x y x yy y yxx x y==--方程e 0zx z -=两边对x 求导得d d e0d d zz z z xxx--=解得d de zz z z xxx z x==--从而2d d d d d d 1y z x y z x y f zf u y z f f f f xxxx yx z x''''''=++=++--习题8-51.求下列函数的二阶偏导数: (1) z =x 4+y 4-4x 2y 2; (2) z =arctany x;(3) z =y x ; (4) z =x ln(xy ). 解:(1)23222248,128;z z x x y x y xx∂∂=-=-∂∂232222248,128;1622zz y x y y x yyz x yx y∂∂=-=-∂∂∂=-(2)22221,1()z y y y xxx yx ∂-=⋅=-∂++22222222222222222222222222222211,1()2(2),()()22()()()2()()z x y y xx yxzy x y x xx y x y z xx yy yx y x y z x y y yy xx yx y x y ∂=⋅=∂++∂-=-⋅=∂++∂--=⋅=∂++∂+-⋅-=-=∂∂++(3)1ln ,,xx z z y y x yxy-∂∂==∂∂222222211ln,(1),1ln (1ln )x x x xx zz y y x x y xyz x yy y yx y x yy---∂∂==-∂∂∂=+⋅=+∂∂(4)1ln ()1ln (),z x y x y x y xx y∂=+⋅⋅=+∂22222211,1,11.z y x x yxzx x x y x y yz x yy z x x yx yy∂=⋅=∂∂=⋅⋅=∂∂=-∂∂=⋅=∂∂2.求下列函数的二阶偏导数,其中f (u ,v )可微:(1) z =f (x 2+y 2); (2) z =f (xy ,x +2y ). 解:(1)2222,22224z z x f f x f x f x f x x∂∂'''''''==+⋅=+∂∂2222,22224z z y f f y f y f y f yy∂∂'''''''==+⋅=+∂∂2224z x f y x y f x y∂''''=⋅=∂∂(2)1212,=+2 z z y f f x f f x y∂∂''''=+∂∂22111221221112222(1)12z y f y f f y f y f y f f x∂''''''''''''''=⋅+⋅+⋅+⋅=++∂22111221221112222(2)2(2)44z x f x f f x f x f x f f y∂''''''''''''''=⋅+⋅+⋅+⋅=++∂ 21111221221111222(2)2 (2)2zf y f x f f x f x yf x y f x y f f ∂'''''''''=++⋅+⋅+⋅∂∂'''''''=++++3.求由e z -xyz =0所确定的z =f (x ,y )的所有二阶偏导数. 解:设(,,)e 0zF x y z x y z =-=,则,,e zx y z F yz F xz F xy '''=-=-=-于是,e x z zF z y z z xF x yx z x∂=-==∂--e zz x z z yx yy z y∂==∂--从而222()(1)()z z x z x z z xz xxxx z x ∂∂--+-∂∂∂=∂-232223(1)221.(1)(1)z z z z z z z z x z x z --+---==--223222223()(1)(1)221.()(1)(1)z z z y z y z z yz z z z z z z yyz yy z y y z y z ∂∂--+---+∂--∂∂-===∂---2222233()()(1)(1).()(1)(1)(1)z z z zx z x z xz z z z z yyyy z x yx z x x z x y z x y z ∂∂---∂---∂∂-====∂∂----习题8-61.求z =x 2+y 2在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.解:设(1,2),(2,2o p p +,则射线l的方向就是向量(1,o p p =的方向,将o p p单位化得:1(,22||o o p p p p =于是1c o s ,c o s 22αβ==,又2,2,f f x y xy∂∂==∂∂于是(1,2)(1,2)2,4,f f xy∂∂==∂∂所以(1,2)124122f l∂=⨯+⨯=+∂2.设u =xyz +x +y +z ,求u 在点(1,1,1)处沿该点到点(2,2,2)的方向的方向导数.解:设0(1,1,1),(2,2,2)p p ,则射线l 的方向就是向量0p p =(1,1,1)的方向,将0p p单位化得00333||p p p p ⎛= ⎝⎭,于是c o s ,c o s c o s 333αβγ===又1,1,1f f f y z x z x y xyz∂∂∂=+=++∂∂∂,于是(1,1,1)(1,1,1)(1,1,1)2,2,2f f f xyz∂∂∂===∂∂∂,所以(1,1,1)222333f l∂=⨯⨯+⨯=∂.3.