河南省2020年中考数学压轴题全揭秘专题01动点与函数图象含解析
2020年(河南)中考数学压轴题全揭秘精品专题17 函数动点问题中平行四边形存在性

专题17 函数动点问题中平行四边形存在性类型一、平行四边形存在性结论:A C B DA CB Dx x x xy y y y+=+⎧⎨+=+⎩类型二、特殊平行四边形存在性1. 矩形存在性常用解题思路:构造一线三直角(借助相似或三角函数求解);利用矩形对角线相等(直角三角形斜边的中线等于斜边的一半)借助勾股定理求解等.2. 菱形存在性常用解题思路:利用菱形四条边相等,对角线互相垂直,借助勾股定理等求解.3. 正方形存在性常用解题思路:兼具矩形和菱形二者.【例1】(2018·郑州预测卷)如图,直线y=334x-+与x轴交于点C,与y轴交于点B,抛物线y= 234ax x c++经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一个动点,当△BEC的面积最大时,求出点E的坐标和最大值;(3)在(2)条件下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使以点P、Q、A、M为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)△直线y =334x -+与x 轴交于点C ,与y 轴交于点B , △B (0,3),C (4,0),将B (0,3),C (4,0)代入y = 234ax x c ++得: 16303a c c ++=⎧⎨=⎩,解得:383a c ⎧=-⎪⎨⎪=⎩, △抛物线的解析式为:233384y x x =-++. (2)过点E 作EF △x 轴于F ,交BC 于M ,设E (x ,233384x x -++),则M (x ,334x -+), △ME =233384x x -++-(334x -+)=23382x x -+ △S △BEC =12×EM ×OC =2EM =2(23382x x -+) =()23234x --+,△当x =2时,△BEC 的面积取最大值3,此时E (2,3).(3)由题意得:M (2,32),抛物线对称轴为:x =1,A (-2,0), 设P (m ,y ),y =233384m m -++,Q (1,n ) △当四边形APQM 为平行四边形时,有:212m -+=+,解得:m =-3,即P (-3,218-); △当四边形AMPQ 为平行四边形时,有:-2+m =2+1,即m =5即P (5, 218-); △当四边形AQMP 为平行四边形时,有:2-2=1+m ,得:m =-1,即P (-1,158); 综上所述,抛物线上存在点P ,使以点P 、Q 、A 、M 为顶点的四边形是平行四边形,点P 的坐标为:(-3,218-),(5, 218-),(-1,158). 【变式1-1】(2018·河师大附中模拟)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).(1)求抛物线的解析式与顶点M 的坐标;(2)求△BCM 的面积与△ABC 面积的比;(3)若P 是x 轴上一个动点,过P 作射线PQ △AC 交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以点A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请直接写出点P 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (-1,0),B (3,0), C (0,-3)代入y =ax 2+bx +c ,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:a =1,b =-2,c =-3,即抛物线的解析式为:y=x2-2x-3,顶点M的坐标为:(1,-4);(2)连接BC,BM,CM,过M作MD△x轴于D,如图所示,S△BCM=S梯形ODMC+S△BDM-S△BOC=3,S△ACB=6,△S△BCM:S△ACB=1:2;(3)存在.△当点Q在x轴上方时,过Q作QF△x轴于F,如图所示,△四边形ACPQ为平行四边形,△QP△AC,QP=AC△△PFQ△△AOC,△FQ=OC=3,△3=x2﹣2x﹣3,解得x或x=1,△Q,3)或(1,3);△当点Q在x轴下方时,过Q作QE△x轴于E,如图所示,同理,得:△PEQ△△AOC,△EQ=OC=3,△﹣3=x2﹣2x﹣3,解得:x=2或x=0(与C点重合,舍去),△Q(2,﹣3);综上所述,点Q的坐标为:,3)或(1,3)或(2,﹣3).【例2】(2018·郑州三模)如图所示,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图2所示,CE△x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC、CE分别交于点F、G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(3)点M是(1)中所求抛物线对称轴上一动点,点N是反比例函数y=kx图象上一点,若以点B、C、M、N为动点的四边形是矩形,请直接写出满足条件的k的值.【答案】见解析.【解析】解:(1)将A (-1,0),B (5,0)代入y =ax 2+bx -5得:5025550a b a b --=⎧⎨+-=⎩,解得:14a b =⎧⎨=-⎩, 即抛物线的解析式为:y =x 2-4x -5.(2)在y =x 2-4x -5中,当x =0时,y =-5,即C (0,-5),△CE △x 轴,则C 、E 关于直线x =2对称,△E (4,-5), CE =4,由B (5,0), C (0,-5)得直线BC 的解析式为:y =x -5,设H (m ,m 2-4m -5),△FH △CE ,△F (m ,m -5),△FH = m -5-(m 2-4m -5)= -m 2+5m ,S 四边形CHEF =12·FH ·CE =12(-m 2+5m )×4 =-2(m -52)2+252, 当m =52时,四边形CHEF 的面积取最大值252,此时H (52,354-). (3)设M (2,m ),N (n ,k n),B (5,0),C (0,-5), △当BC 为矩形对角线时,此时:2+n =5+0,m +k n=0-5,即n =3,设BC 与MN 交于点H ,则H (52,52-),MH =12BC =2,△222552222m ⎛⎛⎫⎛⎫-++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 解得:m =1或m =-6,当m =1时,k =-18;m =-6时,k =3,△当BC 为矩形边时,分两种情况讨论:(i )当点M 在直线BC 下方时,即四边形BCMN 为矩形,则△BCM=90°,2+5=n+0,m=kn-5,过M作MH△y轴于H,则由OB=OC知,△OCB=45°,△△MCH=△CMH=45°,即CH=MH,△-5-m=2,解得:m=-7,n=7,k=-14;(ii)当点M在直线BC上方时,即四边形BCNM为矩形,则△CBM=90°,n+5=2,kn=m-5,设对称轴与x轴交于点H,同理可得:BH=MH,△3=m,n=-3,k=6;综上所述,k的值为:-18,3,-14或6.【变式2-1】(2019·驻马店二模)如图,抛物线y=-x2+bx+c经过A(-1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式.(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.(3)在(2)的条件下,过点P作PF△x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线 PF 上一动点,当以 F ,M ,G ,N 为顶点的四边形是正方形时,请求出点 M 的坐标.【答案】见解析.【解析】解:(1)△抛物线 y =-x 2+bx +c 经过 A (-1,0),B (3,0)两点,△10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, 即抛物线的解析式为:y =-x 2+2x +3.(2)由y =-x 2+2x +3知,C (0,3),E (1,0),D (1,4),可得直线BD 的解析式为:y =-2x +6,设P (m ,-2m +6),由勾股定理得:PE 2=()()22126m m -+-+,PC 2=()22263m m +-+-, 由PE =PC ,得:()()22126m m -+-+=()22263m m +-+-,解得:m =2,即P (2,2).(3)△M 在x 轴上,N 在直线PF 上,△△NFM =90°,由四边形MFNG 是正方形,知MF =MG ,设M (n ,0),则G (n ,-n 2+2n +3),MG =|-n 2+2n +3|,MF =|n -2|,△|-n 2+2n +3|=|n -2|,解得:n n n n ,故点M 的坐标为:0),0),(12,0),(12-,0). 【变式2-2】(2019·大联考)如图1,抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线上,且在x 轴的上方,点P 的横坐标记为t .(1)求抛物线的解析式;(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分△PMO ,求t 的值.(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C 、D 、E 、P 为顶点的四边形是菱形?若存在,请直接写出菱形的面积.图1 图2【答案】见解析.【解析】解:(1)△抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),△301640c a b c a b c =⎧⎪++=⎨⎪-+=⎩,解得:39434c b a ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩, 即抛物线的解析式为:y =34-x 294-x +3. (2)由A (-4,0),C (0,3)得直线AC 的解析式为:y =334x +, △点P 的横坐标为t ,△M (t , 334t +), △PN △y 轴,△△PMC =△MCO ,△MC 平分△PMO ,△△PMC =△OMC ,△△MCO =△OMC ,即OM =OC =3,△OM 2=9,即223394t t ⎛⎫++= ⎪⎝⎭,解得:t =0(舍)或t =7225, △当MC 平分△PMO 时,t =7225. (3)设P (t , 34-t 294-t +3), △当CE 为菱形的边时,四边形CEPD 为菱形,则PD △y 轴,CD =PD ,则D (t ,334t +), △PD =34-t 294-t +3-(334t +)=34-t 23-t , 由勾股定理得:CD 54t -, △34-t 23-t =54t -,解得:t =0(舍)或t =73-, 即PD =3512,菱形面积为:3512×73=24536; △当CE 为菱形的对角线时,此时P 与D 点关于y 轴对称,则D (-t , 34-t 294-t +3),将D 点坐标代入y =334x +,得: 34-t 294-t +3=()334t -+,解得:t =0(舍)或t =-2, PD =4,CE =3,菱形的面积为:12×4×3=6; 综上所述,菱形的面积为:24536或6.1.(2019·南阳毕业测试)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E .(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)△矩形OBDC 的边CD =1,△OB =1,由AB =4,得OA =3,△A (﹣3,0),B (1,0),△抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,△a +b +2=0,9a -3b +2=0,解得:a =23-,b =43-, △抛物线解析式为y =23-x 243-x +2; (2)以AC 为边或对角线分类讨论:A (﹣3,0),C (0,2),抛物线y=23-x243-x+2的对称轴为x=﹣1,设M(m, y M),N(-1,n),y M=23-m243-m+2△当四边形ACMN为平行四边形时,有:312Mmy n-+=-⎧⎨=+⎩,解得:m=2,y M=103-,即M(2,103-);△当四边形ACNM为平行四边形时,有:312Mmy n --=⎧⎨+=⎩,解得:m=-4,y M=103-,即M(-4,103-);△当四边形AMCN为平行四边形时,有:312Mmy n -=-⎧⎨=+⎩,解得:m=-2,y M=2,即M(-2,2);综上所述,点M的坐标为(2,103-)或(﹣4,103-)或(﹣2,2).2.(2019·开封模拟)如图,直线y=﹣x+4与抛物线y=﹣12x2+bx+c交于A,B两点,点A在y轴上,点B在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得△ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O 为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)在y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,即点A、B的坐标分别为(0,4)、(4,0),将(0,4)、(4,0),代入二次函数表达式,并解得:b=1,c=4,抛物线的解析式为:y=﹣12x2+x+4;(2)△OA=OB=4,△△ABO=45°,△△ABP=90°,则△PBO=45°,若直线PB交y轴于点M,则OM=OB=4,可得直线BP的解析式为:y=x-4,联立:y=x-4,y=﹣12x2+x+4,得:x=4,y=0(即B点);x=-4,y=-8,即P(-4,-8).(3)存在;由y=﹣12x2+x+4知抛物线的对称轴为:x=1,设E(1,m),F(n,﹣12n2+n+4),O(0,0),B(4,0),△当四边形OBEF是平行四边形时,有:EF=4,△n-1=-4,即n=-3,F点坐标为(-3,72 -);△当四边形OBFE是平行四边形时,有:EF=4,n-1=4,即n=5,F点坐标为(5,72 -);△当四边形OFBE 是平行四边形时,有:410Fn m y =+⎧⎨=+⎩, 即n =3,F 点坐标为(3,52); 综上所述:点F 的坐标为(5,72-),(﹣3,72-),(3,52). 3.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC △x 轴.(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M ,若以M ,A ,C ,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC △x 轴△点E 的纵坐标为2,△点E 在直线y =﹣x 上,△点E (﹣2,2),△将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩抛物线的解析式为:224233y x x =--+; (2)由224233y x x =--+知,抛物线的对称轴为x =-1,设N (-1,n ),M (m ,224233m m --+), △A (﹣3,0),C (0,2),(1)当四边形ACNM 是平行四边形时,有:312Mm n y --=⎧⎨=+⎩,得:m =-4,y M = 103-; 即M (-4,103-). (2)当四边形ACMN 是平行四边形时,有:312Mm n y -+=-⎧⎨+=⎩,得:m =2,y M = 103-; 即M (2,103-). (3)当四边形ANCM 是平行四边形时,有:312Mm n y -=-+⎧⎨=+⎩,得:m =-2,y M = 2; 即M (-2,2).综上所述,M 点的坐标是(-4,103-),(2,103-),(-2,2). 4.(2019·名校模考)如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF △x 轴,交抛物线于点F(1)求抛物线的解析式;(2)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】见解析.【解析】解:(1)将y =0代入y =x +3,得x =﹣3.△A(﹣3,0).