石油降解微生物的研究现状
土壤石油污染物微生物降解机理与修复技术研究

3、结合其他技术手段:将微生物修复技术与物理、化学等方法相结合,形 成综合治理策略,优势互补,更好地解决石油污染问题。
4、生态与健康风险:在追求污染治理的同时,土壤生态系统的恢复和人体 健康风险评估,以实现真正的环境友好和可持续发展。
参考内容
随着工业的快速发展,海洋石油污染问题日益严重。由于石油的化学性质复 杂,其降解过程相当缓慢,对海洋生态系统造成持续性的破坏。为了解决这一问 题,科研人员研究了微生物降解和生物修复技术在海洋石油污染处理中的应用。
这些生物修复技术在实践中取得了一定的成效。例如,科学家们在一次严重 的海洋石油泄漏事件中,通过接种降解菌和促进自然降解的方法,成功地加速了 石油的分解,减轻了污染对海洋生态系统的影响。
然而,生物修复技术在实际应用中也面临着一些挑战。例如,由于海洋环境 的复杂性和变化性,生物修复技术的效果可能会受到环境条件的影响。此外,对 特定区域的生物修复技术需要进行定制化设计和优化,以提高降解效率和稳定性。
本次演示总结了微生物降解石油污染物机制的研究进展,探讨了目前研究的 不足和需要进一步解决的问题。尽管已经有很多研究围绕这一主题展开,但仍存 在许多挑战。未来,需要进一步深入研究微生物降解石油污染物的机理和调控机 制,为实现高效治理石油污染提供理论支持和技术指导。
谢谢观看
总的来说,微生物降解和生物修复技术在海洋石油污染处理中具有广阔的应 用前景。通过深入研究和优化这些技术,我们有望在未来更有效地解决海洋石油 污染问题,保护我们的海洋生态系统。
参考内容二
石油是一种重要的能源物质,但在开采、运输、使用过程中容易造成环境污 染,特别是石油泄漏和废油排放。为了解决这些问题,我们需要研究如何有效地 降解石油污染物。微生物降解石油污染物机制是当前研究的热点之一,本次演示 将介绍其研究进展。
石油降解菌的研究进展

在石油的开采 、 运输 、 储存 、 加工 和应用 过程 中常 伴随有石油 的泄漏 而造成环境污染。泄漏 的石 油若进
入 土壤 中难 于去除 , 留时问长 … , 残 破坏 土壤结 构 , 从 而影 响土壤 的疏松 程度 和通气 状况 , 降低 了土壤 生产
葡萄球 菌属 ( t h l oc ) 微 球 菌属 ( c cc s 、 Sa y ccu 、 p o s Miooc ) r u
展。 .
目前 , 一般认 为微 生物细胞 摄 取石 油烃 存在 三种
模式 : ①微生 物细胞摄取溶 解在水相 中的烃类 ; ②微生
物 细胞与 比其大得 多 的烃 类颗 粒直接 接触摄取 ; ③微 生物 细胞 与比其小得 多 的假溶 、 拟溶 或被包 裹 的烃类 颗粒作用并将其摄取 。烃类在水 中以水包 油乳 浊液 的 形式存在 时 , 的体 积 小 且 分散 , 以增 大 了接触 面 油 所 积 , 同体积下油 的表 面积增 大 , 即相 促进生物降解 E 。 6 J 微生物可 降解 的石油组分 , 易程度 为 : 其难 短链正 构烷烃 >长链正构 烷烃 >异构 烷烃 >环状烷 烃 >低分 子量芳烃 > 高分子量芳烃 >杂环烃 。同种类 型烃类 中 分子量越大 降解越 慢 。不 同烃类 化合 物 , 生物代 谢 微 途径 和降解机理不 同。微 生物降解烷烃的关键步骤是
乳杆 菌属( atbc l ) Lc aiu 和诺 卡 氏菌 属 ( o ri) o l s N c d 等。 a a