求函数z =x 2-xy +y 2在点M(1,1)处沿与Ox 轴的正方向所成角为α的方向l 上的方向导数.问在什么情况下,此方向导数取得最大值?最小值?等于零? 解:2,2f f x y x y xy∂∂=-=-+∂∂,(1,1)(1,1)1,1f f xy∂∂==∂∂∴(1,1)π1c o s 1s i n 2s i n ()4f lααα∂=⋅+⋅+∂当πs in ()4α+=1,时,即π4α=当πs in ()14α+=-时,即5π4α=时,此方向导数有最小值当πs in ()04α+=时,即3π4α=或7π4时,此方向导数为0.习题8-71.求下列函数的极值:(1) z=x 3-4x 2+2xy -y 2+3; (2) z =e 2x (x +2y +y 2); (3) z =xy (a -x -y ), a ≠0. 解:(1)由方程组:23820220xyz x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩ 得驻点(0,0),(2,2) 又68,2,2,x x x y y y z x z z ''''=-==-在点(0,0)处,2120B A C -=-<,又80A =-<,所以函数取得极大值(0,0)3;f = 在点(2,2)处,2120,B A C -=>该点不是极值点.(2)由方程组222e (2241)0e (22)0x xxyz x y y z y ⎧'=+++=⎪⎨'=+=⎪⎩ 得驻点1(,1)2-.又2222e (4484),e (44),2e xxxxxxy yy z x y y z y z ''''''=+++=+=,在点1(,1)2-处22202e 2e 4e0,BA C -=-⋅=-<且2e 0A =>,所以函数取得极小值11(,1) e.22f -=-(3)由方程组(2)0(2)0xy z y a x y z x a y x ⎧'=--=⎪⎨'=--=⎪⎩ 得四个驻点(0,0),(0,),(,0),,.33a a a a ⎛⎫ ⎪⎝⎭又2,22,2x x x y y y z y z a x y z x ''''''=-=--=-.在点(0,0)处,220,B A C a -=>该点不是极值点. 在点(0,)a 处,220B A C a -=>,该点不是极值点. 在点(,0)a 处,220B A C a -=>,该点不是极值点.在点,33a a ⎛⎫ ⎪⎝⎭处,2203a B A C -=-<,所以函数在该点有极值,且极值为3,3327a a af ⎛⎫= ⎪⎝⎭,由于23x x A z a ''==-故当0a >时,(0)A <,函数有极大值327a,当0a <时,(0)A >,函数有极小值327a.2.求函数z =x 3-4x 2+2xy -y 2在闭区域D :-1≤x ≤4,-1≤y ≤1上的最大值和最小值. [分析]由(,)f x y 在D 上连续,所以必有最大最小值,又由于(,)f x y 在D 内可导,所以(,)f x y 的最值在D 的内部驻点或在D 的边界上,由(,)f x y 在D 内部驻点上值与边界上函数比较可求出(,)f x y 的最大和最小值.解:由方程23820220xyz x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩得驻点(0,0),(2,2)(2,2)D ∈应该舍去,(0,0)0f =(可由充分条件判别知是极大值).D 的边界可分为四部分:12:1,11; :1,14;L x y L y x =--≤≤=--≤≤ 34:4,11; :1,1 4.L x y L y x =-≤≤=-≤≤在1L 上,2(1,)52(),1 1.f y y y y y ϕ-=---=-≤≤因为()2(1)0,y y ϕ'=-+≤所以()y ϕ单调递减,因而(1)4ϕ-=-最大,(1)8ϕ=-最小. 在2L 上,32(,1)421(),14f x x x x g x x -=---=-≤≤令()0g x '=得1233x x ==.而1224227m in {(1),(),(),(4)}()27g g x g x g g x --==,1214227m a x {(1),(),(),(4)}()27gg x g x g g x --==分别是(,)f x y 在2L 上的最小值与最大值.类似讨论可得:在3L 上(4,1)7,(4,1)9f f =-=-,分别是(,)f x y 的最大值与最小值;在4L 上(4,1)7,(1,1)f f =-=-8分别是(,)f x y 的最大值与最小值.比较(,)f x y 在内部驻点(0,0)与整个边界上函数值的情况得到(4,1)7f =是函数(,)f x y 在D 上的最大值,116.1327f ⎛⎫-=≈-⎪ ⎪⎝⎭.3.求函数z =x +y 在条件111xy+= (x >0,y >0)下的条件极值.解:构造拉格朗日函数11(,)1F x y x y x y λ⎛⎫=+++- ⎪⎝⎭解方程组221010111x y F x F y xy λλ⎧'=-=⎪⎪⎪'=-=⎨⎪⎪+=⎪⎩ 得2,2,4x y λ===,故得驻点(2,2)。