△抛物线y=ax2+bx﹣1交x轴于A(﹣3,0),B(1,0)两点,△109310a ba b+-=⎧⎨--=⎩,解得:1323ab⎧=⎪⎪⎨⎪=⎪⎩抛物线的解析式为y=13x2+23x﹣1;(2)点G的坐标为(2,1),(﹣,﹣1),(﹣1),(﹣4,3).△当四边形DCEG是菱形时,CD=CE=EG=4,设E(m,m+3),则G(m,m+7),由C(0,-1),E(m,m+3),得:CE2=m2+(m+4)2=16,解得:m=0(舍)或m=-4,此时G(-4,3);△当四边形DCGE是菱形时,CG2=16,设E(m,m+3),则G(m,m-1),即m2+ m2=16,解得:m=m=-此时,G(1)或G(--1);△当四边形DGCE是菱形时,设E(m,m+3),则G(-m,-m-1),此时E在CD的垂直平分线上,即m+3=1,m=-2,此时G(2,1);综上所述,点G的坐标为:(-4,3)、(1)、(--1)、(2,1).5.(2019·枫杨外国语三模)(2019·枫杨外国语三模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,3),点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求抛物线的解析式;(2)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.【答案】见解析.【解析】解:(1)将(-1,0),(0,3)代入y=﹣x2+bx+c,得:-1-b+c=0,c=3,解得:b=2,c=3,即抛物线的解析式为:y=﹣x2+2x+3.(2)由y=﹣x2+2x+3知,点M(1,4),分两种情况讨论,△当四边形MAPQ是矩形时,过M作MH△x轴于H,则MH=4,AH=2,易证得:△APO=△MAH,△tan△APO= tan△MAH,即OA MHOP AH=2,△OP=12,即P(0,-12),由A(-1,0)、M(1,4),P(0,-12)得:点Q坐标为(2,72),△点T和点Q关于AM所在直线对称,即点Q与点T关于点M(1,4)对称,△T(0,92 );△当四边形AMPQ是矩形时,同理可得:T(0,12 -);综上所述,点T的坐标为(0,92),(0,12-).6.(2019·焦作二模)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数kyx=(x>0)的图象交于点B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN△x轴,交反比例函数kyx=(x>0)的图象于点N,若以A,O,M,N为顶点的四边形是平行四边形,求点M的横坐标.【答案】见解析.【解析】解:(1)将A(-2,0)代入y=x+b,得:b=2,即一次函数的解析式为:y=x+2,将B(a,4)代入y=x+2,得:a=2,即B(2,4),将B(2,4)代入kyx=得:x=8,即反比例函数的解析式为:8 yx =.(2)设M(m,m+2),则N(82m+,m+2),由题意知,MN△OA,则需MN=OA=2时,以A,O,M,N为顶点的四边形是平行四边形,△82mm-+=2,解得:m=2或m=-2(舍)或m=或m=-(舍),△点M的坐标为:(2,+2).7.(2019·许昌月考)如图1,二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).图1 图2【答案】见解析.【解析】解:(1)△二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),△493034103b cb c⎧⨯++=⎪⎪⎨⎪⨯-+=⎪⎩,解得:834bc⎧=-⎪⎨⎪=-⎩,即抛物线的解析式为:y=43x2﹣83x﹣4;(2)过点D作DM△y轴于点M,y =43x 2﹣83x ﹣4 =43(x ﹣1)2﹣163, △点D (1,﹣163)、点C (0,﹣4), S △ACD =S 梯形AOMD ﹣S △CDM ﹣S △AOC =12×(1+3)×163﹣12×(163﹣4)×1﹣12×3×4 =4;(3)四边形APEQ 为菱形,理由如下:E 点关于PQ 与A 点对称,过点Q 作QF △AP 于F ,由折叠性质知: AP =EP ,AQ =EQ△AP =AQ =t ,△AP =AQ =QE =EP ,△四边形AQEP 为菱形,△FQ △OC , △AF FQ AQ OA OC AC==, △345AF FQ t ==△AF =35t ,FQ =45t ,Q (3﹣35t ,﹣45t ),E (3﹣35t ﹣t ,﹣45t ), △E 在二次函数y =43x 2﹣83x ﹣4上, △﹣45t =43(3﹣85t )2﹣83(3﹣85t )﹣4, △t =14564或t =0(舍去), △E (﹣58,﹣2916). 8.(2018·新乡一模)如图,一次函数122y x =-+分别交y 、x 轴于A 、B 两点,抛物线2y x bx c =-++过A ,B 两点.(1)求这个抛物线的解析式;(2)作垂直于x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N . 求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A ,M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.【答案】见解析【解析】解:(1)在122y x =-+得,当x =0时,y =2;y =0时,x =4, 即A (0,2),B (4,0),把A (0,2),B (4,0)代入2y x bx c =-++,得:21640c b c =⎧⎨++=⎩-,解得722b c ⎧=⎪⎨⎪=⎩, △抛物线解析式为2722y x x =-++. (2)由题意知,1(,2)2M t t -+,27(,2)2N t t t -++, △MN =2712(2)22t t t -++--+=2(2)4t --+,△当t =2时,MN 有最大值4.(3)根据平行四边形的性质,得:D 点坐标为:(0,6),(0,-2)或(4,4).9.(2019·周口二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C .(1)求这个抛物线的解析式;(2)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH △x 轴于点H ,再过点F 作FG △x 轴于点G ,得到矩形EFGH .在点E 的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)△抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,△4016440a b a b -+=⎧⎨++=⎩, 解得:13a b =-⎧⎨=⎩, 即抛物线的解析式为:y =-x 2+3x +4.(2)△四边形EFGH 是矩形,△当EF =EH 时,四边形EFGH 是正方形,设E(m, -m2+3m+4),则F(3-m,-m2+3m+4),m>32,△EF=2m-3,EH=|-m2+3m+4|,△2m-3=|-m2+3m+4|,解得:m或m(舍)或m或m(舍)△正方形的边长EF2,综上所述,正方形EFGH的边长为:2.10.(2019·郑州一中模拟)如图所示,平面直角坐标系中直线y=x+1交坐标轴于点A、D两点,抛物线y=ax2+bx-3经过A、C两点,点C坐标为(a,5). 点M为直线AC上一点,过点M作x轴的垂线,垂足为F,交抛物线于点N.(1)求抛物线解析式;(2)是否存在点M,使得以点D、E、M、N为顶点的四边形为平行四边形,如果有,求点M的坐标,如果没有,请说明理由.【解析】解:△直线y =x +1交坐标轴于点A 、D 两点,△A (-1,0),D (0,1),△点C (a ,5)在直线y =x +1上,△a =4,即C (4,5),将A (-1,0),C (4,5)代入y =ax 2+bx -3得:3016435a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩, △抛物线的解析式为:y =x 2-2x -3.(2)存在,E (0,-3),△DE =4,由题意知:DE △MN ,△当DE =MN =4时,四边形DENM 是平行四边形,设N (m , m 2-2m -3),则M (m , m +1),△| m +1-(m 2-2m -3)|=4,解得:m =0(舍)或m =3或m =或m = ,综上所述,点M 的坐标为:(3,4),,). 11.(2019·郑州模拟)如图,已知二次函数23234y ax a x ⎛⎫=--+ ⎪⎝⎭的图象经过点A (4,0),与y 轴交于点B ,在x 轴上有一动点C (m ,0) (0<m <4),过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D .(1)求a 的值和直线AB 的解析式;(2)过点D 作DF △AB 于点F ,设△ACE ,△DEF 的面积分别为S 1,S 2,若S 1=4S 2,求m 的值;(3)点H 是该二次函数图象上第一象限内的动点,点G 是线段AB 上的动点,当四边形DEGH 是平行四边形,且平行四边形DEGH 的周长取最大值时,求点G 的坐标.【答案】见解析.【解析】解:(1)将A (4,0)代入23234y ax a x ⎛⎫=--+ ⎪⎝⎭得:a =34-, △抛物线的解析式为:239344y x x =-++, 设直线AB 的解析式为:y =kx +b ,△4k +b =0,b =3,即k =34-,b =3, △直线AB 的解析式为:y =34-x +3. (2)△点C 的横坐标为m ,△D (m , 239344m m -++),E (m , 34-m +3), AC =4-m ,DE =239344m m -++-(34-m +3)= 2334m m -+, △BC △y 轴, △43AC OA CE OB ==,即443m CE -=, △CE =()344m -,AE =()544m -, △△DF A =△DCA =90°,△DBF =△AEC ,△△DFE △△ACE ,△S 1=4S 2,△AE =2DE , 即()544m -=2(2334m m -+),解得:m =4(舍)或m =56, 即m 的值为56. (3)如图,过点G 作GM △DC 于M ,设G 、H 点横坐标为n ,由DE =2334m m -+,得GH =2334n n -+, 2334m m -+=2334n n -+,得:m =n (舍)或n =4-m ,△MG =4-2m , 由45MG EG =得:EG =()5424m -, △C 四边形DEGH =2()25342344m m m ⎡⎤--+⎢⎥⎣⎦ =23102m m -++ =23161236m ⎛⎫--+ ⎪⎝⎭, △当m =13时,C 最大,此时n =113, 即G (113,14),E (13,114), 由图象可知当E 、G 互换位置时满足题意,即G (13,114),E (113,14), 综上所述,G 点坐标为:(13,114),(113,14). 13.(2018·郑州模拟)如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB .(1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m .△当△MBA =△BDE 时,求点M 的坐标;△过点M 作MN △x 轴,与抛物线交于点N ,P 为x 轴上一点,连接PM ,PN ,将△PMN 沿着MN 翻折,得△QMN ,若四边形MPNQ 恰好为正方形,直接写出m 的值.【答案】见解析.【解析】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,并解得:b=2,c=3,△抛物线的解析式为y=﹣x2+2x+3.顶点D(1,4).(2)△过点M作MG△x轴于G,连接BM.则△MGB=90°,设M(m,﹣m2+2m+3),△MG=|﹣m2+2m+3|,BG=3﹣m,△DE△x轴,D(1,4),B(3,0),△△DEB=90°,DE=4,OE=1,BE=2,△△MBA=△BDE,△tan△MBA=tan△BDE=12,△2233m mm-++-=12解得:m=12-或m=32-或m=3(舍)△满足条件的点M坐标(12-,74)或(32-,94-);△△MN△x轴,△点M、N关于抛物线的对称轴对称,△四边形MPNQ是正方形,△OP=1,由△QPM=△MPO=45°,得:GM=GP,即|﹣m2+2m+3|=|1﹣m|,解得:m或m或m或m即满足条件的m.14.(2017·信阳二模)如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,点O为对称中心做菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N,试探究m为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.【答案】见解析.【解析】解:(1)将A(﹣2,0)、B(8,0)代入y=ax2+bx﹣4并解得:a=14,b=32-,即抛物线的解析式为:y=14x232-x-4.(2)由y=14x232-x-4知,C(0,-4),由菱形的性质可知:D(0,4),设直线BD的解析式为:y=kx+n,将点B(8,0)、D(0,4)代入得:k=12-,n=4,即直线BD的解析式为:y=12-x+4,由M(m,12-m+4),Q(m,14m232-m-4).当MQ=DC时,四边形CQMD为平行四边形.∴12-m+4﹣(14m232-m-4)=8,解得m=4或m=0(舍去).∴MD∥CQ,MD=CQ,M(4,2),∴M为BD的中点,∴MD=MB.∴CQ=MB,又∵MB∥CQ,∴四边形CQBM为平行四边形.。
河南省2020年中考数学压轴题全揭秘专题10一次函数与反比例函数综合题含解析

专题06图形面积计算【例1】(2019·南阳模拟)如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A .9π﹣9 B.9π﹣6C.9π﹣18 D.9π﹣124x【答案】D.【解析】解:连接OD,由折叠的性质知:CD=CO,BD=BO,∠DBC=∠OBC,∴OB=OD=BD,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO =30°, ∴OC =12OB =2152, ∴S 阴影=S 扇形AOB ﹣S △BDC ﹣S △OBCS △BDC =S △OBC =12×OB ×OC =ky x=×6×2=612,S 扇形AOB =9π,∴S 阴影=S 扇形AOB ﹣S △BDC ﹣S △OBC=9π﹣612﹣612=9π﹣1212.所以答案为:D .【变式1-1】(2019·开封模拟)如图,把半径为2的⊙O 沿弦AB ,AC 折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .4y x=B .m xC .212OC CA =D .4【答案】C .【解析】解:过O 作OD ⊥AC 于D ,连接AO 、BO 、CO ,∴OD =2DP BP ⋅AO =1,AD =32-AC =12OC CA =,∴∠OAD =30°,∴∠AOC =2∠AOD =120°, 同理∠AOB =120°,∠BOC =120°, ∴S 阴=2S △AOC=2×36x×22=212OC CA , 所以答案为:C .【变式1-2】(2017·郑州一模)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .【答案】12. 【解析】解:设折痕为AB ,连接OM 交AB 于点C ,连接OA 、OB ,由题意知,OM ⊥AB ,且OC =MC =, 在RT △AOC 中,OA =1,OC =, ∴∠AOC =60°,AC =2k,AB =2AC =52,∴∠AOB =2∠AOC =120°,S 阴影=S 半圆﹣2S 弓形ABM=π×12﹣2(12)=12. 故答案为:154.【例2】(2019·郑州外外国语测试)如图所示,在Rt △ABC 中,∠ACB =90°,AC =BC ,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,若图中阴影部分面积为kx,则AB =【答案】2.【解析】S 阴影=S △ADE +S 扇形BAD -S △ABC ∵S △ADE = S △ABC ∴S 阴影= S 扇形BAD =k x, ∴3x=k x, 解得:AB =2, 故答案为:2.【变式2-1】(2019·河南南阳一模)如图,在正方形ABCD 中,AB =3,点M 在CD 边上,且DM =1,△AEM 与△ADM 关于AM 所在直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为()A . 