其中, 最常见的是假单 胞菌类的细菌 , 细菌对 短链 这类 及 长链 烷 烃 、 烃 均 能 降 解 , 且 能 使 烷 烃 彻 底 降 芳 而 解 j 。能够降解 石油 烃 的酵母 菌种 类 涉及假 丝 酵母
石油降解菌株的筛选 鉴定及其石油降解特性的初步研究

(2)pH值对菌株降解效率的影响:在pH值为7.0时,菌株X的降解效率最高, 达到60%以上。当pH值偏离7.0时,其降解效率明显下降。
(3)盐度对菌株降解效率的影响:在低盐度条件下,菌株X的降解效率较高。 随着盐度的增加,其降解效率逐渐降低。当盐度超过5%时,其降解效率显著下降。
(4)产物分析:利用GC-MS等技术,我们对菌株X降解石油烃的产物进行了 分析。结果显示,菌株X能够将石油烃主要降解为脂肪酸、酚类化合物等中间产 物。这些中间产物在进一步降解过程中转化为二氧化碳和水,从而实现石油烃的 生物修复。
2、筛选流程:首先,采集油污土壤和石油废水样品,进行富集培养;其次, 通过初筛和复筛,获得具有较强石油降解能力的菌株;最后,通过形态学和分子 生物学鉴定,确定菌株种类。
3、鉴定步骤:将筛选得到的菌株进行16S rDNA分子鉴定,利用细菌分类学 软件进行比对分析,最终确定菌株的种属。
4、石油降解特性分析:采用液体培养法测定菌株的石油降解能力,通过测 定不同时间点石油烃类物质的含量,计算菌株的降解速率和降解效率。
1、菌株筛选
从石油烃污染地区采集土壤样品,采用富集培养法,经过多步筛选,获得具 同温度、pH值、盐度等条件下,对菌株降解石油烃的能力进行测定。通 过改变环境因素,观察其对菌株降解效率的影响。同时,利用气相色谱-质谱联 用(GC-MS)等技术,对菌株降解的产物进行分析。
参考内容
一、引言
石油烃是石油和天然气的主要成分,它们在自然环境中的存在和降解对全球 碳循环和环境生态有着重要影响。厌氧降解菌在石油烃的降解过程中扮演着关键 角色。本次演示旨在筛选出具有高效石油烃厌氧降解能力的菌株,并对其降解特 性进行研究,以期为石油烃污染的生物修复提供理论依据。
二、材料与方法
石油生物降解问题的研究和进展

1 石油生 物降 解 ’ 翘 的研 究和 进 展
J
,
达 有0
.
。。 克 001一0
米
.
”
天
,
,
而多 数菌 类 的 降解 率 只
“
用
,
5 一 种生物 实 际上 是 / / 氧 化作 用
因 为绝 大
。
0 5克
/ 米
,
/ 天 [4 ]
。
多 数细菌 的生 存 和 繁殖 是 需要 氧的
厂 代谢 成二 氧化 碳和 、
,
早在 4 0 年 代 国 外 研究者就 发 现 l [ 1 在海 水和 淡水 中 生 长 着 2 0
油 的 某 些组 分
;
一
] [ s
,
。 多 种细菌
如霉菌
、
至 少溢 出原 油 1 1 0 万加 仑
,
。
经 抗溢 油 天 回收 的
,
酵 母菌 以 及烃 类 氧化菌 能 同 化 进 入 水 域 中石
还 发现
。
。
这 将不 利 若 不 引起
负责办 理 我 国 对 内对外 分 散剂 型式 认
。
于 发挥化 学分散 技 术 的 积 极作 用 重视
,
,
可 事宜 用
,
这 些 措施 都有助 于 分散 剂的合 理 使
。
势 必 造 成 恶果
, ,
控 制劣质 分 散 剂 用于 我 国 水域
, ,
总之
我 国 溢油化 学处 理技术 的研 究和 有待 环 保界
1 ,
化菌 的 数量 没有增 加
而 在受 严 重 污 染 的站
1
.
{ 形 成 生物 ! 烃 类 气 生 物转 化 } 生 物 降解 1 不 起 降解 作 用 的 成 } \ 分 夕
微生物在石油污染领域的应用与发展

微生物在石油污染领域的应用与发展石油资源的开发和利用是现代社会经济发展的重要支撑,但是在石油开采、储运和加工过程中,也会产生大量的污染物,给环境和人类健康带来不良影响。
针对这种情况,一种新型的治理技术——微生物技术逐渐崭露头角,并在不断发展中取得越来越大的成功。
一、微生物治理石油污染的原理及优势微生物治理石油污染是利用微生物在石油环境中的生长、代谢和变化作用,将有害石油污染物转化为无害物质,从而降低石油污染物对环境的危害。
而且微生物治理具有用微量化学试剂进行治理所无法实现的一些优势:1.可降解性强:微生物能够通过吸附、降解、转化等方式对不同种类和类别的石油污染物进行处理,具有较强的降解能力。
2.节省成本:对于基于化学治理技术的石油污染治理方法而言,高昂的化学试剂价格和昂贵的设备运行费用往往使得大面积污染场地的治理经济成本过高,而微生物治理技术不仅设备成本相对低廉,而且不会产生二次污染。
3.其效果稳定性好:微生物在原有环境中生长繁殖适应性强,且适用范围广,不易受环境污染物和气候等因素的影响,与环境长久稳定关系良好。
二、微生物治理技术的种类常用的微生物治理技术主要包括:1. 生物增强法:该方法基于引入特定微生物菌株,加速石油污染环境中污染物的降解。
生物增强法的优势体现在其增加污染物降解速度,提高生物活性,减少了建设期和维护成本等多个方面。
2. 生物修复法:该方法基于引入一定的菌群,使生物群落达到生态功能的恢复水平。
生物修复法通过创造优势微生物,最终达到生物群落再生、重新构建健康的环境的效果。
3. 生物吸附法:与化学吸附法相似,该方法通过微生物生命活动产生或者自身细胞表面含有特定化学基团,实现对石油污染物的吸附、去除和转化等处理。
三、微生物治理技术的应用前景当前,微生物治理技术在石油污染治理领域得到了广泛应用,并且不断发展壮大。
1、在石油勘探开采阶段,可以通过降低或消除石油污染物的深入渗透,保护生物活动区域的生态改善,增强石油采集井的产能,让石油勘探更加安全和可靠。
《2024年微生物菌体及代谢产物驱油机理研究》范文

《微生物菌体及代谢产物驱油机理研究》篇一一、引言随着对可持续能源和环境保护的日益重视,微生物在石油开采领域的应用逐渐受到关注。
微生物菌体及其代谢产物在驱油过程中具有独特的优势,其作用机理的深入研究对于提高石油采收率、降低环境污染具有重要意义。
本文旨在探讨微生物菌体及代谢产物在驱油过程中的机理,以期为石油开采技术的发展提供新的思路。
二、微生物菌体及其代谢产物的概述微生物菌体是自然界中广泛存在的生物群体,具有强大的生物活性和适应性。
在石油开采过程中,微生物菌体通过分泌代谢产物,与原油中的有机物相互作用,从而起到驱油的作用。
这些代谢产物包括酶、有机酸、气体等,具有溶解原油、降低油水界面张力等作用。
三、微生物菌体驱油机理1. 生物溶解作用:微生物菌体通过分泌酶等物质,将原油中的大分子有机物分解为小分子有机物,从而提高原油的溶解性,使油滴更容易从储层中游离出来。
2. 降低油水界面张力:微生物菌体及其代谢产物可以降低油水界面张力,使油滴更容易在储层中移动和分散。
3. 改变储层环境:微生物菌体在储层中生长繁殖,可以改变储层环境的pH值、温度等条件,从而影响原油的物理性质和化学性质,有利于提高采收率。
四、代谢产物驱油机理1. 酶的作用:酶是微生物菌体分泌的重要代谢产物之一,具有催化作用,能够加速原油中大分子有机物的分解过程。
2. 有机酸的作用:有机酸能够降低储层中的矿物质含量,减轻油层结垢现象,从而保持储层的通透性。
同时,有机酸还可以与原油中的碱性物质发生反应,降低原油的粘度,提高其流动性。
3. 气体产物的驱油作用:微生物代谢过程中产生的气体(如氢气、甲烷等)具有膨胀作用,能够推动油滴在储层中移动。