3B .3k C .12D . ()2133124k --+【分析】求线段的长度,常用方法是将所求线段放在直角三角形中借助勾股定理求解,如图作出辅助线,通过分析可知,△ADM ≌△ABF ≌△AEM ,可得DM =EM =1,AE =AD =AB =3,进而利用△AEK ∽△EMH ,求得EH ,MH 的长,再计算出EG ,FG 的长,在Rt △EFG 中,利用勾股定理求EF 的长度即可.【解析】过点E 作EG ⊥BC 于G ,作EH ⊥CD 于H ,延长HE 交AB 于K ,如图所示,由题意知,△ADM ≌△ABF ≌△AEM , ∴DM =EM =1,AE =AD =AB =3, 由△AEK ∽△EMH ,2k 34得:mx=3,∴设EH=x,则AK=3x,即DH=3x,MH=3x-1,在Rt△EMH中,由勾股定理得:mx,解得:x=0(舍)或x=,∴MH=,AK=DH=A D A C C DB E BC C E==,CH=3-DH=623C EB EC E+==,KE=BG=3MH=6x,∴FG=BF+BG=620k bk b+=⎧⎨-+=⎩,EG=CH=623C EB EC E+==,在Rt△EFG中,由勾股定理得:EF=24kb=⎧⎨=⎩,故答案为:C.【变式2-2】(2019·洛阳二模)如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕点A旋转得到矩形AB′C′D′,点C的运动路径为弧CC′,当点B′落在CD上时,则图中阴影部分的面积为.【答案】32.【解析】解:连接AC’,AC,过点B’作B’E⊥AB于E,如图图所示,由旋转性质,得:AC=AC’,AB’=AB=2,∠CAB=∠C’AB’,∵BC=B’E=1,∴∠B’AB=30°,∴∠C’AC=30°,∴AE=,B’C=2-,在Rt△ABC中,由勾股定理得:AC=12-, ∴S阴影=S扇形C’AC-S△AB’C’-S△B’CA=k x.故答案为:8x -.【例3】(2019·河南南阳一模)如图,在△ABC中,AB=BC,∠ABC=90°,CA=4,D为AC的中点,以D 为圆心,以DB的长为半径作圆心角为90°的扇形EDF,则图中阴影部分的面积为.【分析】设DE与BC交于M,DF与AB交于N,S阴影=S扇形EDF-S四边形DMBN,根据△DBM≌△DAN,得S四边形DMBN=S△BDA,再利用扇形面积公式及三角形面积公式求解即可.【解析】解:设DE与BC交于M,DF与AB交于N,∵AB=BC,∠ABC=90°,D是AC中点,∴∠A=∠C=∠CBD=∠DBA=45°,AD=BD=2,∠BDA=90°,∵∠EDF=90°,∴∠BDM=∠ADF,∴△DBM≌△DAN,即S△DBM=S△DAN,∴S四边形DMBN=S△BDA,S阴影=S扇形EDF-S四边形DMBN=1 2=152=π-2,故答案为:π-2.【变式3-1】(2018·洛阳三模)如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA=6,∠AOB=120°,则图中阴影部分的面积为.【答案】12.【解析】解:连接OD,交弧CE于F,连接AD,∵OC=AC=3,CD⊥OA,∴CD是线段OA的垂直平分线,∴OD=AD,∵OD=OA,∴△OAD是等边三角形,∵∠AOB=120°,∴∠DOA=∠BOD=60°,∴CD=2x OC=332,∴S阴影=S扇形BOD-S扇形EOF+S△COD-S扇形COF=4 3=3π+13.即答案为:3π+.【变式3-2】(2018·河南第一次大联考)如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为( )A .3a 2 B .k xa 2C .23a 2D .a【答案】B .【解析】解:如图,过O 作OE ⊥AD 于E ,OF ⊥CD 于F ,∴OE =OF ,∠EOF =90°, ∴四边形OEDF 是正方形,OF =3k , ∵扇形的圆心角为直角, ∴△OME ≌△ONF , ∴S 阴影=S 正方形OEDF =2k, 故答案为:B .1.(2018·河南师大附中模拟)如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分(△BDF )的面积等于.【答案】23.【解析】解:由题意得:S △BDF =S 菱形ABCD +S 菱形ECGF -S △BGF -S △EDF -S △ABD菱形ECGF 边CG 边上的高为:GF ·sin 60°=13232k k ⎛⎫=⨯⨯- ⎪⎝⎭,菱形ECGF边CE边上的高为:EF·sin60°=13 232k k⎛⎫=⨯⨯- ⎪⎝⎭,∴S△BDF=kx=2x,故答案为:.2.(2019·济源一模)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,中间的小正方形ABCD的边长为 1,分别以A,C为圆心,1为半径作圆弧,则图中阴影部分的面积为【答案】2.【解析】解:连接BD,S阴影=2(S扇形BAD-S△ABD)=2(2)=2,故答案为:2.3.(2019·偃师一模)如图,正方形ABCD中,AB=1,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是2m yx=.【解析】解:过F作FM⊥BE于M,则∠FME=∠FMB=90°,∵四边形ABCD是正方形,AB=1,∴∠DCB=90°,DC=BC=AB=1,∠DCB=45°,由勾股定理得:BD=12,由旋转性质得:∠DCE=90°,BF=BD=12,∠FBE=90°-45°=45°,∴BM=FM=1,即C点与M点重合,ME=1,∴阴影部分的面积:S=S△BCD+S△BFE+S扇形DCE-S扇形DBF=12+1+kx-3=2-m yx =,故答案为:2-m yx =.4.(2019·洛阳三模)如图,已知矩形ABCD的两条边AB=1,AD=,以B为旋转中心,将对角线BD 顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为.【答案】33.【解析】解:连接CE,由CD=AB=1,AD3,得:BD=2,∴∠ADB=30°,∴∠DBC=30°,由旋转知∠DBE=60°,BE=BD=2,∴∠DBC=∠EBC=30°,此时D、C、E共线,∴S阴影=S扇形DCF+S△BCD+S△BEF-S扇形DBE=1 2=kx.故答案为:.5.(2019·周口二模)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为()A.12x B.C.12D.kx【答案】B.【解析】解:过O作OF⊥A’B’于F,由旋转性质得:OA=OA’=3,OB=OB’=6,∴F为A’E的中点,∵E为OB中点,∴OE=BE=3,在Rt△A’OB’中,由勾股定理得:A’B’=m x,∴OF=,在Rt△A’OF中,由勾股定理得:A’F=2x ,∴A’E=1 2∴B’E=A’B’-A’E=52,故答案为:B.6.(2019·周口二模)如图,等腰直角三角形ABC,绕点C顺时针旋转得到△A′B′C,AB′所在的直线经过A′C的中点时,若AB=2,则阴影部分的面积为_________.【答案】kx.【解析】解:延长AB’交A’C于E,由题意知E为A’C的中点,∵A’B’=B’C=AB=BC=2,∴B’E⊥A’C,在Rt△ABC中,由勾股定理得:AC=2k x,∴CE=A’E,∴∠CAE=30°,∠ACE=60°,∴S阴影=S扇形ACA’-S△ACE-S△A’B’E=k x=12x.故答案为:.7.(2017·新野一模)如图,在扇形OAB中,∠O=60°,OA=413,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,弧AB,OB上,则图中阴影部分的面积为.【答案】8π﹣8kax bx+≥.【解析】解:连接EF、OC交于点H,则OH=12OC=2kax bx+≥,∠FOH=∠AOC=30°,在Rt△FOH中,FH=OH×tan30°=2,∴菱形FOEC的面积=12×4kax bx+≥×4=8kax bx+≥,扇形OAB的面积=6yx=-=8π,则阴影部分的面积为8π﹣8kax bx+≥,故答案为:8π﹣8kax bx+≥.8.(2019·开封二模)如图,在圆心角为120°的扇形OAB中,半径OA=2,C为弧AB的中点,D为OA 上任意一点(不与点O、A重合),则图中阴影部分的面积为.【答案】kxπ.【解析】解:连接OC,BC,由题意知∠BOC=∠AOC=60°,∵OB=OC,∴△BOC为等边三角形,∴∠OCB=∠COA=60°,∴BC∥OA,∴S△BOC=S△BCD,∴S阴影=S弓形BC+S△BCD=S弓形BC+S△BOC=S扇形BOC=kxπ,故答案为:kxπ.9.(2019·安阳一模)如图,在正方形ABCD中,AD=3,将线段AB绕点B逆时针旋转90°得到线段BE,将线段AC绕点C逆时针旋转90°得到线段CF,连接EF,则图中阴影部分的面积是___________.【答案】kx.【解析】解:由图知:S阴影=S扇形ABE+S△BEF-S弓形AFS弓形AF=S扇形ACF-S△ACF由题意知,AD=3,AC=CF=33x,AB=BC=BF=BE=3,∠EBA=∠ACF=90°,∴S弓形AF=S扇形ACF-S△ACF=31xy=⎧⎨=⎩-13xy=-⎧⎨=-⎩=-9,S阴影=S扇形ABE+S△BEF-S弓形AF=mx+-(-9)=mx.10.(2019·省实验一模)如图,将半径为1的半圆O,绕着其直径的一端点A顺时针旋转30°,直径的另一端点B的对应点为B',O的对应点为O',则图中阴影部分的面积是.【答案】11 5451 22⨯⨯-⨯⨯.【解析】解:连接O′D、B′D,∵∠B′AB=30°,∴∠AO′D=120°,∵AB′是直径,∴∠ADB′=90°,由∠B ′AB =30°,得B ′D =2kxAB ′=1,在Rt △ADB ’中,由勾股定理得,AD =2k x,∴S 阴影=S 扇形BAB ’-S △AO ’D -S 扇形DO ’B ’+S 扇形AO ’D -S △AO ’D=2k x=2π故答案为:12. 11.(2019·叶县一模)如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若弧EF 的长为6x,则图中阴影部分的面积为 .【答案】kx. 【解析】解:连接AC ,∵DC 是⊙A 的切线, ∴AC ⊥CD , ∵AB =AC =CD ,∴△ACD 是等腰直角三角形, ∴∠CAD =45°,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠CAD =∠ACB =45°,∴∠ACB=∠B=45°,∴∠FAD=∠B=45°,∵弧EF的长为6x,∴2x,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=kx.故答案为:kx.12.(2019·濮阳二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作弧CE交AB于点E,以点B为圆心,BC的长为半径作弧CD交AB于点D,则阴影部分的面积为.【答案】π﹣2.【解析】解:S阴影=S△ABC﹣S空白,∵∠ACB=90°,AC=BC=2,∴S△ABC=12×2×2=2,S扇形BCD=51=12π,S空白=2×(2﹣12π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为:π﹣2.13.(2019·南阳模拟)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为.【答案】4﹣π.【解析】解:连接AD∵⊙A与BC相切于点D,∴AD⊥BC,∵∠EPF=45°,∴∠BAC=2∠EPF=90°.∴S阴影=S△ABC﹣S扇形AEF=×4×2﹣=4﹣π.故答案是:4﹣π.14.(2019·商丘二模)如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为.【答案】323.【解析】解:连接DO,则OD=OA=OB=2,∵CD∥OA,∠AOB=90°,∴∠OCD=90°,∵C为OB的中点,∴CO=kyx=OB=kyx=DO,∴∠CDO=30°,∠COD=60°,则CD=,∴S阴影=S扇形BOD-S△OCD=6 yx==32,故答案为:32.15.(2019·开封二模)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若弧EF的长为π,则图中阴影部分的面积为.【答案】8﹣2π.【解析】解:连结AC,∵CD是圆A的切线,∴AC⊥CD,即∠ACD=90°,∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CAF=90°,∠FAE=∠B,∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠FAE=∠EAC=45°,∵弧EF的长为π,设圆A的半径为r,,得:r=4,∴S阴影=S△ACD﹣S扇形CAE=12×4×4﹣12=8﹣2π.故答案为:8﹣2π.16.(2019·安阳二模)如图,点C为弧AB的三等分点(弧BC<弧AC),∠AOB=90°,OA=3,CD⊥OB,则图中阴影部分的面积为.【答案】kx.【解析】解:连接OC,AC,由题意知:∠COD=30°,∠AOC=60°,∵CD⊥OB,∴S△OCD=S△ACD,∵∠CDO=90°,OC=OA=3,∠COD=30°,∴CD=8x,OD=,S阴影=S△ACD+S弓形AC =S△OCD+S弓形AC=kx××8x+-6x×32=kx.故答案为:kx.17.(2019·平顶山三模)如图,长方形纸片ABCD的长AB=3,宽BC=2,以点A为圆心,以AB的长为半径作弧;以点C为圆心,以BC的长为半径作弧.则图中阴影部分的面积是.【答案】kx-6.【解析】解:由图可知:S阴影=+2-S矩形ABCD = +-6=x-6,故答案为:kx-6.18.(2019·名校模考)如图,在△ABC中,∠ABC=45°,∠ACB=30°,AB=2,将△ABC绕点C顺时针旋转60°得△CDE,则图中线段AB扫过的阴影部分的面积为.【答案】.【解析】解:过A作AF⊥BC于F,∵∠ABC=45°,∴AF=BF=AB=,在Rt△AFC中,∠ACB=30°,AC=2AF=2,FC=,由旋转的性质可知,S△ABC=S△EDC,S阴影=S扇形DCB+S△EDC﹣S△ABC﹣S扇形ACE=S扇形DCB﹣S扇形ACE==,故答案为:.19.(2019·枫杨外国语三模)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D,连接A′B,则图中阴影部分的面积为 .【答案】.【解析】解:连接BD,B’D,由题意知:∠BDB’=90°,A’C=A’D-CD=1,由勾股定理得:BD=B’D=5,∴S阴影=S扇形DBB’-S△BCD-S△A’B’D-S△A’BC==.故答案为:.20.(2019·中原名校大联考)如图,在菱形ABCD中,AB=2,∠BAC=30°,将菱形ABCD绕点A逆时针旋转120°,点B的对应点为点B′,点C的对应点为点C′,点D的对应点为点D′,则图中阴影部分的面积为.【答案】.【解析】解:连接BD,与AC相交于点O,则BD=2BO=2,AC=AD=2,S扇形=S扇形CAC′+S△ABC+S△AC′D′﹣S菱形ABCD﹣S扇形DAD′=S扇形CAC′﹣S扇形DAD′==.故答案为:.21.(2019·三门峡一模)如图,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD 的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是__________.【答案】3-.【解析】解:∵∠A=30°,AD=2,∴平行四边形AB边上的高为:AD·sin30°=,∵AB=4,∴BE=2,S阴影=S平行四边形ABCD-S扇形AED-S△BEC=4--=3-故答案为:3-.22.(2019·周口二模)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.阴影部分的面积是(结果保留π).【答案】.【解析】解:∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,OP平分∠APB,∵∠APB=60°,∴∠APO=30°,∠POA=60°,由AP=BP,OA=OB得:OP垂直平分AB,∴AC=BC,∴S△AOC=S△BOC,∴S阴影部分=S扇形OAD.故答案为:.。
2020年河南中考数学压轴百题大赏简版答案

15 3
<tan
<2
;(4)2.
47.(1)略;(2)略;(3)不是. 48.(1) 2 5 ; 2 5 ; 2 13 , 2 7 ;(2) a2 b2 5c2 ;(3)4.