五、微生物驱油的优越性及发展趋势微生物驱油技术具有环保、经济、可持续等优点。
相比传统物理化学方法,微生物驱油技术能够更有效地利用资源,降低环境污染。
随着科技的不断进步和环保要求的日益提高,微生物驱油技术将在石油开采领域发挥越来越重要的作用。
微生物对稠油降解、降粘作用研究进展

微生物对稠油降解、降粘作用研究进展作者:张晓博洪帅姜晗等来源:《当代化工》2016年第03期摘要:稠油因其有高粘、流动性差、不宜开采的特点成为石油开采运输的研究重点;微生物降解稠油技术因高效、不污染油品,近几年来研究进展较大。
目前,解烃菌的菌种数量虽然众多,但是这些菌种对地层、油藏的伍配性太强,只适应特定的油品;降解胶质、沥青质方面微生物存在着一定难度,这类菌种较少而且作用周期较长。
论述了影响稠油流动性的因素、近几年来微生物降解稠油的研究进展,展望了日后的微生物降解稠油的研究方向。
关键词:解烃菌;稠油降解;稠油降粘;胶质;蜡中图分类号:TE 624 文献标识码: A 文章编号: 1671-0460(2016)03-0617-05Abstract: Heavy oil becomes a research focus of the oil transportation because of its high viscosity and poor liquidity. In recent years, considerable research progress has been made in heavy oil bio-degradation technology with many advantages. There are so many species of hydrocarbon-degrading bacteria; however, these species are just adapted to the special stratum, reservoir and oil. There are some difficulties in the degradation of asphaltene and colloid, this kind of bacteria is less, and needs long effect period. In this paper, factors influencing the liquidity of heavy oil were discussed as well as research progress of recent microbial degradation of heavy oil; research direction of bio-degradation of heavy oil in the future was prospected.Key words:Hydrocarbon-degrading bacteria; Heavy oil degradation; Viscosity reduction;Colloid; Asphaltene; Wax;我国有16×104 t的稠油资源[1],东北与华北地区稠油储量占较大比重[2]。
微生物治理海洋石油污染研究进展

微生物治理海洋石油污染研究进展海洋石油污染是一种普遍存在于海洋环境中的环境问题。
随着国内外经济的快速发展和工业化进程的加速,海域开发及石油生产等活动频繁,海上事故和石油泄漏事故也越来越多。
这些污染物的释放,不仅对海洋生态环境造成了损害,而且还对人类的健康产生了危害。
因此,寻找一种高效的处理手段,解决海洋石油污染问题具有重要意义。
微生物治理海洋石油污染的原理是利用某些微生物对石油和石油分解产物的分解能力来促进石油的降解。
微生物降解石油的过程是一个复杂的生化反应过程,可分为四个步骤:1.吸附与油水分离阶段:石油发生泄漏后,在海洋表面形成一层油膜,被微生物吸附。
微生物通过生物趋化现象或主动攻击移动到石油附近,在水油分界面处产生胞外聚集体,并利用海洋表层水体中的氧气和营养物质进行代谢。
2.分解与代谢阶段:微生物在石油表面或水油分界面处,通过胞内内酰胺酶、脂肪酶和孢子内膜酶等酶类,将石油分子切割成小分子油,然后通过细胞内代谢途径进行分解和转化。
3.生长繁殖阶段:微生物通过利用石油中的碳、氧和氮等元素,合成新的细胞质和酶类。
在适宜的温度、pH值、盐度、营养及氧气等条件下,表现出较快的生长速度和繁殖能力。
4.细菌死亡与养分释放阶段:微生物在代谢后进入退化阶段,部分微生物会因营养物质枯竭、有毒物质积累或压力过大等因素进入死亡状态,释放出大量营养物质,可供其他微生物利用,还原海洋污染物质的浓度。
1.单一菌种处理法:单一菌株可依靠特定酶系降解石油中的特定组分,因此其降解速度和能力相对较强。
但随着时间的延长,其降解能力会下降,这就需要更新菌株。
2.混合菌种处理法:混合菌种法利用多种细菌在石油的不同物理化学环境中的互补作用,协同进行石油分解。
其降解速率快,降解效果好,还可增加细菌生态平衡性。
3.现场培育微生物处理法:现场培育微生物处理法是指在石油泄漏现场采集表层水和泥沙等样品,建立原生现场微生物菌群,并以自然界中的微生物进行处理的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石油降解微生物的研究现状陈宇翔生物工程学号:11208523802538摘要:本文简单介绍了石油降解微生物的概念,并叙述了石油降解微生物的降解机理和影响微生物降解的条件。
举例说明了生物降解石油烃的研究现状和对未来研究方向的展望。
Abstract: this paper briefly introduces the concept of microorganism oil, and describes the degradation of microorganism oil mechanism and influencing microbial degradation of conditions. For example the biodegradation petroleum hydrocarbons, the research present situation and prospect of the future study trends.关键词:石油烃降解微生物石油污染高效性研究现状展望Keywords: petroleum hydrocarbon microorganism oil pollution efficiency research-status prospect引言:石油作为重要能源之一已被世界各国广泛使用,随之而来的石油烃污染已经对人类生存的土壤及水体环境造成了严重的危害,微生物降解是一种处理石油烃污染的理想方法。
在石油及石油产品的开发利用中,不可避免的会对人类生存环境造成污染,防范、治理石油污染成为环境保护的重要任务之一。
目前用于石油污染治理的方法主要有:物理修复法,化学修复法和生物修复法。
与传统的物理化学方法比较,生物修复法具有经济花费少、对环境影响小、遗留问题少、最大限度地降低污染物的浓度、修复时间较短、就地修复、操作方便等特点[1],是国内外科研工作者关注的热点领域,在石油污染的治理中具有广阔的应用前景。
本文从介绍石油降解微生物开始人手,认真分析了石油降解微生物的种类、菌种特征、降解机理,分析了目前用于处理石油污染的微生物的技术特点,现阶段研究现在和具体应用,并对未来的研究方向做出了大胆的设想和展望。
正文:1.石油降解微生物以及其种类1.1石油降解微生物石油降解微生物是指能将石油烃作为唯一碳源进行生物降解,并产生气体、脂肪酸以及生物表面活性剂等代谢产物的一类微生物的总称[2],石油降解菌对石油污染环境的生物修复有重要作用[3],在微生物采油研究领域的应用也日趋广泛[4]。