49.(1)
12 5
;(2)略;(3)略;(4)90°.
50.(1)略;(2)
DE
5 6
;(3)
2
2 2.
第七讲 函数之几何性质综合——“另辟蹊径”
3
3
35
第十讲 函数之三角形存在性问题——“代几综合”
72.(1) y x2 2x 3 ,C 点坐标为 0 ,3 ;(2) F 2 ,1 ;
(3)① t 1;②当 t 3 或 6 3 2 秒时, △BOQ 为等腰三角形.
4
4
73.(1) y 1 x2 1 x 2 ;(2) P 1 5 ,1 或 P 1 5 ,1 ; 42
6.(1) GH EH ,取 PF,PC 中点 M、N,证明 △GMH≌△ENH 即可; (2)成立,证法同上.
第二讲 垂直结构——“改斜归正”
7.(1)
3 ;(2)
3 ;(3)不变,恒为
3 2
.
8.(1)证 ABF COE , BAF C ,即证;(2)2;(3)n.
9.(1) EF EG ;(2) EF 1 ;(3) EF 1 .
(2)① S1 的最大值是 4 ;②点 D 的横坐标为 2 或 29 .
S2
5
11
69.(1) y x2 6x 5 ;
(2)① P 点的横坐标为 4 或 5 41 或 5 41 ;
2
2
②点
河南省2020年中考考前名师押题压轴卷 数学试题+答案+全解全析

河南省2020年中考考前名师押题压轴卷数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.12的相反数等于A.2B.–2C.2D.–22.2020年是具有里程碑意义的一年,我们将全面建成小康社会,全面建设小康社会的基本标准包括:人均国内生产总值超过3000美元、城镇居民人均可支配收入1.8万元等十个方面.数据“1.8万元”用科学技术法表示为.A.1.8×103元B.1.8×104元C.0.18×105元D.18000元3.如图所示为一个几何体的三视图,那么这个几何体是A .B .C .D .4.下列计算正确的是A .235x y xy +=B .()2239m m +=+C .()326xy xy =D .1055a a a ÷= 5.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是年龄13 14 15 16 人数2 3 4 1 A .15,14.5 B .14,15 C .14,14.5 D .15,156.关于x 的方程220--=x x k 有实数根,则k 的值的范围是A .1k >-B .1k ≥-C .1k <-D .1k ≤-7.抛物线y =4(x +3)2+12的顶点坐标是A .(4,12)B .(3,12)C .(﹣3,12)D .(﹣3,﹣12)8.如图,4×2的正方形的网格中,在A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概率为A .12B .13C .14D .19.某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元,求该小区新建1个地上停车位和1个地下停车位各需多少万元?设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,列二元一次方程组得 A .632 1.3x y x y +=⎧⎨+=⎩ B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩10.如图①,在矩形ABCD 中,AB AD <,对角线,AC BD 相交于点O ,动点P 由点A 出发,沿AB BC CD →→向点D 运动.设点P 的运动路程为x ,AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AD 边的长为A .3B .4C .5D .6第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.计算:()02180.52----=___________________.12.一副直角三角板如上图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,则∠DBC =_____°.13.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 14.⊙O 的半径OA =4,以OA 为直径作⊙O 1交⊙O 的另一半径OB 于点C ,当C 为OB 的中点时,图中阴影部分的面积S =________.15.如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)。
2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围通用的解题思路:第一步:先判定函数的增减性:一次函数、反比例函数看k ,二次函数看对称轴与区间的位置关系;第二步:当a x =时,min y y =;当b x =时,max y y =;所以max min y y y ≤≤.二次函数求取值范围之动轴定区间或者定轴动区间的分类方法:分对称轴在区间的左边、右边、中间三种情况。
(1)若自变量x 的取值范围为全体实数,如图①,函数在顶点处abx 2-=时,取到最值.(2)若abn x m 2-<≤≤,如图②,当m x =时,max y y =;当n x =时,min y y =.(3)若n x m ab≤≤<-2,如图③,当m x =,min y y =;当n x =,max y y =.(4)若n x m ≤≤,且n a b m ≤-≤2,m a b a b n -->+22,如图④,当a bx 2-=,min y y =;当n x =,max y y =.1.(中考真题)设a 、b 是任意两个不等实数,我们规定:满足不等式a ⩽x ⩽b 的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m ⩽x ⩽n 时,有m ⩽y ⩽n,我们就称此函数是闭区间[m,n]上的“闭函数”。
(1)反比例函数xy 2013=是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若二次函数5754512--=x x y 是闭区间[a,b]上的“闭函数”,求实数a ,b 的值。
【解答】解:(1)反比例函数y=是闭区间[1,2013]上的“闭函数”.理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2013;当x=2013时,y=1,所以,当1≤x≤2013时,有1≤y≤2013,符合闭函数的定义,故反比例函数y=是闭区间[1,2013]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣x﹣=(x﹣2)2﹣,∴该二次函数的图象开口方向向上,最小值是﹣,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大;①当b≤2时,此二次函数y随x的增大而减小,则根据“闭函数”的定义知,,解得,(不合题意,舍去)或;②当a<2<b时,此时二次函数y=x2﹣x﹣的最小值是﹣=a,根据“闭函数”的定义知,b=a2﹣a﹣或b=b2﹣b﹣;a)当b=a2﹣a﹣时,由于b=(﹣)2﹣×(﹣)﹣=<2,不合题意,舍去;b)当b=b2﹣b﹣时,解得b=,由于b>2,所以b=;③当a≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵<0,∴舍去.综上所述,或.2.(中考真题)若关于x 的函数y ,当1122t x t -≤≤+时,函数y 的最大值为M ,最小值为N ,令函数2M N h -=,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数4044y x =,当1t =时,求函数y 的“共同体函数”h 的值;②若函数y kx b =+(0k ≠,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数21y x x=≥(),求函数y 的“共同体函数”h 的最大值;(3)若函数24y x x k =-++,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.解析:(1)解:①当1t =时,则111122x -≤≤+,即1322x ≤≤, 4044y x =,4044k =0>,y 随x 的增大而增大,314044404422202222M N h ⨯-⨯-∴===,②若函数y kx b =+,当0k >时,1122t x t -≤≤+,∴11,22M k t b N k t b ⎛⎫⎛⎫=++=-+ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==,当0k <时,则11,22M k t b N k t b ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==-,综上所述,0k >时,2k h =,0k <时,2kh =-,(2)解:对于函数()21y x x=≥, 20>,1x ≥,函数在第一象限内,y 随x 的增大而减小,112t ∴-≥,解得32t ≥,当1122t x t -≤≤+时,∴2424,11212122M N t t t t ====-+-+,()()()()()()2221221144442221212121212141t t M N h t t t t t t t +---⎛⎫∴==-=== ⎪-+-+-+-⎝⎭,∵当32t ≥时,241t -随t 的增大而增大,∴当32t =时,241t -取得最小值,此时h 取得最大值,最大值为()()4412121242h t t ===-+⨯;(3)对于函数24y x x k =-++()224x k =--++,10a =-<,抛物线开口向下,2x <时,y 随x 的增大而增大,2x >时,y 随x 的增大而减小,当2x =时,函数y 的最大值等于4k +,在1122t x t -≤≤+时,①当122t +<时,即3t 2<时,211422N t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422M t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=22111114422222t t k t t k ⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫-++++---+-+⎢⎥⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭=2t -,∴h 的最小值为12(当32t =时),若124k =+,解得72k =-,但32t <,故72k =-不合题意,故舍去;②当122t ->时,即5t 2>时,211422M t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422N t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=2t -,∴h 的最小值为12(当52t =时),若124k =+,解得72k =-,但52t >,故72k =-不合题意,故舍去③当11222t t -≤≤+时,即3522t ≤≤时,4M k =+,i )当112222t t ⎛⎫⎛⎫--≥+- ⎪ ⎪⎝⎭⎝⎭时,即322t ≤≤时,211422N t t k⎛⎫⎛⎫=--+-+ ⎪ ⎝⎭⎝⎭22114415252222228k t t k M N h t t ⎛⎫⎛⎫++---- ⎪ ⎪-⎝⎭⎝⎭===-+ 对称轴为52t =,102>,抛物线开口向上,在322t ≤≤上,当t =2时,h 有最小值18,148k ∴=+,解得318k =-;i i )当112222t t ⎛⎫⎛⎫--≤+- ⎪ ⎪⎝⎭⎝⎭时,即522t ≤≤时,4M k =+,N =211422t t k ⎛⎫⎛⎫-++++ ⎪ ⎝⎭⎝⎭,∴2211441392222228k t t kM N h t t ⎛⎫⎛⎫+++-+- ⎪ ⎪-⎝⎭⎝⎭===-+, 对称轴为32t =,102>,抛物线开口向上,在522t <≤上,当t =2时,h 有最小值18,148k ∴=+解得318k =-,综上所述,2t =时,存在318k =-.3.(中考真题)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =()②my (m 0)x=≠()③31y x =-()(2)若点()1,A m 与点(),4B n -关于x 的“H 函数”()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值或取值范围;(3)若关于x 的“H 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【详解】(1)①2y x =是“H 函数”②my (m 0)x=≠是“H 函数”③31y x =-不是“H 函数”;故答案为:√;√;×;(2)∵A,B 是“H 点”∴A,B 关于原点对称,∴m=4,n=1∴A(1,4),B (-1,-4)代入()20y ax bx c a =++≠,得44a b c a b c ++=⎧⎨-+=-⎩,解得40b ac =⎧⎨+=⎩,又∵该函数的对称轴始终位于直线2x =的右侧,∴-2b a >2,∴-42a >2,∴-1<a <0,∵a+c=0,∴0<c <1,综上,-1<a <0,b=4,0<c <1;(3)∵223y ax bx c =++是“H 函数”,∴设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩,解得ap 2+3c=0,2bp=q ,∵p 2>0,∴a,c 异号,∴ac <0,∵a+b+c=0,∴b=-a-c ,∵(2)(23)0c b a c b a +-++<,∴(2)(23)0c a c a c a c a -----+<,∴(2)(2)0c a c a -+<,∴c 2<4a 2,∴22c a<4,∴-2<c a <2,∴-2<c a <0,设t=c a ,则-2<t <0,设函数与x 轴的交点为(x 1,0)(x 2,0),∴x 1,x 2是方程223ax bx c ++=0的两根,∴12x x -=,又∵-2<t <0,∴2<12x x -<4.(2022春•芙蓉区校级期末)在y 关于x 的函数中,对于实数a ,b ,当a ≤x ≤b 且b =a +3时,函数y 有最大值y max ,最小值y min ,设h =y max ﹣y min ,则称h 为y 的“极差函数”(此函数为h 关于a 的函数);特别的,当h =y max ﹣y min 为一个常数(与a 无关)时,称y 有“极差常函数”.(1)判断下列函数是否有“极差常函数”?如果是,请在对应()内画“√”,如果不是,请在对应()内画“×”.①y =2x ();②y =﹣2x +2();③y =x 2().(2)y 关于x 的一次函数y =px +q ,它与两坐标轴围成的面积为1,且它有“极差常函数”h =3,求一次函数解析式;(3)若,当a ≤x ≤b (b =a +3)时,写出函数y =ax 2﹣bx +4的“极差函数”h ;并求4ah 的取值范围.【解答】解:(1)①∵y =2x 是一次函数,且y 随x 值的增大而增大,∴h =2(a +3)﹣2a =6,∴y =2x 是“极差常函数”,故答案为:√;②∵y =﹣2x +2是一次函数,且y 随x 值的增大而减小,∴h =﹣2a +2﹣[﹣2(a +3)+2]=6,∴y =﹣2x +2是“极差常函数”,故答案为:√;∵y =x 2是二次函数,函数的对称轴为直线x =0,当a +3≤0时,h =a 2﹣(a +3)2=﹣9﹣6a ;当a ≥0时,h =(a +3)2﹣a 2=9+6a ;∴y =x 2不是“极差常函数”,故答案为:×;(2)当x =0时,y =q ,∴函数与y 轴的交点为(0,q ),当y =0时,x =﹣,∴函数与x 轴的交点为(﹣,0),∴S =×|q |×|﹣|=1,∴=2,当p >0时,h =p (a +3)+q ﹣(pa +q )=3,∴p =1,∴q =±,∴函数的解析式为y =x ;当p <0时,h =pa +q ﹣[p (a +3)+q ]=3,∴p =﹣1,∴q =±,∴函数的解析式为y =﹣x;综上所述:函数的解析式为y =x 或y =﹣x;(3)y =ax 2﹣bx +4=a (x ﹣)2+4﹣,∴函数的对称轴为直线x =,∵b =a +3,∴x ==+,∵,∴≤+≤,≤a +3≤,∵(a +3﹣﹣)﹣(+﹣a )=2a +2﹣,∵,∴2a +2﹣>0,∴a +3到对称轴的距离,大于a 到对称轴的距离,∴当x =a +3时,y 有最大值a (a +3)2﹣(a +3)2+4,当x =时,y 有最小值4﹣=4﹣,∴h =a (a +3)2﹣(a +3)2+4﹣4+=(a +3)2(a ﹣1+),∴4ah =(2a 2+5a ﹣3)2,∵2a 2+5a ﹣3=2(a +)2﹣,,∴≤2a 2+5a ﹣3≤9,∴≤4ah ≤81.5.(雅实)若函数1y 、2y 满足12y y y =+,则称函数y 是1y 、2y 的“融合函数”.例如,一次函数121y x =+和二次函数2234y x x =+-,则1y 、2y 的“融合函数”为21253y y y x x =+=+-.(1)若反比例函数12y x=和一次函数23y kx =-,它们的“融合函数”过点()1,5,求k 的值;(2)若21y ax bx c =++为二次函数,且5a b c ++=,在x t =时取得最值,函数2y 为一次函数,且1y 、2y 的“融合函数”为224y x x =+-,当12x -≤≤时,求函数1y 的最小值(用含t 的式子表示);(3)若二次函数21y ax bx c =++与一次函数2y ax b =--,其中0a b c ++=且a b c >>,若它们的“融合函数”与x 轴交点为()1,0A x 、()2,0B x 12x -的取值范围.【解答】解:(1)由题意可得y 1、y 2的融合函数23y kx x=+-,将点()1,5代入,可得:523k =+-,解得6k =.(2)∵12y y y =+,∴()()2222124214y y y x x ax bx c a x b x c =-=+----=-+---,∵y 2为一次函数,∴20a -=,即2a =,∴212y x bx c =++在x =t 处取得最值,∴4bt =-,即4b t =-,∴5a b c ++=,即54234c t t =+-=+,∴212434y x tx t =-++,对称轴:x t =.①若1t ≤-时,即当1x =-时,min 58y t =+,②若12t -<<时,即当x t =时,2min 234y t t =-++,③若2t ≥时,即当2x =时,min 114y t =-.(3)y 1、y 2的融合函数()2y ax b a x c b =+-+-,∵与y 轴交于点()1,0A x 、()2,0B x ,∴12b a x x a -+=,12c b x x a -⋅=,∵12||x x a -==,又∵0a b c ++=,∴b a c =--,∴12x x ==,∵a b c >>∴a a c c >--<,∴122c a -<<-,当2ca=-时,12maxx x -=,当12c a =-时,12min32x x -=12x <-<.6.(立信)已知:抛物线1C :2y ax bx c =++(0a >).(1)若顶点坐标为(1,1),求b 和c 的值(用含a 的代数式表示);(2)当0c <时,求函数220221y ax bx c =-++-的最大值;(3)若不论m 为任何实数,直线()214m y m x =--与抛物线1C 有且只有一个公共点,求a ,b ,c 的值;此时,若1k x k ≤≤+时,抛物线1C 的最小值为k ,求k 的值.【解答】解:(1)∵抛物线的顶点坐标为(1,1),∴y =a (x ﹣1)2+1=ax 2﹣2ax +a +1,∴b =﹣2a ,c =a +1;(2)∵y =ax 2+bx +c ,a >0,c <0,∴Δ=b 2﹣4ac >0,∴抛物线y =ax 2+bx +c (a >0)与x 轴有两个交点,∴|ax2+bx+c|≥0,∴﹣2022|ax2+bx+c|≤0,∴﹣2022|ax2+bx+c|﹣1≤﹣1,∴函数y=﹣2022|ax2+bx+c|﹣1的最大值为﹣1;(3)∵直线与抛物线C1有且只有一个公共点,∴方程组只有一组解,∴ax2+(b﹣m)x++m+c=0有两个相等的实数根,∴Δ=0,∴(b﹣m)2﹣4a(+m+c)=0,整理得:(1﹣a)m2﹣2(2a+b)m+b2﹣4ac=0,∵不论m为任何实数,(1﹣a)m2﹣2(2a+b)m+b2﹣4ac =0恒成立,∴,∴a=1,b=﹣2,c=1.此时,抛物线解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的对称轴为直线x=1,开口向上,∵当k≤x≤k+1时,抛物线的最小值为k,∴分三种情况:k<0或0≤k≤1或k>1,①当k<0时,k+1<1,当k≤x≤k+1时,y随着x的增大而减小,则当x=k+1时,y的最小值为k,∴(k+1﹣1)2=k,解得:k=0或1,均不符合题意,舍去;②当0≤k≤1时,当x=1时,抛物线的最小值为0,∴k=0;③当k>1时,y随着x的增大而增大,则当x=k时,y的最小值为k,∴(k﹣1)2=k,解得:k=或,∵k>1,∴k=,综上所述,若k≤x≤k+1时,抛物线的最小值为k,k的值为0或.7.(长郡)对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k (b﹣a),则称此函数为“k属和合函数”,例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3属和合函数”.(1)若一次函数y=kx﹣1(1≤x≤3)为“4属和合函数”,求k的值;(2)反比例函数kyx(k>0,a≤x≤b,且0<a<b)是“k属和合函数”,且a+b=3,请求出a﹣b的值;(3)已知二次函数y=﹣x2+2ax+3,当﹣1≤x≤1时,y是“k属和合函数”,求k的取值范围.【详解】解:(1)当k >0时,y 随x 的增大而增大,∵1≤x ≤3,∴k ﹣1≤y ≤3k ﹣1,∵函数y =kx ﹣1(1≤x ≤3)为“k 属和合函数”,∴(3k ﹣1)﹣(k ﹣1)=4(3﹣1),∴k =4;当k <0时,y 随x 的增大而减小,∴3k ﹣1≤y ≤k ﹣1,∴(k ﹣1)﹣(3k ﹣1)=4(3﹣1),∴k =﹣4,综上所述,k 的值为4或﹣4;(2)∵反比例函数y =kx,k >0,∴在第一象限,y 随x 的增大而减小,当a ≤x ≤b 且0<a <b 是“k 属和合函数”,∴k a ﹣kb=k (b ﹣a ),∴ab =1,∵a +b =3,∴(a ﹣b )2=(a +b )2﹣4ab =9﹣4=5,∴a ﹣b (3)∵二次函数y =﹣x 2+2ax +3的对称轴为直线x =a ,∵当﹣1≤x ≤1时,y 是“k 属和合函数”,∴当x =﹣1时,y =2﹣2a ,当x =1时,y =2+2a ,当x =a 时,y =a 2+3,①如图1,当a ≤﹣1时,当x =﹣1时,有y 最大值=2﹣2a ,当x =1时,有y 最小值=2+2a ∴(2﹣2a )﹣(2+2a )=k •[1﹣(﹣1)]=2k ,∴k =﹣2a ,而a ≤﹣1,∴k ≥2;②如图2,当﹣1<a ≤0时,当x =a 时,有y 最大值=a 2+3,当x =1时,有y 最小值=2+2a ,∴a 2+3﹣(2+2a )=2k ,∴k =2(1)2a -,∴12≤k <2;③如图3,当0<a ≤1时,当x =a 时,有y 最大值=a 2+3,当x =﹣1时,有y 最小值=2﹣2a ,∴a 2+3﹣(2﹣2a )=2k ,∴k =2(1)2a +,∴12<k ≤2;④如图4,当a >1时,当x =1时,有y 最大值=2+2a ,当x =﹣1时,有y 最小值=2﹣2a ,∴(2+2a )﹣(2﹣2a )=2k ,∴k =2a ,∴k >2.综上所述,当﹣1≤x ≤1时,y 是“k 属和合函数”,k 的取值范围为k ≥12.8.(师大附中博才)已知a 、b 是两个不相等的实数且a b <,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],.a b 对于一个函数,如果它的自变量x 与函数值y 满足:当a x b ≤≤时,有(ta y tb t ≤≤为正数),我们就称此函数是闭区间[],a b 上的“t 倍函数”.例如:正比例函数2y x =,当13x ≤≤时,26y ≤≤,则2y x =是13x ≤≤上的“2倍函数”.(1)已知反比例函数4yx=是闭区间[],m n 上的“2倍函数”,且m n +=22m n +的值;(2)①已知正比例函数y x =是闭区间[]1,2023上的“t 倍函数”,求t ;②一次函数()0y kx b k =+≠是闭区间[],m n 上的“2倍函数”,求此函数的解析式.(3)若二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,求实数a 、b 的值.【详解】(1)已知反比例函数4y x=是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,当x m =时,4y m =;当x n =时,4y n=,又40k => ,∴当0x >时,y 随x 的增大而减小,当0x <时,y随x 的增大而减小,42n m ∴=,且42m n=,24mn ∴=,又m n += ,()22222023m n m mn n ∴+=++=,2220232202342019m n mn ∴+=-=-=.(2)①已知正比例函数y x =,y 随x 的增大而增大,且当1x =时,1y =;当2023x =时,2023y =,∴当12023x ≤≤时,12023y ≤≤,y x ∴=是闭区间[]1,2023上的“1倍函数”,即1t =.② 一次函数0y kx b k =+≠()是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,若0k >时,y 随x 的增大而增大,∴当x m =,则2y km b m =+=;当x n =,则2y kn b n =+=,()()2m n k m n ∴-=-,2k ∴=,将2k =代入2km b m +=,得22m b m +=,0b ∴=.∴若0k >时,函数解析式为2y x =.若0k <时,y 随x 的增大而减小,∴当x m =时,2y km b n =+=;当x n =时,2y kn b m =+=,2k ∴=-,22b m n =+.∴若0k <时,函数解析式为()22y x m n =-++,综合以上分析,函数的解析式为2y x =或()22y x m n =-++.(3)由二次函数269y x x =--解析式可知,抛物线开口向上,对称轴3x =,∴当3x <时,y 随x 的增大而减小;当3x >时,y 随x 的增大而增大, 二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,∴当a x b ≤≤时,()770a y b a ≤≤≠,若3b ≤时,根据增减性,当x a =时,2697y a a b =--=;当x b =时,2697y b b a =--=,两式相减得:226677a b a b b a --+=-,()()a b a b b a ∴+-=-,1b a ∴=--,将1b a =--代入2697a a b --=得:220a a +-=,2a ∴=-或1a =,当2a =-时,1b =;当1a =时,2b =-(舍去,a b <).若3a ≥时,当x a =时,2697y a a a =--=,解得a =a =x b =时,2697y b b b =--=.解得132b =或b =均不符合a b <,舍去.若3a <,3b >时,当3x =时,236397y a =-⨯-=,187a ∴=-,则x a =时,26396949y a a =--=,若639749b =,6393343b =<,(舍去),当x b =时,2697y b b b =--=,则b =b =综上分析,2a =-,1b =或者187a =-,b =9.(长郡)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值的和叫做点P (x ,y )的勾股值,记为[]P x y =+.(1)已知点A (1,3),B (2-,4),C 22),直接写出[]A,[]B ,[]C 的值;(2)已知点D 是直线2y x =+上一点,且[]4D =,求点D 的坐标;(3)若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且[]24M ≤≤.令2242022t b a =-+,试求t 的取值范围.【详解】(1)解:∵A (1,3),B (−2,4),C ),∴[A ]=|1|+|3|=4,[B ]=|-2|+|4|=6,[C ;(2)设D (m ,n ),∵D 是直线y =x +2上一点,且[D ]=4,∴42m n n m ⎧+⎨+⎩==,解得13m n =⎧⎨=⎩或31m n =-⎧⎨=-⎩,∴点D 的坐标(1,3)或(-3,-1);(3)由题意方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解,消去y 得2(1)10ax b x +-+=,由题意224(1)40b ac b a -=--=,∴24(1)a b =-,∴方程可以化为()()2214140b x b x -+-+=,∴1221x x b ==-,∴22,11M b b ⎛⎫ ⎪--⎝⎭,∵[]24M ≤≤,∴2121b ≤≤-或2211b -≤≤--,解得10b -≤≤或23b ≤≤,∵点M 在第一象限,∴10b -≤≤,∵22222420222(1)202222021t b a b b b b =-+=--+=++=2(1)2020b ++,∵10b -≤≤,∴20202021t ≤≤.10.(雅礼)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=11b ab a≥⎧⎨-⎩,,<,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).(1)①点1)的限变点的坐标是;②在点A(-2,-1),B(-1,2)中有一个点是函数y=2x图象上某一个点的限变点,这个点是;(填“A”或“B”)(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围;(3)若点P在关于x的二次函数y=x2-2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m-n,求s关于t的函数解析式及s的取值范围.【详解】(1)①根据限变点的定义可知点1)1);②(-1,-2)限变点为(-1,2),即这个点是点B.(2)依题意,y=-x+3(x≥-2)图象上的点P的限变点必在函数y=31321x xx x-+≥⎧⎨--≤⎩,,<的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=-2时,-2=-x+3.∴x=5.当b′=-5时,-5=x-3或-5=-x+3.∴x=-2或x=8.∵-5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.。
2020年(河南)中考数学压轴题全揭秘精品专题19 动点问题与几何图形综合题型