石油烃降解菌能清除石油中的部分石蜡组分,代谢产物主要是乙酸和棕榈酸为主的脂肪酸和鼠李糖形成的糖脂类表面活性剂[5],可以进一步改善原油的流动性,降低油与水的界面张力,有利于提高石油采收率。
因此,研究微生物降解石油的作用机理,对新型微生物菌种的筛选及性能评价有重要的实用价值,开发具有多功能的石油烃降解菌不仅在处理石油污染,也在微生物采油方面有重要作用。
1.2石油烃降解微生物的种类国外在20世纪40年代就开展了细菌降解石油烃的研究[6],我国这方面的研究始于20世纪70年代末期。
研究表明,在土壤和水体环境中存在着大量能够降解石油烃的微生物,主要是细菌和真菌;细菌在海洋生态系统的石油烃类降解中占主导地位,而真菌则是淡水和陆地生态系统中更为重要的修复因子。
降解石油的微生物很多,据报道有2O0多种,细菌假单胞菌属(Pseudomonas)、棒杆菌属(Corynebacterium)、微球菌属(Micrococcus)、产碱杆菌属(Alcaligenes)等,放线菌主要是诺卡氏菌属(Nocardia),酵母菌主要是解脂假丝酵母(Candidalipolytica)和热带假丝酵母(C.tropicalis),霉菌有青霉属(Penicillium)和曲霉属(Aspergillus)等。
此外,蓝细菌和绿藻也都能降解多种芳烃。
石油烃降解菌和藻类的主要种类见表1。
大量研究表明,当菌群处于石油污染环境中时,利用烃类化合物的微生物数量急剧增长,尤其是含降解质粒的微生物。
Atlas报道在正常环境下降解菌一般只占微生物群落的1%,而当环境受到石油污染时,降解菌比例可提高到10%[7]。
含质粒细菌在石油烃污染环境中出现的频率和数量比非污染环境高,说明质粒在石油烃的降解中可能起着重要作用。
降解质粒的存在为降解工程菌的构建提供了可能。
2.石油降解微生物的降解机理主要分为两大类及石油烃的有氧降解和无氧降解2.1 石油烃类的有氧降解2.1.1 有氧降解机理好氧微生物在降解有机物的代谢过程中以分子氧作为受氢体,如果分子氧不足,降解过程就会因为没有受氢体而不能进行,微生物的正常生长规律就会受到影响,甚至被破坏。
有氧降解是由好氧微生物和兼性微生物起作用;降解结果使得有机物被转化为CO2、H2O、NH4等。
有氧降解有机物转化速率快,要求充分供氧。
对环境要求较为宽松,pH值在6.5~8.5即可。
2.1.2 有氧降解方式[8]链烷烃的有氧降解C原子数大于1的正烷烃,其降解途径以烷烃末端氧化最为常见。
微生物攻击链烷烃的末端甲基,由加氧酶、脱氢酶、水化酶等混合功能氧化酶催化,生成伯醇,再进一步氧化为醛和脂肪酸,脂肪酸接着通过氧化进一步代谢,被彻底氧化成二氧化碳和水。
有些微生物攻击链烷烃的次末端,在链内的碳原子上插入氧。
这样,首先生成仲醇,再进一步氧化,生成酮,酮再代谢为酯,酯键裂解生成伯醇和脂肪酸。
醇接着继续氧化成醛、羧酸,羧酸则通过G氧化进一步代谢。
支链烷烃的降解途径和直链烷烃相似。
相对直链烷烃而言,支链烷烃较难为微生物所降解,支链的存在增强了烷烃的抗蚀能力,并且支链越多越大,被微生物降解的难度越大。
支链烷烃的氧化还会受到正构烷烃氧化作用的抑制。
环烷烃的有氧降解脂环化合物通常不能用作微生物生长的唯一碳源,除非有足够长的脂族侧链。
因此,烷基取代的脂环化合物可能被氧化的两个位置是侧链和脂环上。
环烷烃的降解需要两种氧化酶的协同氧化,一种氧化酶先将其氧化为环醇,接着脱氢形成环酮,另一种氧化酶再氧化环酮,环断开,之后深入降解。
虽然已发现能够在环已烷上生长的微生物,但更常见的是能转化环已烷为环已酮的微生物不能内酯化和开环,而能将环已酮内酯化和开环的微生物却不能转化环已烷为环已酮。
可见微生物之间的互生关系和共代谢在环烷烃的生物降解中起着重要作用。
如环已烷,由混合功能氧化酶的羟化作用生成环已醇,后者脱氢生成酮,再进一步氧化,一个氧插入环而生成内酯,内酯开环,一端的羟基被氧化成醛基,再氧化成羧基,生成的二羧酸通过β一氧化进一步代谢。