专题19 动点问题与几何图形综合题型题型一、动点问题与几何图形最值问题主要有:线段最值;点到直线距离的最值;周长最值;面积最值等等.题型二、动点问题与几何问题相结合主要有:相似三角形的存在性;角平分线存在性;角度间的关系问题;面积关系问题等等.【例1】(2018·河南第一次大联考)如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为().A.4B.C.7D.8【答案】D.【分析】如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,利用勾股定理及直角三角形中斜边上的中线等于斜边的一半分别求出PE与AE的长,由AE+EP求出AP的最大值即可.【解析】解:如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,在Rt△PNE中,PN=4,NE=12MN=3,根据勾股定理得:PE=5,在Rt△AMN中,AE为斜边MN上的中线,△AE=12MN=3,则AP的最大值为:AE+PE=3+5=8,故选D.【点评】此题考查了勾股定理,直角三角形斜边上的中线性质,以及矩形的性质,熟练掌握勾股定理是解本题的关键.【变式1-1】(2019·济源一模)如图,△ABC 是等边三角形,AB =3,E 在 AC 上且 AE =23AC ,D 是直线 BC 上一动点,线段 ED 绕点 E 逆时针旋转 90°,得到线段 EF ,当点 D 运动时, 则线段 AF 的最小值是 .【答案】22. 【解析】解:先确定F 点的轨迹,过E 作的直线BC 的平行线,分别过D 、F 作该平行线的垂线,垂足为G ,H ,如图所示,由折叠性质,知△DEG △△EFH ,△EH =DG ,△△ABC 是等边三角形,AE =2,CE =1,△DG =CE ·sin60°=2, 即EH 为定值,△点F 落在直线FH 上,且FH △BC ,根据垂线段最短,当AF △FH 时,AF 的值最小,如下图所示,过A 作AN △FH ,延长AC 交FH 于点M ,BAN 的长即为所求线段AF 的最小值,△EH =DG,△AMN =30°, △EM =2EH△AM,△AN =12AM,. 【例2】(2019·开封二模)如图1,在平面直角坐标系中,直线y =43x ﹣4与抛物线y =43x 2+bx +c 交于坐标轴上两点A 、C ,抛物线与x 轴另一交点为点B ;(1)求抛物线解析式;(2)若动点D 在直线AC 下方的抛物线上,如图2,作DM △直线AC ,垂足为点M ,是否存在点D ,使△CDM 中某个角恰好是△ACO 的一半?若存在,直接写出点D 的横坐标;若不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)在y =43x ﹣4中, 当x =0, y =﹣4,即C (0,﹣4);当y =0, x =3,即A (3,0);B NM把点A、C坐标代入y=43x2+bx+c,并解得:b=83-,c=-4,△抛物线解析式为:y=43x283-x-4;(2)存在,作△ACO的平分线CP交x轴于点P,过P作PH△AC于点H,则CH=CO=4,OP=PH,设OP=PH=x,则P A=3﹣x,△OC=4,OA=3,△AC=5,AH=1,在Rt△PHA中,PH2+AH2=AP2,即x2+12=(3﹣x)2,解得:x=43,△tan△PCH=tan△PCO=13,△过点D作DG△x轴于点G,过点M作ME△x轴,与y轴交于点E,与DG交于点F.设M(m,43m﹣4),则ME=m,FG=OE=4﹣43m,CE=43m,可得:△CEM△△MFD,△当△DCM=12△ACO时,可得:3CE ME CM MF DF DM===, 即MF =49m ,DF =13m , △DG =DF +GF =13m +4﹣43m =4-m ,EF =EM +FM =139m , 即点D (139m , m -4),将其坐标代入y =43x 283-x -4得: 2413813443939m m m ⎛⎫⨯-⨯-=- ⎪⎝⎭, 解得:m =0(舍)或m =1179676, △D 点横坐标为:139m =13152. △当△MDC =12△ACO =△PCH 时, 同理可得:MF =4m ,DF =3m ,△EF =EM +MF =m +4m =5m ,DG =DF +FG =3m ﹣43m +4=53m +4, △D (5m ,﹣53m ﹣4), △﹣53m ﹣4=()()24855433m m ⨯-⨯-, 解得m =0(舍去)或m =720, 此时D 点横坐标为:5m =74; 综上所述,点D 横坐标为13152或74. 【变式2-1】(2019·洛阳模拟)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标和四边形AECP 的最大面积;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (0,1),B (9,10)代入y =13x 2+bx +c 得: 127810c b c =⎧⎨++=⎩,解得:12c b =⎧⎨=-⎩ ∴抛物线的解析式为:y =13x 2-2x +1. (2)由y =13x 2-2x +1知,抛物线的对称轴是x =3, ∵AC ∥x 轴,A (0,1),∴A 与C 关于对称轴对称,C (6,0),AC =6由A (0,1),B (9,10)得直线AB 的解析式为:y =x +1,设P (m ,13m 2-2m +1),则E (m ,m +1), ∴PE =-13m 2+3m , ∴S 四边形AECP =S △AEC +S △APC =12·AC ·EF +12·AC ·PF =12×6×(-13m 2+3m )l=298124m ⎛⎫--+ ⎪⎝⎭, ∴当m =92时,四边形AECP 的面积取最大值814,此时点P (92,54-). (3)存在,点Q 坐标为(4,1)或(-3,1).由y =13x 2-2x +1知点P (3, -2), ∴PF =3,CF =3,∴∠PCF =45°,同理,∠EAF =45°,即∠PCF =∠EAF ,由勾股定理得:AB =AC =6,PC =,设Q (n ,1),①当△CPQ ∽△ABC 时,CQ PC AC AB=,即66n -=t =4, 即Q (4,1).②当△CQP ∽△ABC 时,CQ PC AB AC=,=,解得:t =-3, 即Q (-3,1).综上所述,符合题意的点Q 坐标为:(4,1)或(-3,1).1.(2019·济源一模)如图1,在平面直角坐标系中,直线3944y x =-+与x 轴交于点A ,与y 轴交于点B ;抛物线294y ax bx =++(a ≠0)过A ,B 两点,与x 轴交于另一点C (-1,0),抛物线的顶点为D . (1)求抛物线的解析式;(2)在直线AB 上方的抛物线上有一动点E ,求出点E 到直线AB 的距离的最大值;(3)如图2,直线AB 与抛物线的对称轴相交于点F ,点P 在坐标轴上,且点P 到直线 BD ,DF 的距离相等,请直接写出点P 的坐标.图1 图2【答案】见解析. 【解析】解:(1)在3944y x =-+中,当x =0时,y =94;当y =0时,x =3, 即A (3,0),B (0,94), 将A (3,0),C (-1,0)代入294y ax bx =++得: 99304904a b a b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, △抛物线的解析式为:2339424y x x =-++. (2)过点E 作EM △x 轴交AB 于M ,过E 作EN △AB 于N ,点E 到AB 的距离为EN ,可得△ENM △△AOB , △EN EM OA AB=, 在Rt △AOB 中,OA =3,OB =94, 由勾股定理得:AB =154,△1534EN EM =, 即EN =45EM , 设E (m ,2339424m m -++),M (m ,3944m -+), 则EM =2339424m m -++-(3944m -+)=23944m m -+, △EN =45EM =2439544m m ⎛⎫-+ ⎪⎝⎭=233275220m ⎛⎫--+ ⎪⎝⎭, △当m =32时,E 到直线AB 的距离的最大值为2720. (3)△点P 到直线BD ,DF 的距离相等,△点P 在△BDF 或△BDF 邻补角的平分线上,如图所示, 由2339424y x x =-++知D 点坐标为(1,3), △B (0,94), △BD =54, △DP 平分△BDF ,△△BDP =△PDF ,△DF △y 轴,△△BPD =△PDF ,△△BPD=△BDP,△BD=DP,△P(0,1),设直线PD的解析式为:y=kx+n,△n=1,k+n=3,即直线PD的解析式为:y=2x+1,当y=0时,x=12 -,△当P在△BDF的角平分线上时,坐标为(0,1)或(12-,0);同理可得:当P在△BDF邻补角的平分线上时,坐标为:(0,72)或(7,0),综上所述,点P的坐标为:(0,1),(12-,0),(0,72),(7,0).2.(2019·洛阳二模)如图,抛物线y=ax2+5x+c交x轴于A,B两点,交y轴于点C.直线y=x-4经过点B,C. 点P是直线BC上方抛物线上一动点,直线PC交x轴于点D.(1)直接写出a,c的值;(2)当△PBD的面积等于△BDC面积的一半时,求点P的坐标;(3)当△PBA= 12△CBP时,直接写出直线BP的解析式.【答案】见解析.【解析】解:(1)△直线y=x-4经过点B,C,△B(4,0),C(0,-4),将B(4,0),C(0,-4)代入y=ax2+5x+c得:c=-4,a=-1,(2)抛物线解析式为:y=-x2+5x-4,过点P作PH△x轴于H,如图所示,设P(m, -m2+5m-4),△△PBD的面积等于△BDC面积的一半,△PH=12OC=2,即-m2+5m-4=2,或-m2+5m-4=-2,解得:m=2或m=3或m或m,△0<m<4,△m=2或m=3或m(3)y=-x+4或y=(2x8,理由如下:△当点P在x轴上方时,此时由△PBA= 12△CBP可得:△PBA=△ABC=45°,可得直线BP的解析式为:y=-x+4;△当点P在x轴下方时,此时△PBA= 13△ABC=15°,△CBP=30°,设直线BP交y轴于点Q,过点Q作QE△BC于E,如图所示,设Q (0,m ),则OQ =-m ,QC =4+m ,△QE =CE =2(4+m ),BE =2(4+m ),△CE +BE(4+m )(4+m ),解得:m 8,即Q (0,8),由B (4,0),可得直线BP 的解析式为:y =(2x 8,综上所述,直线BP 的解析式为:y =-x +4或y =(2x -8.3.(2019·洛阳三模)在平面直角坐标系中,直线y =12x -2与x 轴交于点 B ,与 y 轴交于点 C ,二次函数y =12x 2+bx +c 的图象经过 B ,C 两点,且与 x 轴的负半轴交于点A . (1)求二次函数的解析式;(2)如图1,点M 是线段BC 上的一动点,动点D 在直线BC 下方的二次函数图象上.设点 D 的横坐标为 m .过点 D 作 DM △BC 于点 M ,求线段 DM 关于 m 的函数关系式,并求线段 DM 的最大值;【答案】见解析.【解析】解:(1)△直线y =12x -2与x 轴交于点 B ,与 y 轴交于点 C , △B (4,0),C (0,-2),△B 、C 在抛物线y =12x 2+bx +c 上, △8402b c c ++=⎧⎨=-⎩,解得:b =32-,c =-2, 即抛物线解析式为:y =12x 232-x -2. (2)过点D 作DF △x 轴于F ,交BC 于E ,△D (m ,12m 232-m -2),E (m ,12m -2),F (m ,0),其中0<m <4, △DE =12-m 2+2m , △DM △BC ,△△DME =△BFD =90°,△△BOC =△DME =90°,△△OBC △△MDE , △DM OB DE BC =,即DM OB DE BC =△DM=)2255m --+,△<0,△当m=2时,DM4.(2019·周口二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求这个抛物线的解析式;(2)若D(2,m)在该抛物线上,连接CD,DB,求四边形OCDB的面积;(3)设E是该抛物线上位于对称轴右侧的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点E作EH△x轴于点H,再过点F作FG△x轴于点G,得到矩形EFGH.在点E的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)△抛物线y=ax2+bx+4与x轴交于A(-1,0),B(4,0)两点,△40 16440a ba b-+=⎧⎨++=⎩,解得:a=-1,b=3,即抛物线的解析式为:y=-x2+3x+4.(2)△抛物线y=-x2+3x+4与y轴交于点C △C(0,4),△D(2,m)在抛物线上,△m=6,即D(2,6),S四边形OCDB=S△OCD+S△OBD= 12×4×2+12×4×6=16,即四边形OCDB的面积为16.(322,理由如下:△EFGH为正方形,△EF=EH,设E(n,-n2+3n+4),则F(3-n,-n2+3n+4),△抛物线的对称轴为x=32,△n>3 2 ,△n-(3-n)=-n2+3n+4或n-(3-n)=-(-n2+3n+4),解得:n= 或n= (舍)或n= 或n= (舍)△边长EF=2n-3,得:EF22.5.(2019·濮阳二模)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的动点,当S△P AB=2S△AOB时,求点P的坐标.【答案】见解析.【解析】解:(1)将A(1,0)代入y=﹣3x+c,得:c=3,即B(0,3),将A(1,0),B(0,3)代入y=﹣x2+bx+c,得:-1+b+c=0,c=3,解得:b =-2,c =3,△抛物线解析式为:y =﹣x 2﹣2x +3;(2)连接OP ,抛物线的对称轴为:x =﹣1,设P (m ,﹣m 2﹣2m +3),其中m <﹣1,S △P AB =S △POB +S △ABO ﹣S △POA ,△S △P AB =2S △AOB ,△S △POB ﹣S △POA =S △ABO , △()2111312313222m m m ⨯⨯--⨯⨯--+=⨯⨯, 解得:m =-2或m =3(舍),即P 点坐标为(-2,3).6.(2019·商丘二模)如图.在平面直角坐标系中.抛物线y =12x 2+bx +c 与x 轴交于A 两点,与y 轴交于点C ,点A 的坐标为(﹣1,0),点C 的坐标为(0,﹣2).已知点E (m ,0)是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE △x 轴交抛物线于点P .交BC 于点F .(1)求该抛物线的表达式;(2)当线段EF ,PF 的长度比为1:2时,请求出m 的值;(3)是否存在这样的m ,使得△BEP 与△ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将点A (﹣1,0)、C (0,﹣2)代入y =12x 2+bx +c 得: 2102c b c =-⎧⎪⎨-+=⎪⎩,解得:b =32-,c =-2, △抛物线的表达式为:y =12x 232-x ﹣2; (2)在y =12x 232-x ﹣2中,当y =0时,x =-1或x =4, 即B (4,0),设直线BC 的解析式为:y =kx +n ,将点C (0,﹣2)、B (4,0)代入y =kx +n ,得:2420n k =-⎧⎨-=⎩,解得:212n k =-⎧⎪⎨=⎪⎩ △直线BC 的表达式为:y =12x ﹣2, △E (m ,0),△P (m ,12m 232-m ﹣2),F (m ,12m ﹣2) △当E 在线段AO 上时,EF >PF ,不符合题意;△当E 在线段OB 上时,EF =2-12m ,PF =12m ﹣2-(12m 232-m ﹣2)=-12m 2+2m , △2EF =PF ,△2(2-12m )=-12m 2+2m , 解得:m =2或m =4,△E 不与A 、B 重合,△m ≠4,即m =2;(3)△A (﹣1,0)、C (0,﹣2)、B (4,0),△AB 2=25,AC 2=5,BC 2=20,△AB 2=AC 2+BC 2△△ABC 是直角三角形,当△BEP 与△ABC 相似,则△EPB =△CAB 或△EPB =△ABC ,△tan △EPB =tan △CAB ,或tan △EPB =tan △ABC ,△当tan △EPB =tan △CAB 时, 即:24213222m m m -=⎛⎫--- ⎪⎝⎭, 解得:m =0或4(舍去),△当tan △EPB =tan △ABC , 即:241132222m m m -=⎛⎫--- ⎪⎝⎭, 解得:m =3或4(舍去),综上所述,m 的值为0或3.7.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC △x 轴.(1)求抛物线的解析式;(2)点P 是直线y =﹣x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G ,作PH △EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC △x 轴△点E 的纵坐标为2,△点E 在直线y =﹣x 上,△点E (﹣2,2),△将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩抛物线的解析式为:224233y x x =--+; (2)△OC =CE =2,△△ECO =△CEO =45°,△PG △x 轴,PH △EO ,△△PGH =45°,即△PGH 为等腰直角三角形,P (m ,224233m m --+),G (m ,﹣m ), △l=2PG224233m m --++m )=214m ⎫+⎪⎝⎭△3-<0, △当m =-14时,l. 8.(2019·西华县一模)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,P A=QA?【答案】见解析.【解析】解:(1)△直线y=﹣2x+10与x轴,y轴相交于A,B两点,△A(5,0),B(0,10),设抛物线解析式为y=ax2+bx+c,△抛物线过点B(0,10),C(8,4),O(0,0),△c=0,25a+5b=0,64a+8b=4,△a=16,b=56-,c=0抛物线解析式为y=16x256-x,△A(5,0),B(0,10),C(8,4),△AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,△AC2+BC2=AB2,△△ABC是直角三角形.(2)由(1)知BC=10,AC=5,OA=5,OP=2t,BQ=t,CQ=10﹣t,△AC=OA,△ACQ=△AOP=90°,在Rt△AOP和Rt△ACQ中,AC=OA,P A=QA,△Rt△AOP△Rt△ACQ,△OP=CQ,即2t=10﹣t,解得:t=103,即当运动时间为103s时,P A=QA.9.(2019·中原名校大联考)如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c 与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)(1)求抛物线的解析式;(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.【答案】见解析.【解析】解:(1)在y=﹣x+5中,当x=0,y=5,当y=0,x=5,点B、C的坐标分别为(5,0)、(0,5),将(5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5即二次函数表达式为:y=﹣x2+bx+5.(2)在y=﹣x2+bx+5中,当y=0时,x=﹣1或5,△A(﹣1,0),OB=OC=2,∴△OCB=45°;过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,△△OCB=45°,∴CD″△x轴,点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,设直线D’D’’的解析式为:y=mx+n将D′(0,﹣3),D″(2,5),代入解得:m=4,n=-3,直线D’D’’的解析式为:y=4x﹣3,∴N(34,0).联立y=4x﹣3,y=﹣x+5得:x=85,y=175,即M(85,175).10.(2019·郑州模拟)如图,二次函数y=x2+bx+c 的图象与x 轴交于A,B 两点,与y 轴交于点C,OB=OC.点D 在函数图象上,CD∥x 轴,且CD=2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b,c的值.(2)如图1,连接BE,线段OC 上的点F 关于直线l 的对称点F′恰好在线段BE 上,求点F 的坐标.(3)如图2,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)∵CD∥x轴,CD=2,C在y轴上,∴抛物线的对称轴为:x=1,即b=-2,∵OB=OC,C(0,c),∴B(-c,0),即c2+2c+c=0,解得:c=0(舍)或c=-3,即b=-2,c=-3,(2)抛物线的解析式为:y= x2-2x-3,可得:E(1,-4),A(-1,0),B(3,0),C(0,-3),则直线BE的解析式为:y=2x-6,设F(0,m),则其关于直线l对称点为F’(2,m),∵F’在直线BE上,∴m=-2,即F(0,-2).(3)存在,理由如下:过点Q作QD⊥PN于D,连接PQ、NQ,设点P(x,0),由B(3,0),C(0,-3)得直线BC的解析式为:y=x-3则M(x,x-3),N(x,x2-2x-3),AP=x+1,PM=3-x,PN= -x2+2x+3∵S△PQN=S△APM,∴PN·DQ=AP·PM,∴(-x2+2x+3)DQ=(x+1)(3-x),即DQ=1,①当点D在直线PN右侧时,D(x,x2-4),Q(x+1,x2-4),则DN=|2x-1|,在Rt△DNQ中,由勾股定理得:NQ2=(2x-1)2+12=4212x⎛⎫-⎪⎝⎭+1,当x=12时,NQ取最小值,此时Q(32,154-);②当点Q在直线PN的左侧时,由对称性求得:此时Q(12,154-);11.(2019·郑州模拟)如图,抛物线y=-x2+bx+c和直线y=x+1交于A、B两点,点A在x轴上,点B 在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式.(2)点P从点A AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【答案】见解析.【解析】解:(1)∵B 点横坐标为3,在y =x +1上,∴B (3,4),∵A 点在y =x +1上,∴A (﹣1,0),将A (﹣1,0),B (3,4)代入y =﹣x 2+bx +c 得:10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+3x +4(2)①过点P 作PE ⊥x 轴于点E ,由题意得:E (﹣1+t ,0),Q (3﹣2t ,0),∴EQ =4﹣3t ,PE =t∵∠PQE +∠NQC =90°,∠PQE +∠EPQ =90°,∴∠EPQ =∠NQC ,∴△PQE ∽△QNC , ∴12PQ PE NQ CQ ==, ∴S 矩形PQNM =PQ •NQ =2PQ 2∵PQ 2=PE 2+EQ 2∴S =20t 2﹣36t +18 =26162055t ⎛⎫-+ ⎪⎝⎭当t =65时,S 最小为165.②由①知:△PQE∽△QNC,C(3﹣2t,0),P(﹣1+t,t),∴NC=2QO=8﹣6t,∴N(3,8﹣6t),∴M(3t﹣1,8﹣5t),(i)当M在抛物线上时,可得:8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4解得:t t;(ii)当点Q到A时,Q在抛物线上,此时t=2,(iii)当N在抛物线上时,8﹣6t=4,∴t=23,综上所述,当t,2,23时,矩形PQNM的顶点落在抛物线上.12.(2019·郑州模拟)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B 随之运动,设点B的坐标为(0,b),则b的取值范围是【答案】14-≤b≤1.【解析】解:当点A与点N重合时,MN⊥AC,B、M、N共线,∵N(3,1)∴b=1;当点A与点M重合时,延长NM交y轴于E,易知∠CAN=∠BAE,即tan∠CAN=tan∠BAE,∴11252BE=,∴BE=54,即b=14-,∴b的取值范围是:14-≤b≤1.。
河南省商丘市,2020~2021年中考数学压轴题精选解析

河南省商丘市,2020~2021年中考数学压轴题精选解析河南省商丘市中考数学压轴题精选~~第1题~~(2020商丘.中考模拟) 如图,抛物线y =ax +bx+c 经过O 、A (4,0)、B (5,5)三点,直线l 交抛物线于点B ,交y 轴于点C (0,﹣4).点P 是抛物线上一个动点.(1) 求抛物线的解析式;(2) 点P 关于直线OB 的对称点恰好落在直线l 上,求点P 的坐标;(3) M 是线段OB 上的一个动点,过点M 作直线MN ⊥x 轴,交抛物线于点N.当以M 、N 、B 为顶点的三角形与△OBC 相似时,直接写出点N 的坐标.~~第2题~~(2019天门.中考模拟) 如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax +bx 过A 、C 两点.(1) 直接写出点A 的坐标,并求出抛物线的解析式;(2) 动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.~~第3题~~(2018柘城.中考模拟) 如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点、、抛物线过A 、C 两点.(1) 直接写出点A 的坐标,并求出抛物线的解析式;22(2)动点P从点A出发沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动速度均为每秒1个单位长度,运动时间为t秒过点P作交AC于点E.过点E作于点F,交抛物线于点当t为何值时,线段EG最长?连接在点P、Q运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的t值.~~第4题~~(2017柘城.中考模拟) 如图,抛物线y=ax+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣5),C(6,0)(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.(3)若点Q为抛物线的对称轴上的一个动点,试指出使△QAB为等腰三角形的点Q一共有几个?并请你求出其中一个点Q的坐标.~~第5题~~(2017柘城.中考模拟) 如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.22~~第6题~~(2017商丘.中考模拟) 将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.~~第7题~~(2017虞城.中考模拟) 如图①所示,已知在矩形ABCD中,AB=60cm,BC=90cm,点P从点A出发,以3cm/s的速度沿AB运动;同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.~~第8题~~2(2017柘城.中考模拟) 如图,抛物线y=ax +bx 过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H.(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,当△ABP 的面积为6时,求出点P 的坐标;(4)若点M 在直线BH 上运动,点N 在x 轴上运动,当以点C 、M 、N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN 的面积.~~第9题~~(2017商丘.中考模拟) 已知△ABC 和△ADE 是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 中点,连接DF 、CF .(1) 如图1,当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2) 如图2,在(1)的条件下将△ADE 绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3) 如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD=1,AC=,求此时线段CF 的长(直接写出结果).~~第10题~~(2016江汉.中考模拟) 如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=4 ,则△CEF 的周长为________.2河南省商丘市中考数学压轴题答案解析~~第1题~~答案:解析:答案:解析:~~第3题~~答案:解析:答案:解析:~~第5题~~答案:解析:~~第6题~~答案:解析:~~第7题~~答案:解析:~~第8题~~答案:解析:答案:解析:答案:解析:。
2020年中考数学压轴题十大题型(含详细答案)

2020年中考数学压轴题十大题型(含详细答案)函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。
因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题01 动点与函数图象【例1】(2019·郑州外国语测试)如图所示,在矩形ABCD中,AB=8,AD=4,E为CD的中点,连接AE、BE,点M从点A出发沿AE方向向E匀速运动,同时点N从点E出发沿EB方向向点B匀速运动,点M、N的速度均为每秒1个单位长度,运动时间为t,连接MN,设△EMN的面积为S,则S关于t的函数图象为()A B C D【答案】D.【解析】解:由题意知,AD=DE=CE=BC=4,AE,∴∠AED=∠BEC=45°,∴∠MEN=90°,又∵EN=t,EM t,∴S=12EM EN ⋅⋅=()12t t ⋅-⋅=(2142t -⋅-+,(0≤t ≤)图象为抛物线,开口朝下,当x 时,S 取最大值故答案为D .【变式1-1】(2019·洛阳二模)如图,点 P 是边长为 2 cm 的正方形 ABCD 的边上一动点,O 是对角线的交点,当点 P 由 A →D →C 运动时,设 DP =x cm ,则△POD 的面积 y (cm 2)随 x (cm )变化的关系图象为( )A BC D【答案】B .【解析】解:当P 点在AD 上运动时,0<x ≤2时,y =12·PD ×1=12x ,当P 点在DC 上运动时,0<x ≤2,y =12·PD ×1=12x ,故答案为:B .【变式1-2】(2019·叶县一模)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=52,BC=245.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【答案】D.【解析】解:∵PQ⊥BQ∴S△BPQ=12PQ•BQ①当点P在BD上(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=12t,PQ=BP•sin60tS△BPQ=12PQ•BQ=1•1t•2tt2该图象是关于t的二次函数,其图象为一段开口朝上的抛物线;②当P在DE上时(即2s<t≤4s)PQ=BD•sin60BQ=BD•cos60°+(t﹣2)=t﹣1S△BPQ=12PQ•BQ=12t ﹣1)t , 该图象为一条线段,由左向右上升; ③当P 在DE 上时(即4s <t ≤132s )PQ =PC •sin 45t ,BQ =BC ﹣CQ =245t S △BPQ =12PQ •BQ=12(42t )(245-4+2t ) 通过计算可知,此时函数解析式为二次函数,且二次项系数为:14<0,即该段图象为一段开口朝下的抛物线;综上所述,答案为D .【例2】(2019·省实验一模)如图,正方形ABCD ,对角线AC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A . 【解析】解:∵四边形ABCD 是正方形,∴∠EBF =∠ECG =45°,AC ⊥BD ,EB =EC ,∵EF ⊥EG ,∴∠BEC =∠FEG =90°,∴∠BEF =∠CEG ,∴△BEF ≌△CEG ,∴EF =EG ,∴∠EFG =45°,∴∠CFH =∠BEF ,∴△BEF ∽△CFH , ∴BE BE CH CF=, ∴x y =,∴y =﹣x 2(0<x ),图象为一段开口朝下的抛物线,即答案为:A .【变式2-1】(2019·名校模考)如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE【答案】D .【解析】解:A 、由图1可知,若线段BE 是y ,则y 随x 的增大先减小再增大,而BA <BC ,选项A 错误;B 、由图1可知,若线段EF 是y ,则y 随x 的增大而减小,选项B 错误;C 、由图1可知,若线段CE 是y ,则y 随x 的增大而减小,选项C 错误;D 、由图1可知,若线段DE 是y ,则y 随x 的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,选项D正确;故答案为:D.【变式2-2】(2018·洛宁县模拟)如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()图1 图2A.线段AD B.线段AP C.线段PD D.线段CD【答案】A.【解析】解:∵∠APD=60°,△ABC是等边三角形,∴∠B=∠C=60°,∴∠APB+∠CPD=120°,∠PDC+∠CPD=120°,∴∠APB=∠PDC,∴△ABP∽△PCD,∴AB BPCP CD=,即:44x x CD =-,∴CD=()45x x-,当x=0时,CD=0,不符题意;∴AD=4-CD=4-()45x x-=()2116255x-+,符合题意,即答案为:A.【例3】(2019·周口二模)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2 cm/s.