芳香烃的有氧降解常规的好氧微生物能产生混合功能的氧化酶或双氧化酶,这些酶在分子氧的参与下,使苯环羟基化,并进一步引发芳环裂解,所以能有效地降解芳香烃化合物。
微生物对芳香烃降解的起始途径是多样的,但关键性的中问产物具有一致性。
芳香烃由加氧酶氧化为儿茶酚,二羟基化的芳香环再氧化,邻位或问位开环。
邻位开环生成已二烯二酸,再氧化为j3一酮已二酸,后者再氧化为三羧酸循环的中间产物琥珀酸和乙酰辅酶A。
问位开环生成2一羟已二烯半醛酸,进一步代谢生成甲酸、乙醛和丙酮酸。
对于烷基芳香烃的降解来说,不管烷基取代基有多长,则一律氧化成羧酸。
多环芳烃的生物降解,先是一个环二羟基化、开环,进一步降解为丙酮酸和CO2,然后第二个环以同样方式分解。
各类烃的降解过程和降解产物见表22.2 石油烃类的厌氧降解2.2.1 厌氧降解机理厌氧降解是指在无氧情况下,一些兼性厌氧微生物利用除氧以外的物质(如硝酸盐、硫酸盐、二氧化碳或铁(Ⅲ)等)作为最终电子受体,以有机物为电子供体,进行降解获得化学能,同时将有机物微生物降解[9]。
厌氧降解是厌氧菌和兼性菌起作用。
厌氧降解中有机物被转化为CH4、NH3等。
厌氧降解有机物转化速率慢,需要时间长;厌氧生物降解对环境要求较严格,pH 值在6.7~7.4之间。
厌氧降解环境大致分为4种:发酵/严格的产甲烷环境、以硝酸盐为最终电子受体、以硫酸盐为最终电子受体以及以Fe(Ⅲ)为最终电子受体。
2.2.2 某些无机含氧化合物的递氢过程“产甲烷条件”是指能够产生甲烷的发酵条件,在产甲烷条件下,二氧化碳作为最终电子受体被还原成甲烷。
硫酸盐还原菌需硫酸盐作为其厌氧代谢的外来电子受体。
这种代谢通常是在硝酸盐耗尽,氧化还原电位降至200 mV(pH=7)时发生。
不同pH 时,硫酸盐被细菌还原的氧化还原电位范围会有所不同,降解中硫酸盐被还原成硫化物。
大多数硝酸盐呼吸菌是兼性厌氧菌,在氧被耗尽之后转而利用硝酸盐,硝酸盐可被还原成氨或分子氮。
以芳香烃为例,由于在有氧降解过程中,产生大量的中问产物,如有机酸等。
因此当游离氧被耗尽时,厌氧降解经常以有氧降解的中间产物为对象[10,11]。
3.影响微生物降解的因素3.1 微生物的种类不同菌属的微生物对石油的降解能力也不同。
如细菌 Acinetobactercalcoaeticus 和 Serratiamarcescens可分别降解C22~C30和C20~C28的石油物质,而霉菌Candida tropicalis可以降解C12~C32的石油物质[12]。
一种微生物通常只对特定的石油成分具有较强降解能力。
因此,往往需通过接种混合的微生物群落,以提高微生物的降解效果。
3.2 石油烃的性质石油烃本身性质也会对降解产生影响。
由于饱和烃、芳香烃、胶质和沥青质等的含量不同以及饱和烃中正构的烃的含量不同可导致它们具有不同的抗降解性[13]。
一般认为,不同烃类化合物的降解率如下[13]:小于C10的直链烷烃>C10~C24或更长的直链烷烃>小于C10的支链烷烃>C10~C24或更长的支链烷烃>单环芳烃>多环芳烃>杂环芳烃。
低硫、高饱和烃的粗油最易降解,而高硫、高芳香族烃类化合物的纯油则最难降解。
3.3 环境因素[14]自然环境中石油烃类降解除与自身性质有关外,还受环境、生物等因素的影响。
如温度、营养物、含氧量、pH值等。
4.微生物降解石油烃技术的研究现状近几年国内外在研究石油烃类污染物生物治理方面取得了显著的成效。
但还有很多问题需要解决,如各种高效降解菌的筛选和纯化研究比较散乱,微生物降解机理研究相对不足,只有更深入的研究才能使微生物降解技术得到更广泛的运用。
中国科学院成都生物研究所在国家高技术研究发展计划(“863”计划)“水污染控制技术与治理工程”重大专项中的两个课题——“高效优良菌种选育及处理系统中微生物种群的优化调控”和“高效厌氧和好氧生物反应器研制与应用”的研究过程中,筛选出多株高效功能菌,并对主要菌株进行了降解机制与应用方法的研究[15,16,17]。