若P,Q同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则CD BE的值为( ) A.3 B.2 C.6 D图1 图2 【答案】D .【解析】解:由图象可知,t =8时,P 点与E 点重合;t =10时,P 与D 点重合,∵P 点的运动速度为2cm /s ,∴DE =4,BE =16,S △BCE =12·BC ·CD =8 CD , 即8 CD,即CD, ∴CD BE, 故答案为:D .【变式3-1】(2019·枫杨外国语三模)如图 1,动点 K 从△ABC 的顶点 A 出发,沿 AB ﹣BC 匀速运动到点 C 停止.在动点 K 运动过程中,线段 AK 的长度 y 与运动时间 x 的函数关系如图 2 所示,其中点 Q 为曲线部分的最低点,若△ABC的面积是,则 a 的值为图1 图2图1图2【答案】【解析】解:由图可知,Q 点对应的是AK ⊥BC 的位置,即△ABC 边BC 上的高为5,由△ABC 的面积是,得:BC =,由抛物线的两端纵坐标相等,即对应的AK 的长度相等,说明AB =AC ,由勾股定理得:AB =即a =故答案为:【变式3-2】(2019·中原名校大联考)如图1,在矩形ABCD 中,动点M 从点A 出发,沿A →B →C 方向运动,当点M 到达点C 时停止运动,过点M 作MN ⊥AM 交CD 于点N ,设点M 的运动路程为x ,CN =y ,图2表示的是y 与x 的函数关系的大致图象,则矩形ABCD 的面积是( )A .20B .18C .10D .9【答案】A .【解析】解:由图2知:AB +BC =9,设AB =m ,则BC =9﹣m ,如图所示,当点M 在BC 上时,则AB =m ,BM =x ﹣a ,MC =9﹣x ,NC =y ,∵MN ⊥AM ,则∠MAB =∠NMC ,tan ∠MAB =tan ∠NMC ,即BM CN AB CM =, 即9x m y m x-=-,化简得:y =﹣1m x 2+9m m +x ﹣9,当x =92m +时,y 取最大值45,即45=()294m m +﹣9, 解得:m =5或m =16.2(舍),∴AM =5,BC =4, ABCD 的面积为20,故答案为:A .1. (2019·濮阳二模)如图,点A 在x 轴上,点B ,C 在反比例函数y =k x(k >0,x >0)的图象上.有一个动点P 从点A 出发,沿A →B →C →O 的路线(图中“→”所示路线)匀速运动,过点P 作PM ⊥x 轴,垂足为M ,设△POM 的面积为S ,点P 的运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .【答案】D . 【解析】解:设点P 的运动速度为x ,(1)当点P 在AB 上时,S =12·OA ·AP =12·OA ·at , 该段函数图象为一条线段,且S 随t 的增大而增大,(2)点P在曲线BC上时,S=1k,为一定值,即图象为一条平行于x轴的线段;2(3)点P在OC上时,S=1·PM·OM2设∠AOC=β,P运动全路程为s,则OP=s-at,则S=1·PM·OM2OPsinβ·OPcosβ=12=1(s-at)2sinβcosβ2函数图象为一段开口朝上的抛物线,且S随t的增大而减小;综上所述,答案为:D.2.(2019·南阳模拟)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE ∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.【答案】A.【解析】解:∵△ABC是等边三角形,∴∠A=∠C=∠ABC=60°,∵DE∥AC,∴∠EDF=∠A=60°,∠DEB=∠B=60°∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠EDB=∠DEB=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,在Rt△DEF中,EF ED2﹣x).ED•EF∴y=12=1(2﹣x(2﹣x),2(x﹣2)2,(0≤x≤2),图象为一段开口朝上的抛物线,y随x增大而减小;所以答案为:A.3.(2019·平顶山三模)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【解析】解:由题意知,(1)当点F在PD上运动时,△AEF的面积为y=12AE•AD=2x(0≤x≤2),为一次函数,图象为直线;(2)当F在AD上运动时,△AEF的面积为:y=12AE•AF=12x(6-x)=-12x2+3x,为二次函数,且开口朝下;故答案为:A.4.(2017·预测卷)如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE →ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t 秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:①当0<t≤5时,y=25t2 ②tan∠ABE=34③点H的坐标为(11,0)④△ABE与△QBP不可能相似.其中正确的是(把你认为正确结论的序号都填上)【答案】①②③.【解析】解:①过点P作PF⊥BC于F,根据面积不变时△BPQ的面积为10,可得:AB=4,∴∠AEB =∠PBF ,∴sin ∠PBF =sin ∠AEB =45,∴PF =PBsin ∠PBF =45t ,∴当0<t ≤5时,y =12BQ ·PF=25t 2 即①正确; ②由图知:ED =2, ∴AE =AD ﹣ED =5﹣2=3, ∴tan ∠ABE =34AE AB =,②正确; ③由图象知,在D 点时,出发时间为7s ,由CD =4,得H (11,0),③正确; ④当△ABE 与△QBP 相似时,点P 在DC 上,∵tan ∠PBQ =tan ∠ABE =34,∴34PQ BQ =,即11354t -=, 解得:t =294.④错误; 故答案为:①②③.5.(2019·焦作二模)如图1,在等边△ABC 中,点D 是BC 边的中点,点P 为AB 边上的一个动点,设x AP =,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边△ABC 的面积为 .【答案】【解析】解:由垂线段最短可知,当DP ⊥AB 时,y此时,由∠B =60°,得:BDtan 60°=2, ∴BC =4,S △ABC24即答案为:6.(2019·三门峡一模)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )ABCD .【答案】B .【解析】解:当0≤x ≤1时,重叠部分为△A ’B ’C ’,面积为:2144=,当1<x ≤2时,重叠部分为等边三角形,边长B ’C =2-x , ())2222x x -=-,为开口朝上的抛物线, 综上所述,答案为:B .7.(2019·许昌月考)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A.B.C.D.【答案】B.【解析】解:当点P在AD上时,S=12AB·AP=AP,则S随着时间t的增大而增大;当点P在DE上时,S=2,S保持不变;当点P在EF上时,△ABP的底AB不变,高减小,则S随着时间t的增大而减小;当点P在FG上时,S=1,面积S不变;当点P在GB上时,S=12AB·BP=BP,S随着时间t的增大而减小;故答案为:B.8.(2019·信阳模拟)如图1,在△ABC中,∠C=90°,动点P从点C出发,以1cm/s的速度沿折线CA→AB匀速运动,到达点B时停止运动,点P出发一段时间后动点Q从点B出发,以相同的速度沿BC 匀速运动,当点P到达点B时,点Q恰好到达点C,并停止运动,设点P的运动时间为t s,△PQC的面积为S cm2,S关于t的函数图象如图2所示(其中0<t≤3,3≤t≤4时,函数图象均为线段(不含点O),4<t<8时,函数图象为抛物线的一部分)给出下列结论:①AC=3cm;②当S=65时,t=35或6.下列结论正确的是()A.①②都对B.①②都错C.①对②错D.①错②对【答案】A.【解析】解:由函数图象可知当0<t ≤3时,点P 在AC 上移动, ∴AC =t ×1=3×1=3cm .故①正确; 在Rt △ABC 中,S △ABC =6,即12BC ×3=6,得:BC =4. 由勾股定理可知:AB =5. (1)当0<t ≤3时,S =12BC •PC =12×4t =2t .(2)当3<t ≤4时,PB =AB -AP =5-(t -3)=8-t ,过点P 作PH ⊥BC ,垂足为H ,则35PH AC PB AB ==, ∴PH =35PB =35(8-t ),S =12BC •PH =12×4×35(8-t ) =-65t +485, (3)当4<t <8时,过点P 作PH ⊥BC 于H .同理:S =2324961055t t -+ 当0<t ≤3时,2t =65,解得t =35,当3≤t ≤4时,−65t +485=65,解得:t =7(舍去),当4<t <8时,232496610555t t -+=,解得t =6或t =10(舍去),∴当t 为35或6时,△PQC 的面积为65.故②正确. 故答案为:A .9.(2018·新乡一模)如图,平行四边形ABCD 中,ABcm ,BC =2cm ,∠ABC =45°,点P 从点B 出发,以1cm /s 的速度沿折线BC →CD →DA 运动,到达点A 为止,设运动时间为t (s ),△ABP 的面积为S (cm 2),则S 与t 的函数表达式为.【答案】S =()((10221221(8)242t t t t t ⎧≤≤⎪⎪⎪<≤+⎨⎪⎪+≤+⎪⎩.【解析】解:(1)当点P 在BC 上运动时,即0≤t ≤2时,过点A 作AH ⊥BC 于H , ∵AB,∠B =45°, ∴AH =BH =1,S =12BP ·AH =12t ·1=12t ; (2)当点P 在CD 上运动时,即2<t ≤时,BBS =12S 四边形ABCD =1;(3)当点P 在DA 上运动时,即<t ≤时,S =12AP ·AH =12(t -4)·1=12-t ); 综上所述,S =()((10221221(8)242t t t t t ⎧≤≤⎪⎪⎪<≤⎨⎪⎪++<≤+⎪⎩10.(2019·郑州外国语模拟)如图,在等腰△ABC 中,AB =AC =4cm ,∠B =30°,点P 从点B 出发,/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发以2cm /s 的速度沿B →A →C 运动到点C 停止,若△BPQ 的面积为y ,运动时间为t (s ),则y 与t 的函数关系式为: .【答案】y=()()22023242t t t ≤≤⎨⎪-+<≤⎪⎩.【解析】解:当点Q 在线段AB 上运动时,即0≤t ≤2,BDBDPB过点Q 作QH ⊥BC 于H ,由题意知,BQ,BP =2t , ∵∠B =30°, ∴QHt , y =12·BP ·QH =12×(2t)×2t=2t 2,当点Q 在线段AC 上运动时,即2<t ≤4,过点Q 作QH ⊥BC 于H ,由题意知,CQ =8t ,BP =2t , ∵∠C =30°,∴QH(8t ), y =12·BP ·QH =12×(2t(8t )(8t2)=232t -+, 综上所述,y=()()220223242t t t ≤≤⎪⎨⎪-+<≤⎪⎩.11.(2019·安阳一模)如图,在四边形ABCD 中,AD ∥BC ,DC ⊥BC ,DC =4 cm ,BC =6 cm ,AD =3 cm ,动点P ,Q 同时从点B 出发,点P 以2 cm /s 的速度沿折线BA -AD -DC 运动到点C ,点Q 以1 cm /s 的速度沿BC 运动到点C ,设P ,Q 同时出发t s 时,△BPQ 的面积为y cm 2,则y 与t 的函数图象大致是( )BPCAB C D【答案】B .【解析】解:过A 作AF ⊥BC 于E ,则四边形ADCF 是矩形, ∴AD =CF =3,CD =AF =4, ∴BF =3,在Rt △ABF 中,由勾股定理得:AB =5,P 点从B 运动到A 点需2.5 秒,(1)当0≤t ≤2.5时,过P 作PE ⊥BC 于E , ∴ PE ∥AF , ∴BP PEAB AF=, ∴254t PE =,即PE =85t, y =12·BQ ·PE =12t ·85t =245t , 是一段开口朝上的抛物线;(2)当2.5<t ≤4时,P 点在AD 上运动,y =12·BQ ·CD =2t ,是一条线段;(3)当4<t ≤6时,P 点在CD 上运动,y =12·BQ ·CP =12t (12-2t ) =6t -t 2,函数图象为一段开口朝下的抛物线,综上所述,选项B 符合要求,故答案为:B .12.(2019·开封模拟)如图,菱形ABCD 的边长是4 cm ,∠B =60°,动点P 以1 cm /s 的速度从点A 出发沿AB 方向运动至点B 停止,动点Q 以2 cm /s 的速度从点B 出发沿折线BCD 运动至点D 停止.若点P ,Q 同时出发,运动了t s ,记△BPQ 的面积为S cm 2,则下面图象中能表示S 与t 之间的函数关系的是( )A .B .C .D .D【答案】C .【解析】解:当点Q 在线段BC 上时,即0≤t ≤2时,S =12BQ ·BP ·sin ∠B=12t ·(4-t=)24t t -, 图象为开口朝上的抛物线;当点Q 在线段CD 上时,即2<t ≤4时,S =12·BP ·(BC ·sin ∠B )=12(4-t )×4)4t -,图象为一条直线,S 随t 的增大而减小;即答案为:C .13. 如图,矩形ABCD 中,AB =2AD =4cm ,动点P 从点A 出发,以lcm /s 的速度沿线段AB 向点B 运动,动点Q 同时从点A 出发,以2cm /s 的速度沿折线AD →DC →CB 向点B 运动,当一个点停止时另一个点也随之停止.设点P 的运动时间是x (s )时,△APQ 的面积是y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )【答案】A .【解析】解:当点Q 在线段AD 上时,即0≤t ≤1,y =12·AP ·AQ =12(2t )t =t 2,为开口朝上的抛物线;当点Q 在线段DC 上时,即1≤t ≤3,y =12·AP ·AD =12(2t )×2=2t ,为一段线段,y 随x 的增大而增大;当点Q 在线段CB 上时,即3≤t ≤4,y =12·AP ·BQ =12(2t )×(8-2t )=-2t 2+8t ,为开口朝下的抛物线;综上所述,选项A 符合要求,即答案为:A .14.(2019·信阳一模)如图,锐角三角形ABC 中,BC =6,BC 边上的高为4,直线MN 交边AB 于点M ,交AC 于点N ,且MN ∥BC ,以MN 为边作正方形MNPQ ,设其边长为x (x >0),正方形MNPQ 与△ABC 公共部分的面积为y ,则y 与x 的函数图象大致是( )A B C D【答案】D .【解析】解:当PQ 在边BC 上时,由题意知,MN ∥BC ,过A 作AH ⊥BC 于H ,交MN 于G ,∴MN AG BC AH =, 即464x x -=,解得:x =2.4, 当0<x ≤2.4时,正方形MNQP 在△ABC 的内部,∴y =x 2,为开口朝上的抛物线,当2.4<x ≤4时,过A 作AH ⊥BC 于H ,交MN 于G , 则MN AG BC AH=, 即64x AG =,解得:AG =23x , ∴GH =4-23x , y =MN ·GH =x (4-23x ),为开口朝下的抛物线,对称轴为:x =3, 即选项D 符合题意,即答案为:D .15.(2018·开封二模)如图,在平面直角坐标系中,已知A (0,1),B ,0),以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上. 若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间t 的函数关系的图象为( )图1 图2A B C D【答案】A .【解析】解:由A (0,1),B 0),得:∠ABO =30°,∠ADC =∠OAB =60(1)当点A 在x 轴上方时,菱形落在x 轴下方部分为三角形,S =12·(2t )2,图象为开口朝上的抛物线; (2)当点A 在x 轴上方时,点C 在x 轴上方时,菱形落在x 轴下方部分为梯形,S =12·(t +t -1)t ,图象为一段线段;(3)当点C在x轴下方时,S1(6-2t)(6-2t)t-3)22图象为开口朝下的抛物线;综上所述,选项A符合要求;故答案为:A.。